
Nineteenth Lecture: 18/5

The augmenting path algorithm can in fact be employed in an arbitrary graph, not just

a bipartite graph. This is because of the following observation:

Proposition 19.1. Let G = (V, E) be any graph and M a matching in G. If M is not

a maximum matching, then there exists an M -augmenting path.

Proof. Let M∗ be a maximum matching and let H be the subgraph of G consisting of

those edges which occur in precisely one of M and M∗, but not both. Since M and

M∗ are both matchings, the degree of any vertex in H is at most 2. Hence, H has no

branching points and each of its connected components must be either a simple cycle or

a simple path. Moreover, in any such component, edges must alternate between M and

M∗. This implies that any cycle must have even length and include an equal number of

edges from M and M∗. But |M∗| > |M |, so there must be at least one component of H

which is a path of odd length, in which edges alternate between M and M∗ and the first

edge is in the latter. Moreover, the first and last vertices along the path are unmatched

in M , as otherwise this path could be extended to a larger connected subgraph of H .

Hence the path is an M -augmenting path, v.s.v. �

Hall’s theorem can also be generalised using the following concept:

Definition 19.2. Let G = (X, Y, E) be a bipartite graph. For a subset A ⊆ X , the

deficiency of A, denoted ∂A, is defined as ∂A := max{0, |A|−|N(A)|}. The deficiency

of X , denoted dX , is defined as dX := maxA⊆X ∂A.

Theorem 19.3. (Extended Hall’s theorem) Let G = (X, Y, E) be a bipartite graph.

Then the maximum size of a matching in G is |X| − dX .

Proof. If dX = 0 then this is just Hall’s theorem, so we may suppose dX > 0.

Let M be any matching in G. There exists a subset A ⊆ X such that |N(A)| =
|A| − dX . Now vertices in A can only be matched a priori with vertices in N(A).
Hence, at least dX of the vertices in A must be left unmatched, and thus a fortiori at

least dX of the vertices in X must be left unmatched. This proves that |M | ≤ |X| − dX
for any matching.

Conversely, let G = (X, Y,E) be a bipartite graph with deficiency dX > 0. Let

G′ = (X, Y ′, E ′) be the graph gotten by adding dX new vertices to Y to form Y ′, and

then inserting an edge from every vertex of X to every vertex of Y ′\Y . Since we in

this way increase the number of neighbors of every vertex in X by dX , the graph G′

has zero deficiency. Hence, by Hall’s theorem, it possesses a perfect matching for X .

But in this matching, no more than dX vertices can be matched with vertices in Y ′\Y ,

since there are only dX vertices in the latter, by construction. Hence, at least |X| − dX
vertices of X are matched with vertices in Y . These pairs constitute a matching in the

original graph G, so G has a matching of size at least |X| − dX . This completes the

proof. �

Definition 19.4. Let G = (V, E) be a graph and k a positive integer. An edge k-

coloring of G is a function f : E → {1, 2, . . . , k} such that f(e1) 6= f(e2) whenever

the edges e1 and e2 have a common vertex.
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The edge chromatic number of G, denoted Φ(G), is the smallest k for which there

exists an edge k-coloring of G.

The vertex- and edge-coloring problems may seem similar, but in some sense the latter

is in fact much simpler. First note the following simple analogue of Proposition 16.6:

Proposition 19.5. For any graph G one has

Φ(G) ≥ ∆(G). (19.1)

Proof. Obvious. All the edges incident to a given vertex must be assigned different

colors in any edge coloring. �

It is already striking that the obvious lower bound for Φ(G) is basically the same as

the (most) obvious upper bound for χ(G), as proven in Theorem 16.13. But, in fact, the

relationship between Φ(G) and ∆(G) is much closer. The key to this is the following:

Theorem 19.6. Let G = (X, Y, E) be a bipartite graph. Then Φ(G) = ∆(G).

Proof. The central idea in the proof is very similar to the augmenting path idea for

constructing maximum matchings. Formally, one proceeds by induction on the num-

ber of edges in G. If G contains a single edge then obviously Φ(G) = ∆(G) = 1.

So suppose the theorem holds for any bipartite graph with at most m ≥ 1 edges and

let G = (X, Y, E) be a bipartite graph with m + 1 edges. Pick any edge, call it

e00 = {x0, y0}. Removal of e00 leaves a bipartite graph G′ with m edges.

CASE 1: ∆(G′) = ∆(G) − 1. By induction, G′ can be edge-colored with ∆(G) − 1
colors. Then the ∆(G):th color can be used on e00.

CASE 2: ∆(G′) = ∆(G). We can still apply the induction hypothesis to conclude

that G′ has an edge coloring with ∆(G) colors. Fix such a coloring C - in particular, fix

a list of ∆(G) available colors. In the graph G′ the vertices x0 and y0 each have degree

at most ∆(G) − 1. Hence there must be some color α on the list which has not been

used in C on an edge incident to x0. Similarly, there must be some color β on the list

not used in C on an edge incident to y0. If α = β, then we can use this color on e00 and

obtain an edge ∆(G)-coloring of G.

So we may suppose that α 6= β. In other words, we may assume that there is some

edge incident to y0 on which the color α has been used. Call this edge e01 = {x1, y0}.

What we would like to do now is to swap α for β on e01 and then use α on e00. The

only thing that can disallow this is if there is an edge incident to x1 on which β has been

used. So we may assume there is such an edge, call it e11 = {x1, y1}.

Keep iterating this argument. We can stop and perform the α ↔ β swap as soon as

we encounter either an X-vertex where the color β is free or a Y -vertex where the color

α is free. But such a vertex must eventually be encountered since the graph is finite

and if the sequence x0, y0, x1, y1, x2, . . . of vertices encountered a repetition, then we

would have two edges in G′ with the same color and a vertex in common. �
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Remark 19.7. In fact, the lower bound in (19.1) is almost sharp for any graph whatso-

ever. Vizing’s theorem states that Φ(G) ≤ ∆(G) + 1, for any graph !! The proof is sim-

ilar in spirit to that of Theorem 19.6 and not too difficult, though we do not have time for

it. See, if you’re interested, https://en.wikipedia.org/wiki/Vizing’s theorem


