
Second Lecture: 23/3

Theorem 2.1. (Binomial Theorem) Let n be a non-negative integer. Then

(x+ y)n =
n

∑

k=0

(

n

k

)

xkyn−k. (2.1)

Proof. When we fully expand (x+ y)n there are a total of 2n terms of the form xkyn−k,

for some 0 ≤ k ≤ n. This is because we can choose either x or y from each factor (2
choices) and there are n factors - so apply the Multiplication Principle.

For a fixed k, let us consider the number of times the term xkyn−k occurs in the

expansion. To get this term we must choose an x from k factors, and then a y from

each of the remaining n− k factors. There are
(

n

k

)

choices for the k factors from which

to choose x, hence this will be the number of times the term xkyn−k occurs in the

expansion. �

Terminology. Because of their appearence as coefficients in the Binomial Theorem,

the numbers
(

n

k

)

are usually referred to as binomial coefficients.

Remark 2.2. In the above proof we used the fact that ordinary multiplication of num-

bers is commutative - it allowed us to say that one got the same term xkyn−k irrespective

of which k factors one chose x from. Hence, there is no “binomial theorem” in a non-

commutative ring, for example if x and y were matrices.

When computing binomial coefficients, the following recursive formula for them is

often useful:

Proposition 2.3. (Pascal’s identity)
(

n+ 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

. (2.2)

There are many ways to prove this, but one way which I think gives “insight” (i.e.:

explains how on earth one might discover such a formula rather than just verify it). This

is the proof given below. But let me mention a couple of alternative proofs, which I will

leave as exercises to the reader to work out in detail:

ALTERNATIVE 1: Use induction on a suitable quantity.

ALTERNATIVE 2: Use formula (1.8) and some algebraic manipulation.

Proof. The incisive proof involves combinatorial reasoning. Firstly, the LHS of (2.2)

is, by definition, the number of ways to choose k distinct elements from an (n + 1)-
element set. Isolate one of the n+ 1 elements and consider two cases:

CASE 1: This element is among the k chosen. Then it remains to choose k − 1 distinct

elements from n. By definition, there are
(

n

k−1

)

ways to do this.

CASE 2: This element is not among the k chosen. Then it remains to choose k dis-

tinct elements from n. By definition, there are
(

n

k

)

ways to do this.
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Cases 1 and 2 are obviously mutually exclusive (i.e.: disjoint) and it is an either/or sit-

uation so, by the addition principle, the total number of possibilities for the full choice

of k elements is
(

n

k−1

)

+
(

n

k

)

. �

Pascal’s identity gives rise to the famous Pascal’s triangle. Rather than me wasting

time drawing a nice picture in Latex, just look at any of the zillions of Googleable

pictures.

Example 2.4. Let us expand (2x − y)5. Note that, when applying the Binomial Theo-

rem as stated above, the role of “x” is now played by 2x and the role of “y” is played

by −y. Thus,

(2x− y)5 =

(

5

0

)

x0y5 +

(

5

1

)

x1y4 +

(

5

2

)

x2y3 +

(

5

3

)

x3y2 +

(

5

4

)

x4y1 +

(

5

5

)

x5y0.

(2.3)

The binomial coefficients are given by the corresponding row of Pascal’s triangle, which

reads as 1, 5, 10, 10, 5, 1. Thus the expansion becomes

(2x− y)5 =

= −1 · 1 · y5 + 5 · (2x) · y4 − 10 · (4x2) · y3 + 10 · (8x3) · y2 − 5 · (16x4) · y + 1 · (32x5) · 1 =

= −y5 + 10xy4 − 40x2y3 + 80x3y2 − 80x4y + 32x5.

Example 2.5. Compute the coefficient of x6y7z4 in the expansion of (x+ y + z)17.

SOLUTION: We now have three variables instead of two, but we can perform the same

combinatorial reaoning as in our proof above of the Binomial Theorem. To get a term

of the form x6y7z4 in the expansion, one must choose an x from 6 of the 17 factors,

then choose a y from 7 of the remaining 11 factors. There are
(

17

6

)

possibilities for the

factors from which to choose the x:s, then
(

11

7

)

possibilities for the factors from which

to choose the y:s. By the multiplication principle, the total number of possibilities is
(

17

6

)

×
(

11

7

)

.

Remark 2.6. The same kind of reasoning can be extended to an arbitrary number

of variables and one can formulate a general Multinomial Theorem. The only thing that

is really more complicated in the general case is the notation, so I will leave it to your-

selves to think how to write out the correct formulation, or just Google it.

Remark 2.7. If one has nothing better to do going home on the tram, one can use

(1.8) and work out that
(

17

6

)

×
(

11

7

)

= 12376 × 330 = 4084080, so about 4 million.

Binomial coefficients rapidly become large and often what one needs is just good esti-

mates rather than exact values. So, suppose you had 2 minutes to save your life and had

to estimate, up to a factor of 100, the value of, say,
(

63

19

)

. How would you do it ? I will

leave this (hopefully intruiging !) question hanging and maybe come back to the topic

of efficiently estimating binomial coefficients later.

Balls and Bins. Computer scientists love to talk in terms of placing balls in bins. There

are essentially 4 different problems here, depending on whether or not the balls are
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distinguishable, and similarly for the bins. The problems are simplest when the bins

are distinguishable, and we will provide answers below. The cases when the bins are

indistinguishable will be returned to later - see Remark 2.13 below.

Proposition 2.8. The number of ways to distribute n distinguishable balls among k

distinguishable bins is kn.

Proof. There are k choices for the bin into which to place each ball, and there are n

balls. Now apply the Multiplication Principle. �

Proposition 2.9. The number of ways to distribute n indistinguishable (i.e.: identical)

balls among k distinguishable bins is
(

n+k−1

n

)

=
(

n+k−1

k−1

)

.

Proof. The difference here from the previous proposition is that, since the balls are now

identical, all that matters is how many balls are placed in each bin. To see where the

formula comes from, we can observe that there is a 1-1 correspondence between the

possible distributions of the balls and sequences of n + k − 1 symbols of which n are

identical “dots” and k − 1 are identical “dashes”. For we can interpret the dashes as

marking out where one “jumps” from one bin to the next. It’s probably clearest with an

example. Consider the following sequence of dots and dashes:

• • | • • • | | • | • • • • | • .

This corresponds to a distribution of 11 balls into 6 bins, where the number of bins

placed in bins 1− 5 is, respectively, 2, 3, 0, 1, 4, 1.

To complete the proof, note that the number of sequences of n dots and k− 1 dashes

is obviously
(

n+k−1

n

)

since one just needs to choose in which n positions to place the

dots. �

Example 2.10. Proposition 2.9 is used in statistical physics, where the balls are (el-

ementary) particles and the bins are quantum energy levels. If you’re interested, see

https://en.wikipedia.org/wiki/Bose-Einstein−statistics

Example 2.11. Another interpretation of Proposition 2.9 is that
(

n+k−1

n

)

is the num-

ber of solutions in non-negative integers to the equation

x1 + x2 + · · ·+ xk = n, xi ∈ N0. (2.4)

For we can interpret xi as the number of balls placed in bin number i. Solutions to (2.4)

are usually referred to as compositions of n into at most k parts. The “at most” comes

from the fact that the xi are allowed to equal zero.

Example 2.12. Let Zk denote the k-dimensional integer lattice, that is, the lattice of

points in k-dimensional Euclidean space R
k all of whose coordinates are integers. We

can interpret
(

n+k−1

n

)

as the number of possible destinations of an n-step path in this

lattice, starting from the origin and such that every step is in the positive direction along

a coordinate axis. For we can interpret xi in (2.4) as the number of steps taken along the

i:th coordinate direction and note that, what determines where one ends up is simply

the number of steps taken in each direction, not the order.
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The technical terminology here would be to speak of the number of possible destina-

tions for an n-step simple, positively oriented, k-dimensional random walk.

Remark 2.13. When counting the number of ways to place distinguishable balls into

identical bins one encounters so-called Stirling numbers. When placing identical balls

into identical bins one encounters so-called partitions of n (into at most k parts). These

problems are more difficult, no exact formulas are known but one can write down some

recursive formulas. We will return to these topics in Lecture xx. See Chapter 12 of

Biggs.

Inclusion-Exclusion Principle (also called Sieve Principle). This is a very elegant

and useful generalisation of the addition principle to the case of sets that are not pair-

wise disjoint.

The case of two sets.

|A ∪ B| = |A|+ |B| − |A ∩ B|. (2.5)

The case of three sets.

|A∪B ∪C| = |A|+ |B|+ |C| − |A∩B| − |A∩C| − |B ∩C|+ |A∩B ∩C|. (2.6)

There is a general pattern, given by the following result which we will prove next

time:

Theorem 2.14. (Inclusion-Exclusion Principle) Let A1, A2, . . . , An be finite sets.

Then
∣

∣

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣

∣

∣

=
k

∑

i=1

|Ai|−
∑

i 6=j

|Ai∩Aj|+
∑

i 6=j 6=k

|Ai∩Aj∩Ak|−· · ·+(−1)n−1|A1∩· · ·∩An|.

(2.7)


