
Fifth Lecture: 13/4

If bn in (4.8) is given by a polynomial of degree l, then one’s guess for up, n should be

of the form

up, n = nr

(

l
∑

i=0

κin
i

)

, (5.1)

where r is the multiplicity of one as a root of the auxiliary equation and κ0, . . . , κl are

constants to be determined by substitution into the recurrence. We illustrate the method

with the next three examples:

Example 5.1. Let’s solve the recurrence

u0 = 1, u1 = 3, un+2 = 6un+1 − 8un + 2n ∀ n ≥ 0.

Here bn = 2n, a polynomial of degree one, so l = 1 in (5.1). The auxiliary equation is

α2 − 6α + 8 = 0, which has roots α1 = 2, α2 = 4. Thus r = 0 in (5.1), since 1 is not a

root of the auxiliary equation. We begin by determining (up, n) and, according to (5.1),

our guess should be

up, n = C3 + C4n.

Insertion into the recurrence gives

up, n+2 = 6up, n+1 − 8up, n + 2n ⇔ C3 + C4(n+ 2) = 6[C3 + C4(n+ 1)]− 8[C3 + C4n] + 2n

⇒ [(C3 + 2C4)− 6(C3 + C4) + 8C3] + n[C4 − 6C4 + 8C4] = 2n

⇒ 3C3 − 4C4 = 0 and 3C4 = 2

⇒ C3 =
8

9
, C4 =

2

3
.

We have, as usual, uh, n = C1 ·2
n+C2 ·4

n. Hence, the general solution to the recurrence

is

un = C1 · 2
n + C2 · 4

n +
8

9
+

2n

3
.

We now insert the initial conditions

n = 0 : u0 = 1 = C1 + C2 +
8

9
⇒ C1 + C2 =

1

9
,

n = 1 : u1 = 3 = 2C1 + 4C2 +
8

9
+

2

3
⇒ 2C1 + 4C2 =

13

9
.

Gauss elimination yields C1 = −1/2, C2 = 11/18. Hence, finally,

un =
1

18
(−9 · 2n + 11 · 4n + 16 + 12n) .

Example 5.2. Let’s solve the recurrence

u0 = 1, u1 = 3, un+2 = 4un+1 − 3un + 2n+ 1 ∀ n ≥ 0.

Here bn = 2n + 1 is of degree one as before, so l = 1 in (5.1). The auxiliary equation

is α2 − 4α + 3 = 0, which has roots α1 = 1, α2 = 3. Thus r = 1 in (5.1), since 1 is
1
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a simple root of the auxiliary equation. We begin by determining (up, n) and, according

to (5.1), our guess should be

up, n = n(C3 + C4n) = C3n+ C4n
2.

Insertion into the recurrence gives

up, n+2 = 4up, n+1 − 3up, n + 2n+ 1

⇔ C3(n+ 2) + C4(n+ 2)2 = 4[C3(n+ 1) + C4(n+ 1)2]− 3[C3n+ C4n
2] + 2n+ 1

⇒ [(2C3 + 4C4)− 4(C3 + C4)] + n[(C3 + 4C4)− 4(C3 + 2C4) + 3C3] +

+n2[C4 − 4C4 + 3C4] = 2n+ 1.

Notice that the coefficient of n2 on the LHS is identically zero. Hence, identifying

the remaining coefficients on the left and right we get −2C3 = 1 and −4C4 = 2, so

C3 = C4 = −1/2.

We have uh, n = C1 · 1
n + C2 · 3

n = C1 + C2 · 3
n, so the general solution to the

recurrence is

un = C1 + C2 · 3
n −

n

2
(1 + n).

We now insert the initial conditions

n = 0 : u0 = 1 = C1 + C2,

n = 1 : u1 = 3 = C1 + 3C2 −
1

2
(1 + 1) ⇒ C1 + 3C2 = 4.

Gauss elimination yields C1 = −1/2, C2 = 3/2. Hence, finally,

un =
1

2

[

3n+1 − (1 + n+ n2)
]

.

Example 5.3. Let’s solve the recurrence

u0 = 1, u1 = 3, un+2 = 2un+1 − un + 2n+ 1 ∀ n ≥ 0.

Here bn = 2n+1 is of degree one as before, so l = 1 in (5.1). The auxiliary equation is

α2 − 2α + 1 = 0, which has the repeated root α1, 2 = 1. Thus r = 2 in (5.1). We begin

by determining (up, n) and, according to (5.1), our guess should be

up, n = n2(C3 + C4n) = C3n
2 + C4n

3.

Insertion into the recurrence gives

up, n+2 = 2up, n+1 − up, n + 2n+ 1

⇔ C3(n+ 2)2 + C4(n+ 2)3 = 2[C3(n+ 1)2 + C4(n+ 1)3]− [C3n
2 + C4n

3] + 2n+ 1

⇒ [(4C3 + 8C4)− 2(C3 + C4)] + n[(4C3 + 12C4)− 2(2C3 + 3C4)] +

+n2[(C3 + 6C4)− 2(C3 + 3C4) + C3] + n3[C4 − 2C4 + C4] = 2n+ 1.

Notice that the coefficients of n2 and n3 on the LHS are both identically zero. Hence,

identifying the remaining coefficients on the left and right we get 2C3 + 6C4 = 1 and

6C4 = 2, so C3 = −1/2 and C4 = 1/3.

We have uh, n = (C1+C2n)·1
n = C1+C2n, so the general solution to the recurrence

is

un = C1 + C2n−
n2

2
+

n3

3
.



3

We now insert the initial conditions

n = 0 : u0 = 1 = C1,

n = 1 : u1 = 3 = C1 + 3C2 −
1

2
+

1

3
⇒ C2 =

13

18
.

Hence, finally,

un = 1 +
13n

18
−

n2

2
+

n3

3
.

If, in (4.8), we have bn = b1, n + b2, n then our guess for the particular solution should

have the form

up, n = u1

p, n + u2

p, n, (5.2)

where, for i = 1, 2, ui
p, n would have been our guess if we’d had just bn = bi, n. The

next example illustrates this point.

Example 5.4. Let’s solve the recurrence

u0 = 1, u1 = 3, un+2 = 7un+1 − 10un + 3n + 2n ∀ n ≥ 0.

Here b1, n = 3n and b2, n = 2n. The auxiliary equation is α2 − 7α + 10 = 0, which has

roots α1 = 2, α2 = 5. We begin by determining (up, n) and, according to what we’ve

said previously, our guess should be

up, n = u1

p, n + u2

p, n = C3 · 3
n + (C4 + C5n).

Insertion into the recurrence gives

up, n+2 = 7up, n+1 − 10up, n + 3n + 2n

⇔ C3 · 3
n+2 + C4 + C5(n+ 2) = 7[C3 · 3

n+1 + C4 + C5(n+ 1)]−

−10[C3 · 3
n + C4 + C5n] + 3n + 2n

⇒ 3n[9C3 − 21C3 + 10C3] + [(C4 + 2C5)− 7(C4 + C5) + 10C4] +

+n[C5 − 7C5 + 10C5] = 3n + 2n

⇒ −2C3 = 1 and 4C4 − 5C5 = 0 and 4C5 = 2

⇒ C3 = −
1

2
, C4 =

5

8
, C5 =

1

2
.

We have, as usual, uh, n = C1 ·2
n+C2 ·5

n. Hence, the general solution to the recurrence

is

un = C1 · 2
n + C2 · 5

n −
3n

2
+

5

8
+

n

2
.

We now insert the initial conditions

n = 0 : u0 = 1 = C1 + C2 −
1

2
+

5

8
⇒ C1 + C2 =

7

8
,

n = 1 : u1 = 3 = 2C1 + 5C2 −
3

2
+

5

8

1

2
⇒ 2C1 + 5C2 =

27

8
.

Gauss elimination yields C1 = 1/3, C2 = 13/24. Hence, finally,

un =
1

3
· 2n +

13

24
· 5n −

3n

2
+

5

8
+

n

2
.
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The binomial theorem for negative integer exponents. Our goal in forthcoming lec-

tures is to show how the solution of linear recurrences can be carried out in a more

systematic manner by means of so-called generating functions, and then to illustrate

the greater power of such methods by applying them even to other types of problems.

A necessary starting point for this discussion is to extend the binomial theorem to situa-

tions where the exponent is not a positive integer. We are primarily interested in the case

where the exponent is a negative integer, though even a rational exponent will make an

appearance when we discuss the Catalan numbers. But first, for negative integer expo-

nents, we have the following theorem:

Theorem 5.5. Let n ∈ N and x ∈ (−1, 1). Then

(1− x)−n =
∞
∑

k=0

(

n+ k − 1

k

)

xk. (5.3)

We will give three different proofs of this theorem, all of which introduce techniques

that are useful to know and that will have applications later on. The first two proofs

each start from the observation that, if |x| < 1, then

1

1− x
=

∞
∑

k=0

xk. (5.4)

Indeed, this should be familiar to you as a formula for the sum of an infinite, convergent

geometric series.

First Proof of Theorem 5.5. Raise both sides of (5.4) to the n:th power:

(1− x)−n =

(

1

1− x

)n

=

(

∞
∑

k=0

xk

)n

= · · · =
∞
∑

k=0

ckx
k,

where ck is the number of ways one can get a term of xk when one multiplies out the

product of n factors. To get xk one must take xki from the i:th factor, i = 1, 2, . . . , n,

such that k1 + k2 + · · · + kn = k. Hence, ck is just the number of solutions to the

equation

k1 + k2 + · · ·+ kn = k, ki ∈ N0.

But from Example 2.11 we know that the number of such solutions is
(

k+n−1

n−1

)

=
(

k+n−1

k

)

, v.s.v. �

We give the remaining two proofs next time ...


