
Sixth Lecture: 14/4

Second Proof of Theorem 5.5. Differentiate both sides of (5.4) n − 1 times. The LHS

will become (n − 1)!(1 − x)−n. The RHS can be differentiated termwise1. Each of

the terms 1, x, . . . , xn−2 will collapse to zero after n − 1 differentiations. For any

k ≥ n− 1, d
n−1

dxn−1 (x
k) = k(k − 1) . . . (k − n+ 2)xk−(n−1). Thus

(n− 1) · (1− x)−n =
∞
∑

k=n−1

k(k − 1) . . . (k − n+ 2) xk−(n−1).

Divide both sides by (n−1)! and change the summation index from k to l := k−(n−1).
We get

(1− x)−n =
∞
∑

l=0

(l + n− 1)(l + n− 2) . . . (l + 1)

(n− 1)!
xl.

The coefficient of xl is (see (1.9)) just
(

l+n−1
n−1

)

, which is the same (see (1.10)) as
(

l+n−1
l

)

. �

Third proof of Theorem 5.5. In (5.3) substitute y := −x, t := −n. Then it becomes

(1 + y)t =
∞
∑

k=0

(−t+ k − 1)(−t+ k − 2) . . . (−t+ 1)(−t)

k!
(−y)k

=
∞
∑

k=0

(−1)kt(t− 1) . . . (t− k + 2)(t− k + 1)

k!
(−1)kyk

=
∞
∑

k=0

t(t− 1) . . . (t− k + 2)(t− k + 1)

k!
yk.

Now, for an arbitrary real number t, let us define the so-called generalized binomial

coefficient
(

t

k

)

as
(

t

k

)

def
=

t(t− 1) . . . (t− k + 1)

k!
(6.1)

Thus, (5.3) is equivalent to the statement that, if t ∈ Z≤0 then

(1 + x)t =
∞
∑

k=0

(

t

k

)

xk. (6.2)

Note that, if instead t ∈ Z≥0 then (6.2) is just the same as (2.1) since, when t is a non-

negative integer, a factor in the numerator of (6.1) will be zero once k > t and so the

infinite sum will collapse to a finite sum for k = 0, 1, . . . , t.
The point, now, however, is that both sides of (6.2) make sense for any t ∈ R,

provided |x| < 1. And, in fact, they are then always equal: this follows by an application

of Taylor’s theorem to the function f(x) = (1 + x)t. Recall that Taylor’s theorem

1Since the series converges uniformly for all x such that |x| < 1− δ, for any δ > 0.

1



2

states that, if f(x) is infinitely differentiable2 in a neighbourhood of x = 0, then in this

neighbourhood one has

f(x) =
∞
∑

k=0

f (k)(0)

k!
xk. (6.3)

So take f(x) = (1 + x)t. One computes directly f (k)(x) = t(t− 1) . . . (t− k + 1)(1 +
x)t−k. At x = 0, one has (1 + 0)t−k = 1 for every k. So substituting into (6.3) yields

immediately (6.2). �

Remark 6.1. The statement that, for any t ∈ R and |x| < 1,

(1 + x)t =
∞
∑

k=0

(

t

k

)

xk, where
(

t

k

)

is as defined in (6.1), (6.4)

is referred to as the Generalized Binomial Theorem. In this course we will mostly only

use the version (5.3), which is more convenient when the exponent is a negative integer.

However, in at least one place (when we discuss the Catalan numbers), we will employ

version (6.4) with t = 1/2.

Generating Functions. We begin with the general definition.

Definition 6.2. Let (un)
∞
n=1 be a sequence of complex numbers. The generating func-

tion U(x) for the sequence is given by the power series U(x) =
∑∞

n=0 unx
n.

One can, of course, complain that this is not a precise definition, since the domain

of the function U(x) has not been specified - indeed, the domain will depend on the

particular sequence. This is true, but (i) it will not be an issue when we use generating

functions in computations, as we shall see - for instance, in all the examples we do the

domain |x| < 1, on either the real line or in the complex plane, will do (ii) one can get

around this issue quite rigorously by considering U(x) as what is called a formal power

series, i.e.: an element in a formal power series ring C[[x]]. I don’t want to go into what

this means until we have done examples to build intuition but I will remark on it again

later.

Example 6.3. Let’s re-solve the recurrence

u0 = 1, u1 = 3, un+2 = 6un+1 − 8un ∀ n ≥ 0.

We already know how to do this using the auxiliary equation method: the equation here

is x2 − 6x+ 8 = 0, with roots x1 = 2, x2 = 4. Hence the solution is of the form

un = C1 · 2
n + C2 · 4

n.

Inserting the initial conditions gives

n = 0 : u0 = 1 = C1 + C2,

n = 1 : u1 = 3 = 2C1 + 4C2,

2and satisfies some other technical conditions which I don’t want to go into. There are well-known

examples of infinitely differentiable functions whose Taylor expansions do not converge to the functions

themselves, e.g.: f(x) = e−x
2

.
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and hence C1 = C2 = 1/2. Thus,

un =
1

2
(2n + 4n). (6.5)

We now illustrate how to get the same result using the generating function method.

Though it may seem less efficient, the point is that it should also seem less “ad hoc”,

and should give greater insight into why the solution has the form it does (no ”guessing”

is involved).

So let U(x) :=
∑∞

n=0 unx
n. Given that u0 = 1 we can write, firstly,

U(x) = 1 +
∞
∑

n=1

unx
n = 1 + x

(

∞
∑

n=0

un+1 x
n

)

⇒

⇒
∞
∑

n=0

un+1 x
n =

U(x)− 1

x
. (6.6)

Then, using also u1 = 3 and the recursion,

U(x) = 1 + 3x+
∞
∑

n=2

unx
n = (1 + 3x) + x2

(

∞
∑

n=0

un+2 x
n

)

=

= (1 + 3x) + x2

(

6
∞
∑

n=0

un+1x
n − 8

∞
∑

n=0

unx
n

)

=

(6.6)
= (1 + 3x) + x2

(

6×
U(x)− 1

x
− 8U(x)

)

⇒

⇒ U(x) = (1 + 3x) + 6x(U(x)− 1)− 8x2U(x) ⇒

⇒ (1− 6x+ 8x2)U(x) = 1− 3x ⇒ U(x) =
1− 3x

1− 6x+ 8x2
=

1− 3x)

(1− 2x)(1− 4x)
.

The next step is to make a so-called partial fraction decomposition of the RHS, namely

in this case to find constants A and B such that

1− 3x

(1− 2x)(1− 4x)
=

A

1− 2x
+

B

1− 4x
.

Multiplying through by (1− 2x)(1− 4x) we have the requirement that

1− 3x = A(1− 4x) + B(1− 2x)

⇒ 1− 3x = (A+ B) + x(−4A− 2B)

⇒ A+B = 1 and 4A+ 2B = 3

⇒ A = B = 1/2.

Thus,

U(x) =
1

2

[

1

1− 2x
+

1

1− 4x

]

=
1

2
[(1− 2x)−1 + (1− 4x)−1].

But then, using (5.3),

U(x) =
1

2

[

∞
∑

k=0

(2x)k +
∞
∑

k=0

(4x)k

]

.
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By comparing the coefficients of xn, which by definition is equal to un on the LHS, we

get, as in (6.5),

un =
1

2
(2n + 4n), v.s.v.


