Seventh Lecture: 18/4

Example 7.1. Let’s re-do Example 4.6 using generating functions. The recurrence was
up =1, u; =2, Upio=06up1 —9u, Vn>0.

The auxiliary equation had a repeated root x; o = 3 and the solution was

Uy, = (1 _ g) 3", (7.1)

Now instead let U(z) := >~  u,z". Given that uy = 1 we can write, firstly,

U(z) = 1+Zunx”: 1+x (Zun+1x"> =
n=1 n=0

> U(z) —1
=Y Uppra” = % (7.2)
n=0

Then, using also u; = 2 and the recursion,

Ulx) =1 +2x+2unx” = (14 2z) + 2* (Zun+2x"> =
n=2
= (1+22) + 22 (62un+1fc” — 92%%")
n=0 n=0

T2 (1 1 90+ 22 (6 < % _ 9U(a;)> N

= U(r) = (14+22) +6x(U(z) — 1) — 92°U(x) =

1 —d4x 1 -—dx)
C1—6z+922  (1-—3z)2

Since the denominator of the rational function has only one repeated factor, we don’t
need to make a partial fraction decomposition this time, but can go directly to the Bino-
mial Theorem. The difference from Example 6.3 is that we will now be applying (5.3)
with n = —2 instead. Precisely,

U(z) = (1-42)(1-3z) % = (1-4x) (Z (2 * : - 1) (3@’“) = (1-4x) <Z(k +1)3 xk> .

k=0 k=0

= (1 -6z +92*)U(x) =1 —4da = U(x)

On the RHS, there are two contributions to the coefficient of 2", depending on whether
we multiply by 1 or by —4x from the first factor. In total, we have, as in (7.1),

Uy =1-(n+1)3"—4-n3" 1 =... = <1—%)3”, V.S.V.

Example 7.2. Let’s re-do Example 5.4 to illustrate how to handle inhomogeneous equa-
tions, in which the most general form of the “right-hand side” (i.e.: of b, in (4.8)) is the
sum of an exponential function and a polynomial. The recurrence was

up =1, uy =3, Upio= Tupy1 — 10u, +3"+2n Vn >0.
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The solution was

om 13.5" 3" 5 p
_r & n 7.
Un =13 24 5 Tsto (7.3

Now instead let U(z) := >~  u,z". Given that uy = 1 we can write, firstly,

T) = 1—|—§:unx”: 1+ (f:unﬂx") =
n=1

= Zum UGy (7.4)

X

Then, using also u; = 3 and the recursion,

U(x)=1 +3x+2unx” = (1+3z) +2° (Zun+2x"> =
n=0

n=2

=(14+3z)+ z? (7§: Upz" — 10 i Upx” + i 3"x" + 2 i nx”) . (7.5
n=0 n=0 n=0 n=0

The last two sums on the RHS of (7.5) come from the inhomogeneity, so let’s first
concentrate on how to handle these, i.e.: on how to express them as rational functions.
The first of them is just a geometric series:

o

23“ "= (3x)" :1_13x. (7.6)

n=0

The second sum is handled by differentiating both sides of (5.4), which yields to begin
with

1_x kakl

Multiply both sides by x, rename the index from k to n and extend the sum to 7 = 0
(note that n = 0 contributes zero to the sum). This gives

0 . .



We now substitute (7.2), (7.6) and (7.7) into (7.5) and continue:

B ) U(z)—1 1 2
Ulx)=01+3z)+z (7>< T—lOU(x)—i- 1—3x+ (1_1,)2)
9 9 1 2z
=U(r)=(1432)+72(U(x) — 1) = 102°U(z) + = 1—3x+ (1_$)2}
= (1 - 724+ 102*)U(z) = 1 — 4o + 1f3$ + (12_3::1:)2 =(1—-2x)(1 —52)U(x)
1—4x 72 22

= U = T =) T 0 =s0(1 =201 —52) " (1= 27(1 - 22)(1 = 52)

(1 —42)(1 = 32)(1 —z)* + 2*(1 — 2)? + 223(1 — 3xz) N
(1 —22)(1 —3x)(1 —52)(1 — x)?
1 — 9z + 2822 — 3123 + T2t
(1 —22)(1 —3z)(1 —5z)(1 —x)?
Since the denominator of the rational function has a repeated factor, the partial fraction
decomposition takes the form

1—9z+282% — 312 + 72 A N B N C N D N E
(1—-22)(1—-32)(1 -56x)(1—-2)2 1-22 1-3z 1-5x 1—az (1—x)?
= 1— 92+ 282% — 312° + 72" = A(1 — 32)(1 — 52)(1 — 2)* + B(1 — 22)(1 — 52)(1 — 2)* +

C(1—22)(1 =3z)(1 —z)? + D(1 —22)(1 — 32)(1 = 52)(1 — ) + E(1 — 2z)(1 — 32)(1 — 5z).

= U(x) =

= U(x) =

Probably the quickest way to determine the various constants is to insert suitable values
of x which cause all but one of the terms on the RHS to become zero. For example,
inserting = = 1/2 gives

1 1\° DA 3 5 1\° 1
1-9(=)+28 (=) =31 (=) +7(=) =a(1-2)(1-2)(1-= s A=
(2)(2) () 1(z) =402 (-2) () ==
Similar calculations' yield B = —1/2, C' = 13/24, D = 1/8, E = 1/2. Hence,
13 /2, 13/24 18 1/2
S 1-2¢ 1-3z 1-5z 1-2 (1—-2)

Now we are ready to apply the Binomial Theorem:

U(z)

Il I, g B g I IS .
Ule) =5 (20)" =23 (30) + 2> (52)" + 23 aF+ 5> (k+1)a"
k=0 k=0 k=0 k=0 k=0
Comparing coefficients of 2", we get
1 1 13 1 n+1
n:_.2n__-3n _5n - ’
=3 20 T TR

in agreement with (7.3).

IDetails left to reader. Note that one can always choose instead to multiply through by a common
denominator, gather coefficients and solve the resulting linear system of five equations in five unknowns,
using Gauss elimination - it’s up to you !
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Catalan numbers. So far we have seen how the introduction of generating functions
allows us to approach and to understand the solution of linear recurrence relations in a
more methodical manner (sometimes at the cost of longer calculations if done by hand,
but easily programmable in a computer). Another advantage of generating functions
is that they can sometimes shed light even on more complicated looking recurrences.
The Catalan numbers provide a classical illustration of this. We first define them via a
sequence of three definitions:

Definition 7.3. A diagonal path in the two-dimensional integer lattice Z? is a path
for which each step is of one of the following four types:

(z,y) = (x+1,y+1) (upand to the right),
(x,y) > (r+1,y—1) (down and to the right),
(x,y) > (x—1,y+ 1) (upand to the left),
(r,y) = (x—1,y—1) (down and to the left).

Definition 7.4. A diagonal path in Z? is called a Dyck path if it satisfies the following
two requirements:

(i) every step is to the right

(i1) the path never goes below the x-axis, though it is allowed to touch the z-axis.

Definition 7.5. Let n € Ny. The Catalan number C,, is defined as the number of
Dyck paths from (0, 0) to (2n, 0).

One can compute the first few Catalan numbers by hand* Cy = 1, C;, = 1, Cy = 2,
C5 = 5 etc - see Figure 7 on the homepage. It is probably not at all obvious at this stage
that there is a beautiful general formula for this sequence, namely

Theorem 7.6. . )
n
C, = ) 7.8
n+1<n> (7.8)

We will give two beautiful proofs of this result next day. The first proof will start
by deriving a recurrence for C;, and then manipulate the generating function in a very
clever way. This could be termed the “algebraic” proof. The second proof will use a
beautiful combinatorial/geometric idea and is more or less a “proof-by-picture”. The
second proof will be considerably shorter, but both are works of art and will provide
their own type of insight.

Remark 7.7. There are a total of (*") rightward diagonal paths from (0, 0) to (2n, 0),
since any such path contains exactly n upward and n downward steps. Hence, (7.8)
says that a fraction n%l of these paths have the property that they never go under the
x-axis.

1t you go to https://oeis.org and just write in 1, 1, 2, 5 the database will already recognise
the sequence and return with a wealth of information about the Catalan numbers.



