
Seventh Lecture: 18/4

Example 7.1. Let’s re-do Example 4.6 using generating functions. The recurrence was

u0 = 1, u1 = 2, un+2 = 6un+1 − 9un ∀ n ≥ 0.

The auxiliary equation had a repeated root x1, 2 = 3 and the solution was

un =
(

1−
n

3

)

3n. (7.1)

Now instead let U(x) :=
∑

∞

n=0
unx

n. Given that u0 = 1 we can write, firstly,

U(x) = 1 +
∞
∑

n=1

unx
n = 1 + x

(

∞
∑

n=0

un+1 x
n

)

⇒

⇒

∞
∑

n=0

un+1 x
n =

U(x)− 1

x
. (7.2)

Then, using also u1 = 2 and the recursion,

U(x) = 1 + 2x+
∞
∑

n=2

unx
n = (1 + 2x) + x2

(

∞
∑

n=0

un+2 x
n

)

=

= (1 + 2x) + x2

(

6
∞
∑

n=0

un+1x
n − 9

∞
∑

n=0

unx
n

)

=

(7.2)
= (1 + 2x) + x2

(

6×
U(x)− 1

x
− 9U(x)

)

⇒

⇒ U(x) = (1 + 2x) + 6x(U(x)− 1)− 9x2U(x) ⇒

⇒ (1− 6x+ 9x2)U(x) = 1− 4x ⇒ U(x) =
1− 4x

1− 6x+ 9x2
=

1− 4x)

(1− 3x)2
.

Since the denominator of the rational function has only one repeated factor, we don’t

need to make a partial fraction decomposition this time, but can go directly to the Bino-

mial Theorem. The difference from Example 6.3 is that we will now be applying (5.3)

with n = −2 instead. Precisely,

U(x) = (1−4x)(1−3x)−2 = (1−4x)

(

∞
∑

k=0

(

2 + k − 1

k

)

(3x)k

)

= (1−4x)

(

∞
∑

k=0

(k + 1) 3k xk

)

.

On the RHS, there are two contributions to the coefficient of xn, depending on whether

we multiply by 1 or by −4x from the first factor. In total, we have, as in (7.1),

un = 1 · (n+ 1)3n − 4 · n3n−1 = · · · =
(

1−
n

3

)

3n, v.s.v.

Example 7.2. Let’s re-do Example 5.4 to illustrate how to handle inhomogeneous equa-

tions, in which the most general form of the “right-hand side” (i.e.: of bn in (4.8)) is the

sum of an exponential function and a polynomial. The recurrence was

u0 = 1, u1 = 3, un+2 = 7un+1 − 10un + 3n + 2n ∀ n ≥ 0.
1
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The solution was

un =
2n

3
+

13 · 5n

24
−

3n

2
+

5

8
+

n

2
. (7.3)

Now instead let U(x) :=
∑

∞

n=0
unx

n. Given that u0 = 1 we can write, firstly,

U(x) = 1 +
∞
∑

n=1

unx
n = 1 + x

(

∞
∑

n=0

un+1 x
n

)

⇒

⇒

∞
∑

n=0

un+1 x
n =

U(x)− 1

x
. (7.4)

Then, using also u1 = 3 and the recursion,

U(x) = 1 + 3x+
∞
∑

n=2

unx
n = (1 + 3x) + x2

(

∞
∑

n=0

un+2 x
n

)

=

= (1 + 3x) + x2

(

7
∞
∑

n=0

un+1x
n − 10

∞
∑

n=0

unx
n +

∞
∑

n=0

3nxn + 2
∞
∑

n=0

nxn

)

. (7.5)

The last two sums on the RHS of (7.5) come from the inhomogeneity, so let’s first

concentrate on how to handle these, i.e.: on how to express them as rational functions.

The first of them is just a geometric series:

∞
∑

n=0

3nxn =
∞
∑

n=0

(3x)n =
1

1− 3x
. (7.6)

The second sum is handled by differentiating both sides of (5.4), which yields to begin

with

1

(1− x)2
=

∞
∑

k=1

k xk−1.

Multiply both sides by x, rename the index from k to n and extend the sum to n = 0
(note that n = 0 contributes zero to the sum). This gives

∞
∑

n=0

nxn =
x

(1− x)2
. (7.7)
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We now substitute (7.2), (7.6) and (7.7) into (7.5) and continue:

U(x) = (1 + 3x) + x2

(

7×
U(x)− 1

x
− 10U(x) +

1

1− 3x
+

2x

(1− x)2

)

⇒ U(x) = (1 + 3x) + 7x(U(x)− 1)− 10x2U(x) + x2

[

1

1− 3x
+

2x

(1− x)2

]

⇒ (1− 7x+ 10x2)U(x) = 1− 4x+
x2

1− 3x
+

2x3

(1− x)2
= (1− 2x)(1− 5x)U(x)

⇒ U(x) =
1− 4x

(1− 2x)(1− 5x)
+

x2

(1− 3x)(1− 2x)(1− 5x)
+

2x3

(1− x)2(1− 2x)(1− 5x)

⇒ U(x) =
(1− 4x)(1− 3x)(1− x)2 + x2(1− x)2 + 2x3(1− 3x)

(1− 2x)(1− 3x)(1− 5x)(1− x)2
⇒ . . .

⇒ U(x) =
1− 9x+ 28x2 − 31x3 + 7x4

(1− 2x)(1− 3x)(1− 5x)(1− x)2
.

Since the denominator of the rational function has a repeated factor, the partial fraction

decomposition takes the form

1− 9x+ 28x2 − 31x3 + 7x4

(1− 2x)(1− 3x)(1− 5x)(1− x)2
=

A

1− 2x
+

B

1− 3x
+

C

1− 5x
+

D

1− x
+

E

(1− x)2

⇒ 1− 9x+ 28x2 − 31x3 + 7x4 = A(1− 3x)(1− 5x)(1− x)2 + B(1− 2x)(1− 5x)(1− x)2 +

C(1− 2x)(1− 3x)(1− x)2 +D(1− 2x)(1− 3x)(1− 5x)(1− x) + E(1− 2x)(1− 3x)(1− 5x).

Probably the quickest way to determine the various constants is to insert suitable values

of x which cause all but one of the terms on the RHS to become zero. For example,

inserting x = 1/2 gives

1−9

(

1

2

)

+28

(

1

2

)2

−31

(

1

2

)3

+7

(

1

2

)4

= A

(

1−
3

2

)(

1−
5

2

)(

1−
1

2

)2

⇒ · · · ⇒ A =
1

3
.

Similar calculations1 yield B = −1/2, C = 13/24, D = 1/8, E = 1/2. Hence,

U(x) =
1/3

1− 2x
−

1/2

1− 3x
+

13/24

1− 5x
+

1/8

1− x
+

1/2

(1− x)2
.

Now we are ready to apply the Binomial Theorem:

U(x) =
1

3

∞
∑

k=0

(2x)k −
1

2

∞
∑

k=0

(3x)k +
13

24

∞
∑

k=0

(5x)k +
1

8

∞
∑

k=0

xk +
1

2

∞
∑

k=0

(k + 1)xk.

Comparing coefficients of xn, we get

un =
1

3
· 2n −

1

2
· 3n +

13

24
· 5n +

1

8
+

n+ 1

2
,

in agreement with (7.3).

1Details left to reader. Note that one can always choose instead to multiply through by a common

denominator, gather coefficients and solve the resulting linear system of five equations in five unknowns,

using Gauss elimination - it’s up to you !
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Catalan numbers. So far we have seen how the introduction of generating functions

allows us to approach and to understand the solution of linear recurrence relations in a

more methodical manner (sometimes at the cost of longer calculations if done by hand,

but easily programmable in a computer). Another advantage of generating functions

is that they can sometimes shed light even on more complicated looking recurrences.

The Catalan numbers provide a classical illustration of this. We first define them via a

sequence of three definitions:

Definition 7.3. A diagonal path in the two-dimensional integer lattice Z
2 is a path

for which each step is of one of the following four types:

(x, y) → (x+ 1, y + 1) (up and to the right),

(x, y) → (x+ 1, y − 1) (down and to the right),

(x, y) → (x− 1, y + 1) (up and to the left),

(x, y) → (x− 1, y − 1) (down and to the left).

Definition 7.4. A diagonal path in Z
2 is called a Dyck path if it satisfies the following

two requirements:

(i) every step is to the right

(ii) the path never goes below the x-axis, though it is allowed to touch the x-axis.

Definition 7.5. Let n ∈ N0. The Catalan number Cn is defined as the number of

Dyck paths from (0, 0) to (2n, 0).

One can compute the first few Catalan numbers by hand2: C0 = 1, C1 = 1, C2 = 2,

C3 = 5 etc - see Figure 7 on the homepage. It is probably not at all obvious at this stage

that there is a beautiful general formula for this sequence, namely

Theorem 7.6.

Cn =
1

n+ 1

(

2n

n

)

. (7.8)

We will give two beautiful proofs of this result next day. The first proof will start

by deriving a recurrence for Cn and then manipulate the generating function in a very

clever way. This could be termed the “algebraic” proof. The second proof will use a

beautiful combinatorial/geometric idea and is more or less a “proof-by-picture”. The

second proof will be considerably shorter, but both are works of art and will provide

their own type of insight.

Remark 7.7. There are a total of
(

2n

n

)

rightward diagonal paths from (0, 0) to (2n, 0),
since any such path contains exactly n upward and n downward steps. Hence, (7.8)

says that a fraction 1

n+1
of these paths have the property that they never go under the

x-axis.

2If you go to https://oeis.org and just write in 1, 1, 2, 5 the database will already recognise

the sequence and return with a wealth of information about the Catalan numbers.


