
Ninth Lecture: 21/4

Remark 9.1. Recall that an equivalence relation on a set X is a subset R of X × X
satisfying the following three properties:

Reflexivity: (x, x) ∈ R for all x ∈ X . In words, every element of x is related to

itself.

Symmetry: (x, y) ∈ R ⇔ (y, x) ∈ R. In words, x is related to y if and only if y is

related to x.

Transitivity: If (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R. In words, if x is related

to y and y to z, then x is related to z.

An equivalence relation on a set X gives rise to a partition of the set into so-called

equivalence classes, such that two elements are related if and only if they lie in the

same class.

We can now give a further interpretation of the Stirling numbers S(n, k), namely:

S(n, k) is the number of different equivalence relations on an n-element set which give

rise to exactly k equivalence classes.

Example 9.2. The number of ways to distribute n identical balls into k identical bins

such that no bin is left empty is denoted p(n, k), and is usually referred to as the number

of partitions of n into exactly k parts. There are a number of different recurrences for

partition numbers, perhaps the simplest is

p(n, k) = p(n− 1, k − 1) + p(n− k, k), (8.1)

which is an exercise on Homework 1. See also Exercise 12.4.2 in Biggs, for example.

We can also note some special cases:

(i) p(n, 1) = 1 since the only partition into one part is n itself.

(ii) p(n, n) = 1 since the only paritition of n into n parts is 1+1+ · · ·+1 (n times).

(iii) p(n, n− 1) = 1 since the only paritition of n into n− 1 parts is to have one part

equal to 2 and all other parts equal to 1, i.e.: 2 + 1 + · · ·+ 1.

(iv) p(n, 2) = ⌊n/2⌋ since every partition of n into two parts is of the form k+(n−k),
where ⌈n/2⌉ ≤ k ≤ n− 1.

To summarise (i)-(iv):

p(n, 1) = p(n, n) = p(n, n− 1) = 1, p(n, 2) = ⌊n
2
⌋. (8.2)

The function

p(n) =
n

∑

k=1

p(n, k)

has been extensively studied in Number Theory. It is the total number of partitions of

n, or just the “partition function”. A famous problem, which was essentially solved

in 1918 by Hardy and Ramanujan (and independently by Uspensky in 1920), was to

determine a good asymptotic estimate for p(n). Their result is that

p(n) ∼ eπ
√

2n/3

4
√
3n

, (8.3)
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where f(n) ∼ g(n) means that limn→∞

f(n)
g(n)

= 1. Note that the growth rate of p(n)

is superpolynomial but subexponential, an indication of a highly non-trivial behaviour

since, for example, it follows from previous lectures that sequences satisfying linear

recurrences always exhibit either polynomial or exponential growth. To do justice to

the rich theory on partitions is beyond the scope of this course. See wiki. For the

record, we just list all partitions of 8:

8, 7 + 1, 6 + 2, 6 + 1 + 1, 5 + 3, 5 + 2 + 1,

5 + 1 + 1 + 1, 4 + 4, 4 + 3 + 1, 4 + 2 + 2, 4 + 2 + 1 + 1,

4 + 1 + 1 + 1 + 1, 3 + 3 + 2, 3 + 3 + 1 + 1, 3 + 2 + 2 + 1, 3 + 2 + 1 + 1 + 1,

3 + 1 + 1 + 1 + 1 + 1, 2 + 2 + 2 + 2, 2 + 2 + 2 + 1 + 1, 2 + 2 + 1 + 1 + 1 + 1,

2 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Hence p(8) = 22 and, breaking it down,

p(8, 1) = 1, p(8, 2) = 4, p(8, 3) = 5, p(8, 4) = 5,

p(8, 5) = 3, p(8, 6) = 2, p(8, 7) = 1, p(8, 8) = 1.

SPECIAL TOPIC 1: GENERATING FUNCTIONS IN ADDITIVE NUMBER THEORY.

Additive number theory is, as the name suggests, an area of research in Number

Theory. Some of the most famous problems of number theory can be placed in this

setting but, starting from work of people like Erdős and Turán in the early 20th century,

it has become a field of research in its own right, in which combinatorial questions and

methods play a major role. The field has exploded in popularity in the last 20 years

or so. Our goal here will be to introduce one of the central notions in the area, that of

basis, and to prove a classical result of Erdős and Turán, which involves a very clever

use of a certain generating function. The interested reader can find more on additive

number theory in the lecture notes for MMA300 on my homepage.

For simplicity, all sets in what follows are assumed to be subsets of N0.

Definition 9.3. Let A ⊆ N0. The sumset A+ A is defined as

A+ A = {a1 + a2 : a1, a2 ∈ A, where a1 = a2 is allowed}.
Example 9.4. Let A = {0, 1, 3, 4, 7}. Then

0 = 0 + 0, 1 = 0 + 1, 2 = 1 + 1, 3 = 0 + 3, 4 = 1 + 3, 5 = 1 + 4, 6 = 3 + 3,

7 = 0 + 7 = 3 + 4, 8 = 1 + 7 = 4 + 4, 10 = 3 + 7, 11 = 4 + 7, 14 = 7 + 7,

so A+ A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14}.

Notation 9.5. It is common in this subject to write 2A instaed of A + A. Do not
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confuse 2A with the set {2a : a ∈ A}.

We can extend Definition 9.3 to so-called “higher order sumsets”:

Definition 9.6. Let A ⊆ N0 and k ∈ N. The k-fold sumset kA is defined as

kA = {a1 + a2 + · · ·+ ak : ai ∈ A, where repititions are allowed}.

Remark 9.7. If A is a finite set with |A| = n, then |2A| ≤ n(n+1)
2

, since this is the total

number of possible choices of a pair {a1, a2} of elements of A: there are
(

n
2

)

choices

in which a1 6= a2 and n choices in which a1 = a2.
An upper bound for the size of kA, for general k, is an exercise on Homework 2.

We now turn our attention to infinite sets of non-negative integers.

Definition 9.8. Let A ⊆ N0 and k ∈ N. The set A is said to be a basis of order k
if kA = N0. It is said to be an asymptotic basis of order k if N0\kA is a finite set, in

other words, if kA contains all sufficiently large positive integers.

Example 9.9. Let A2 = {n2 : n ∈ N0}. Lagrange’s Theorem (1770) states that

A2 is a basis of order 4. It is not a basis of order 3, since Gauss proved that a number is

a sum of three squares if and only if it is not of the form 4k(8l+7), for some k, l ∈ N0.

More generally, for any k ≥ 2, let Ak = {nk : n ∈ N0}. It was first proven by Hilbert

(1909) that every Ak is a basis of some order. To determine the minimum order of Ak

as an asymptotic basis1 is called Waring’s Problem. It has been solved only for k = 2,

as stated above, and for k = 4: Davenport (1939) proved that A4 is an asymptotic basis

of order 16, but of no smaller order. For A3, the answer is known to lie between 4
and 7 and, if you can solve this problem, you’ll surely get a Fields Medal ! For more

information on Waring’s Problem, see wiki.

Example 9.10. Let P denote the set of primes and A := P ∪ {0, 1}. Vinogradov

(1937) proved that every sufficiently large odd number is a sum of three primes, from

which it follows that A is an asymptotic basis of order 4. In fact, Vinogradov’s method

works for all odd numbers geater than about 10400. Hence, it was a major breakthrough

in 2013 when Helfgott proved that every odd number greater than or equal to 7 is a sum

of three primes. In consequence, A is a basis of order 4. Helfgott’s work is a tour de

force in technique (the paper is well over 100 pages long). Vinogradov used the so-

called Hardy-Littlewood circle method, which has become a standard tool in analytic

number theory. Helfgott managed to find improvements to the classical approach which

got the method to work for numbers greater than 1030 or so. It being 2013, this was just

about small enough to be able to check all odd numbers up to that point on a computer.

The Goldbach conjecture states that every even number greater than or equal to 4 is

a sum of two primes. If true, this would imply that our set A is a basis of order 3. This

is another problem which, if you solve it, will get you a Fields Medal ! For more info,

1a more interesting problem, for technical reasons, than the order as a basis.
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see wiki.

For our purposes, the point of Examples 9.9 and 9.10 is that they show that the con-

cepts of basis and asymptotic basis cover some very classical problems in Number

Theory. A more “combinatorial perspective” was introduced by people like Erdős and

Turán, from the 1930s onwards, who began by asking how one might find (asymptotic)

bases of a given order which are as “efficient/sparse” as possible. It follows from Re-

mark 9.7 that, if A is an asymptotic basis of order k, then A contains at least on the order

of n1/k of the integers up to n. However, the set of primes in Example 9.10 is much,

much denser. The Prime Number Theorem (1896) asserts that π(n) ∼ n
lnn

, where

π(n) is the number of primes up to n. Hence, the set A in Example 9.10 is certainly

“more than dense enough” to be an asymptotic basis of order 3. The difficulty with the

Goldbach conjecture is that it is not, of course, about a randomly chosen collection of

numbers, but a set of numbers with very specific properties, namely all its elements are

primes. So, for example, only one of its members is an even integer.

One might expect, however, that it is possible to choose elements of a set A in a

“more random manner” so that it is an asymptotic basis of order k but much sparser

than the primes, in the best case containing only on the order of n1/k of the numbers

up to n, for all large n. Erdős and Turán asked if one could achieve the “Holy Grail”

and construct a set A such that every sufficiently large integer could be expressed as

a sum of two elements from A in exactly one way ? They proved that this is, in fact,

impossible, and we will reproduce their proof below. To formulate precise statements,

it is convenient to introduce one further piece of terminology:

Notation 9.11. Let A ⊆ N0 and n ∈ N0. We denote by r2(A, n) the number of

ways that n can be expressed as the sum of two elements of A, i.e.:

r2(A, n) = #{{a1, a2} : a1, a2 ∈ A, a1 + a2 = n}. (9.4)

Considered as a function r2(A, ·) : N0 → N0, this is called the (2-fold) representation

function of the set A.

The main result in Special Topic 1 is the following:

Theorem 9.12. (Erdős-Turán 1941) There is no integer t ≥ 1 and subset A ⊆ N0 such

that r2(A, n) = t for all sufficiently large n. In other words, if A is an asymptotic basis

of order 2, then its 2-fold representation function cannot be ultimately constant.

The proof will be given next day. We finish by stating a famous open problem, which

would be a major strengthening of the previous theorem. It’s yet another opportunity

for you to get a Fields Medal !!

Conjecture 9.13. (Erdős-Turán 1941) Suppose A ⊆ N0 is an asymptotic basis of

order two. Then the function r2(A, ·) is unbounded, i.e.: lim supn→∞
r2(A, n) = ∞.


