- 1. See the literature.
- 2. See the literature.
- 3. (a) See the literature.
 - (b) The zeros of sin z in D(0,4) are z = 0 and z = ±π and these are zeros of order 1. Thus, the singularities of z/sin z in D(0,4) are at z = 0, which is removable, and z = ±π, which are poles of order 1. By, e.g., residue rule 2 we have Res(z/sin z, ±π) = ±π/cos(±π) = ∓π and so Cauchy's residue theorem gives

$$\int_{|z|=4} \frac{z \, dz}{\sin z} = 2\pi i (\operatorname{Res}(z/\sin z, \pi) + \operatorname{Res}(z/\sin z, -\pi)) = 2\pi i (-\pi + \pi) = 0$$

4. Set $f(z) = 4z^4 + 1$ and $g(z) = e^z$. For z with |z| = 1 we have

$$|f(z)| = |4z^4 + 1| \ge 4|z|^4 - 1 = 3$$

and

$$|g(z)| = |e^z| = e^{\operatorname{Re} z} \le e^1 = e.$$

Since e < 3 we see that |g(z)| < |f(z)| if |z| = 1. By Rouche's theorem f and f + g have the same number of zeros in D(0, 1). Since $f(z) = 4z^4 + 1$ has 4 zeros in D(0, 1), so does $4z^4 + 1 + e^z$.

5. The solutions of $z^2 - i\sqrt{2}z - 1 = 0$ are $a := (1+i)/\sqrt{2} = e^{i\pi/4}$ and $b := (-1+i)/\sqrt{2} = e^{i3\pi/4}$ so $z^2 - i\sqrt{2}z - 1 = (z-a)(z-b)$. By a partial fraction decomposition we get

$$\frac{1}{z^2 - i\sqrt{2}z - 1} = \frac{1}{\sqrt{2}} \Big(\frac{1}{z - a} - \frac{1}{z - b} \Big).$$

Since |a| = |b| = 1 we have |a/z| < 1 and |b/z| < 1 if |z| > 1. Hence, by the formula for a geometric series

$$\frac{1}{z-a} = \frac{1}{z} \frac{1}{1-(a/z)} = \frac{1}{z} \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^k$$

if |z| > 1 and similarly for 1/(z-b). If |z| > 1 we thus have

$$\begin{aligned} \frac{1}{z^2 - i\sqrt{2}z - 1} &= \frac{1}{\sqrt{2}} \left(\frac{1}{z - a} - \frac{1}{z - b} \right) = \frac{1}{\sqrt{2}} \left(\sum_{k=0}^{\infty} \frac{a^k}{z^{k+1}} - \sum_{k=0}^{\infty} \frac{b^k}{z^{k+1}} \right) \\ &= \frac{1}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{e^{ik\pi/4} - e^{i3k\pi/4}}{z^{k+1}}, \end{aligned}$$

which is the desired Laurent expansion.

6. Let $\Omega_1 = \{z; |z - i| < 1, \text{Re } z > 0\}$ and set $f_1(z) = 1/z$. Since f_1 is a Möbius transformation and

$$f_1(0) = \infty$$
, $f_1(i) = -i$, $f_1(2i) = -i/2$, $f_1(1+i) = (1-i)/2$

it follows that f_1 maps the boundary of Ω_1 (the line segment $\{x = 0, 0 \le y \le 2\}$ together with the half circle $\{|z - i| = 1, \text{Re } z \ge 0\}$) to the two rays $\{x = 0, y \le -1/2\}$ and $\{x > 0, y = -1/2\}$ and that $f_1(\Omega_1) = \{x > 0, y < -1/2\} =: \Omega_2$. Let $f_2(z) = z + i/2$. Then $f_2(\Omega_2)$ is the fourth quadrant, that we denote Ω_3 . Let $f_3(z) = -z^2$. Then f_3 is a conformal map of Ω_3 onto the upper half-plane. Thus, the composition

$$f(z) := f_3 \circ f_2 \circ f_1(z) = -(1/z + i/2)^2 = \dots = \frac{z^2 - 4iz - 4}{4z^2}$$

is a conformal map of Ω_1 onto the upper half-plane.

7. Set $F(t) = \int_{-\infty}^{\infty} \frac{e^{-itx} dx}{x^2 + 1}$; since $|e^{-itx}| = 1$ for any $t, x \in \mathbb{R}$ the integral converges (it is the Fourier transform of $1/(x^2 + 1)$). Moreover, by the change of variables $x \mapsto -u$ in the integral one sees that F(-t) = F(t), that is, F is an even function. Assume that $t \ge 0$ and set $g(z) = e^{-itz}/(z^2 + 1)$. g(z) is holomorphic in \mathbb{C} except for first order poles at $z = \pm i$. The residues at these points are

$$\operatorname{Res}(g;\pm i) = \frac{e^{-itz}}{2z}\Big|_{z=\pm i} = \mp \frac{ie^{\pm t}}{2}$$

by, e.g., residue rule 2. Let $\gamma_1(R)$ be the interval $\{-R \leq x \leq R, y = 0\}$ oriented from left to right and let $\gamma_2(R)$ be the lower half of the circle $\{|z| = R\}$ oriented clockwise. The region Ω_R bounded by $\gamma_1(R)$ and $\gamma_2(R)$ contains only the pole at z = -i so Cauchy's residue theorem gives

$$\int_{\gamma_1(R)+\gamma_2(R)} g(z) \, dz = -2\pi i (ie^{-t}/2) = \pi e^{-t}; \qquad (*)$$

notice the extra minus-sign coming from that $\gamma_1(R) + \gamma_2(R) = -\partial \Omega_R$. On the other hand,

$$\int_{\gamma_1(R)+\gamma_2(R)} g(z) \, dz = \int_{-R}^{R} \frac{e^{-itx} \, dx}{x^2+1} + \int_{\gamma_2(R)} \frac{e^{-itz} \, dz}{z^2+1}. \tag{**}$$

But if $z \in \gamma_2(R)$ then $t \operatorname{Im} z \leq 0$ since $t \geq 0$ and so

$$\left|\frac{e^{-itz} \, dz}{z^2 + 1}\right| = \frac{e^{\operatorname{Re}(-itz)}}{|z^2 + 1|} = \frac{e^{t\operatorname{Im} z}}{|z^2 + 1|} \le \frac{1}{|z^2 + 1|} \le \frac{1}{R^2 - 1}$$

Hence,

$$\left| \int_{\gamma_2(R)} \frac{e^{-itz} \, dz}{z^2 + 1} \right| \le \frac{\operatorname{length}(\gamma_2(R))}{R^2 - 1} \to 0, \, R \to \infty,$$

that is, the second integral on the right-hand side of (**) goes to 0 as $R \to \infty$. In view of (*) and (**) we get

$$\int_{-\infty}^{\infty} \frac{e^{-itx} \, dx}{x^2 + 1} = \pi e^{-t}, \quad t \ge 0.$$

Since the left-hand side, called F(t) above, is an even function it follows that $F(t) = \pi e^{-|t|}$ for $t \in \mathbb{R}$.

8. Since $\operatorname{Re} f > 1$ we have $f \neq 0$ so 1/f is holomorphic where f is, that is, in $D(0,1) \setminus \{0\}$. We need to show that 1/f has a removable singularity at z = 0.

The assumption that $\operatorname{Re} f > 1$ means that the image of f is contained in the set $\Omega := \{w; \operatorname{Re} w > 1\}$. The Möbius transformation $w \mapsto 1/w$ maps the line $\operatorname{Re} w = 1$ to the circle through 0, 1, and (1 - i)/2 and Ω is mapped to the disc Δ bounded by this circle. Hence, 1/f(z) maps $D(0,1) \setminus \{0\}$ into Δ . In particular, 1/f(z) is a bounded function on $D(0,1) \setminus \{0\}$. By Proposition 12.3 in the notes 1/f(z) has a removable singularity at z = 0.