Suggested solutions
Analytic function theory, MMG700, Exam Jan 15 2019

1. See the literature.
2. See the literature.

3. (a) By, e.g., rule 1lc we have
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sin z L )
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(b) Since sin z has a zero of multiplicity 1 at 0 we get by rule 2 that
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(¢) From the Taylor expansion of cos z we see that
1 2
cosz— 1= zQ(—§ + % +0) = 22h(2).

Since h(0) = —1/2 # 0, f(z) = cosz/(cosz — 1) has a pole of order 2 at 0.
By rule 1a we get
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where the last step follows from the series defining h.
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4. Let f(z) = 32% and g(2) = 2° + 1. For |z| = 1 we have
[f(2) =3P =3, lg(z)| < | +1=2.

Thus |g(2)| < |f(z)| for z on the boundary of D(0, 1). Rouche’s theorem gives that
f and f 4 g have tha same number of zeros in D(0,1). f has clearly 2 zeros in
D(0,1) so 2° + 322+ 1 also has 2 zeros in D(0,1). As a degree 5 polynomial has 5
zeros in C, 2° 4+ 322 + 1 has 3 zeros outside of D(0,1). (It is clear that there are
no zeros on the boundary.)

5. Observe first that f is a Mobius transformation so that it is a bijective map from
the Riemann sphere to the Riemann sphere, takes circles/lines to circles/lines, and
preserves angles. We have f(0) = —1, f(i) = 0, and f(co) = 1 and so the image
of the imaginary axis must be the real axis.

The image of the circle |z| = 1 must be a line since f(—i) = oo, and since f(i) =0
this line must go through the origin. Moreover, this line must intersect the real
axis (=image of the imaginary axis) at right angle. Hence, f({|z| = 1}) = the
imaginary axis.



To compute the image of the circle C' = {|z + i| = 2} we note that f(—3i) = 2
and f(7) = 0. Thus, f(C) is a circle (since no point on C' is mapped to o) going
through 2 and 0. This circle must intersect the real axis (= image of imaginary
axis) at right angles, and so f(C) = {|z — 1| = 1}.

Since f preserves angles, in particular at the point 4, it follows that
f()={z; Rez>0, |z —1| > 1}.

Draw the picture!

. We want to compute
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Let f(z) = €'*/(22 + 2+ 1); the poles of f are simple and located at (—14iv/3)/2.
Let g be the line segment from —R to R and let 'z be the upper half of the circle
|z| = R oriented counterclockwise.

On one hand we have
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by the Residue theorem and residue rule 2. On the other hand,
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The second integral on the right-hand side goes to 0 as R — oo since
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and so I = —2me V*?sin(1/2)/V/3.



7. The function F(z) = 23/3 — cos z is a holomorphic primitive of 2%+ sin z in C. By
Prop. 3.4 in the lecture notes we thus get

/22 +sinzdz = [F(z)]i_ﬂi/f/2 = =i /12,

o

Alternatively, one can use Cauchy’s theorem to change the integration contour
to the line segment from —im/2 to im/2. This is parametrized by z = it, t €
[—7/2,7/2], and the resulting integral in ¢ is straightforward to compute.

8. We imitate the proof of Schwarz’s lemma.

Since f has a zero of order 2 at 0, the singularity of g(z) := f(z)/z? is removable.
Hence, ¢ is holomorphic in D(0, 1). Notice that since f maps D(0,1) to D(0,1) we
have |f(z)| < 1 for all z € D(0,1). Hence, for any r < 1 we have

f(z)] 1
sup [g(z)| = sup < .
|2l =r pl=r |2 T

By the maximum principle we then get

1
sup [g(z)| < -
|z|<r r

Since this holds for any » < 1 we conclude that |g(z)] < 1 for all z € D(0,1).
Hence, |f(2)] = |2|*|g(2)| < |2|? for all z € D(0,1).



