MATEMATIK

Göteborgs universitet Håkan Samuelsson Kalm 772 35 68 Hjälpmedel: Bifogat formelblad Telefonvakt/rond: Mattias Lennartsson $772\ 53\ 25$

Exam, Analytic function theory, MMG700 Wednesday, January 3, 2018, 1400 – 1800

- 1. Show that if f is holomorphic in the disc D(a,R) and $|f(z)| \leq |f(a)|$ for all $z \in D(a,R)$, then f is constant. (This is the local maximum principle.) (3p)
- 2. State and prove the Open mapping theorem. (3p)
- 3. Let $\varphi(z) = \frac{z}{z+1}$.
 - (a) Show that φ is conformal. (1p)
 - (b) Compute the image under φ of the real axis and the unit circle. (1p)
 - (c) Show that any conformal map preserves angles between curves. (1p)
- 4. Find the number of zeros of $z^5 + 4z^2 + z + 1$ in the annulus $\{z; 1 < |z| < 2\}$. (3p)
- 5. Find the Laurent series of $\frac{1}{(z-1)(z-i)}$ in $\{z; |z| > 1\}$. (3p)
- 6. Classify the singularities of $f(z) := \frac{\tan(z/2)}{z^2(1+z^2)}$ and compute the integral $\int_{|z|=2} f(z) dz$. (3p)
- 7. Compute $\int_0^\infty \frac{\cos(ax)}{1+x^2} dx$ for all $a \in \mathbb{R}$. (3p)
- 8. Let u be a real-valued harmonic function in \mathbb{C} . Show that $(u'_x)^2 (u'_y)^2$ and $u'_x u'_y$ are harmonic. (3p)