Exam, Analytic function theory, MMG700 Friday, October 27, 2017, 8³⁰ – 12³⁰

- 1. Show that if f = u + iv is complex differentiable at a, then u and v satisfy the Cauchy-Riemann equations at a. (3p)
- 2. Let Ω be a bounded open set whose boundary, $\partial \Omega$, is a smooth curve. Show that if f is holomorphic in an open set containing $\overline{\Omega}$ and $f(z) \neq 0$ for $z \in \partial \Omega$, then $\frac{1}{2\pi i} \int_{\partial \Omega} \frac{f'(z) dz}{f(z)}$ is the number of zeros of f in Ω counted with multiplicity. (3p)
- 3. (a) Show that if f is holomorphic in an open set Ω and \mathcal{C} is an oriented smooth curve in Ω starting at a and ending at b, then $\int_{\mathcal{C}} f'(z) dz = f(b) f(a)$. (2p)

(b) Compute the integral $\int_{\mathcal{C}} \frac{dz}{(z-1)^2}$, where \mathcal{C} is the straight line starting at 0 and ending at 1+i. (1p)

4. How many zeros (counting multiplicity) does $z^4 + z^3 + 5$ have in the annulus $\{z; 1 < |z| < 2\}$? (3p)

5. Compute the integral
$$\int_0^\infty \frac{\cos 2x}{(x^2+1)^2}$$
. (3p)

6. Let
$$\varphi(z) = \frac{1}{z - i\sqrt{2}}$$
.

- (a) Find the fixed points of φ . (A fixed point is a point *a* such that $\varphi(a) = a$.) (1p)
- (b) Find the image under φ of the lower half of the disc $\{z; |z i/\sqrt{2}| < 1/\sqrt{2}\}$. (2p)
- 7. Find a conformal map of the set $\{z; 0 < \arg z < \pi/3, |z| < 1\}$ onto the unit disc. (3p)

8. Let
$$f$$
 be holomorphic in \mathbb{C} . Show that $\frac{1}{2\pi i} \int_{\partial D(0,1)} \overline{f(z)} \, dz = \overline{f'(0)}$. (3p)