Fourier analysis fall 2008. Exercises 3.

- 1. Exercise 1.3.1 in Folland.
- 2. Exercise 1.3.7 in Folland.
- 3. Consider the vibrating string on $0 \le x \le \pi$ as in the lecture. Suppose that the initial conditions are $u(x,0) = \sin(2x)$, $u_t'(x,0) = 3\sin(5x)$. What is the solution u(x,t)?
- 4. Check the following entries in Table 1 in Folland: Entry 2, 4, 6, 17. What is, according to Theorem 2.1, the sum of the Fourier series?
- 5. If you know the Fourier coefficients of f, what can you say about the Fourier coefficients of f(x-a) and of $e^{ikx}f(x)$ (where a is real and k is integer)? Compare with the shift rules for Laplace transform.
- 6. When f and g are 2π -periodic Riemann integrable functions, define their convolution by

$$(f * g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(y)g(x - y) \, dy.$$

Denoting Fourier coefficients by $c_n(f)$, show that $c_n(f * g) = c_n(f)c_n(g)$.

7. Let f be the 2π -periodic function defined by f(x) = x for $-\pi < x \le \pi$. As I showed in the lecture, it has Fourier coefficients $c_n = (-1)^n i/n$ $(n \ne 0)$, $c_0 = 0$. What does Bessel's inequality say for this function? Do we in fact have equality?

Answer to question 3: $u(x,t) = \sin(2x)\cos(2ct) + \frac{3}{5c}\sin(5x)\sin(5ct)$.