Fourier analysis fall 2008. Exercises 7.

1.

2.

Show that, in an inner product space, ||0|| = 0.

Show that, in an inner product space, if u,, — u and v, — v (in norm), then (uy,,v,) —
(u, v). (Turn page for hint.)

Show that, if (ex)$2 ; is a complete orthonormal system in an inner product space, then
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(Turn page for hint.)

Show that p(z) = % and ¢(z) = \/ga: form an orthonormal system, with respect to the
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inner product

. Use the previous exercise to determine the constants a, b that minimize the integral
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Find a second degree polynomial 7 such that, in the notation of Exercise 4, p, ¢, r form an
orthonormal system.

Apply Parseval’s formula to the 27-periodic function f(z) = z?, |z| < m. Use the result
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to compute ) |~ -5.

Define J,(z) through the Fourier series
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(these are called Bessel functions). Compute, for x € R,
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Hints:
2. Write (u, v) — (Up, Un) = (U, v — Vp) + (U — Uy, V).
3. Use Exercise 2.

Answers:

5.a=3¢1b=(e—e1)/2.
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