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Matematik

Hjalmar Rosengren September 13, 2010

Gibbs phenomenon

We have seen (Folland, Thm. 2.5) that if f is 2π-periodic, piecewise C1 and continuous,
then its Fourier series converges uniformly on R. If, on the other hand, f is not continuous,
convergence cannot be uniform. This follows from the fact that if a sequence of continuous
functions (e.g. the partial sums

∑N

−N cne
inx) converges uniformly, then the limit function

is continuous. It turns out that for Fourier series the situation is even worse. The partial
sums develop “spikes” close to each jump point, whose heights remain positive as N → ∞

(the limit height of the largest spike is about 9% of the height of the jump). This fact is
known as the Gibbs phenomenon. See Folland, Figure 2.8 for an illustration.

We will first illustrate the Gibbs phenomenon by an explicit example, and then sketch
how the general case actually follows from that example. Consider the 2π-periodic function
s defined by s(x) = π − x for 0 < x < 2π. It has a jump of height 2π at x = 0. Its Fourier
series is

2
∞

∑

n=1

sin(nx)

n
.

Thus, the error in the Nth Fourier approximation, for 0 < x < π, is

gN(x) = 2

N
∑

n=1

sin(nx)

n
− (π − x).

Since we are interested in the maximum error, we compute the derivative

g′

N(x) = 1 + 2

N
∑

n=1

cos(nx).

We recognize this as the Dirichlet kernel, which we have seen can be written

g′

N(x) =
sin(N + 1

2
)x

sin x
2

.

From Figure 2.8 it seems that the error gN is maximal at its smallest positive critical point,
that is, at xN = π/(N + 1

2
). If we can show that the error at this point remains positive

in the limit N → ∞, that is,
lim

N→∞

gN(xN ) > 0, (1)

then we can conclude that the Gibbs phenomenon holds for the function s.
We prove (1) using Riemann sums. Namely, we can write

gN(xN ) = 2
N

∑

n=1

sin(nxN )

n
− (π − xN) = 2

N
∑

n=1

sin(ξn)

ξn

∆x − (π − xN ),
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where ξn = nxN = nπ/(N + 1/2) are points at distance ∆x = xN = π/(N + 1/2) in the
interval 0 < x < π. By known facts on Riemann sums,

lim
N→∞

gN(xN) = 2

∫ π

0

sin x

x
dx − π.

This is approximately 0.562, in particular it is positive. A slightly different proof is indi-
cated in Folland, Exercise 2.6.1.

We now know that the Gibbs phenomenon holds for the function s. This can be used to
prove it for any piecewise C1 but discontinuous f . We sketch how this can be done. Note
first that h

2π
s(x − a) has a jump of height h at x = a. Suppose that the jumps of f in

0 ≤ x < 2π are h1, . . . , hn at the points a1, . . . , an. Then,

g(x) = f(x) −

n
∑

j=1

hj

2π
s(x − aj) (2)

is piecewise C1 and continuous, so its Fourier series converges uniformly on R (Folland,
Thm. 2.5). On the other hand, close to a jump point ak, one can show that the kth term in
the sum (2) exhibits the Gibbs phenomenon, whereas all the other terms do not (the first
statement follows from what we did above, but the second statement needs a little work).
The Gibbs phenomenon for the kth term must then be cancelled by a corresponding Gibbs
phenomenon for f . Thus, f exhibits the Gibbs phenomenon at each jump point.

Exercise: Show that, in the notation used above,

lim
N→∞

gN

(

kπ

N + 1

2

)

= 2

∫ kπ

0

sin x

x
dx − π.

Exercise: It is known that
∫

∞

0

sin x

x
dx =

π

2
.

How can this result be interpreted, in view of the previous exercise?


