
Fourier analysis (MMG710/TMA362)

Time: 2014-01-11, 8:30–12:30.

Tools: Only the attached sheet of formulas. No calculator or handbook is allowed.

Questions: Oskar Hamlet 0703-088304

Grades: Each problem gives 4 points. For MMG710 grades are G (12-17 points) and VG (18-24). For

TMA362 grades are 3 (12-14 points), 4 (15-17) and 5 (18-24).

1 Compute the Fourier transform of the function f(x) =
e−|x| sin(x)

x
.

2 Find numbers A and B so that
∫

2

0

∣

∣x2 − Ax − B
∣

∣

2
dx

is minimal.

3 Compute the Laplace transform of the function

f(t) =











t, 0 < t < 1,

2 − t, 1 < t < 2,

0, t > 2.

Use this to solve the equation

x′′(t) + x(t) = f(t), x(0) = 0, x′(0) = 1.

4 Solve the inhomogeneous heat equation

ut = 2uxx + cos x,

ux(0, t) = ux(π, t) = 0,

u(x, 0) = sin2 x

for u = u(x, t) in the region 0 < x < π, t > 0.

5 Define what it means for a series
∑∞

n=1
fn(x) to converge uniformly to f(x) on R.

Formulate and prove a statement on uniform convergence of Fourier series.

6 In a table of Fourier series, you find the entry

sinh(x) =
2 sinh π

π

∞
∑

n=1

(−1)n+1n

n2 + 1
sin(nx), 0 < x < π.

Use this to compute the sum
∞

∑

n=1

1

(n2 + 1)2
.
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1 Compute the Fourier transform of the function f(x) =
e−|x| sin(x)

x
.

Using the table, we find that

F

(

e−|x| sin(x)

x

)

=
1

2π
F

(

e−|x|
)

∗ F

(

sin(x)

x

)

= χ(ξ) ∗
1

ξ2 + 1
=

∫ ∞

−∞

χ(ξ − t)

t2 + 1
dt

=

∫ ξ+1

ξ−1

1

t2 + 1
dt = arctan(ξ + 1) − arctan(ξ − 1),

where χ(t) = 1 for |t| < 1 and 0 else.

2 Find numbers A and B so that
∫ 2

0

∣

∣x2 − Ax − B
∣

∣

2
dx

is minimal.

We need to approximate x2 by a first degree polynomial in the norm of L2([0, 2]).
We first find an orthogonal basis for the space of first degree polynomials. We take
e1 = 1. With e2 = Cx + D, we have

〈e1, e2〉 =

∫

2

0

(Cx + D) dx = 2C + 2D.

Thus, choosing e2 = x−1, we have 〈e1, e2〉 = 0. We can now write the approximating
polynomial q as

q =
〈x2, e1〉

〈e1, e1〉
e1 +

〈x2, e2〉

〈e2, e2〉
e2,

where

〈x2, e1〉 =

∫

2

0

x2 dx =
8

3
,

〈e1, e1〉 =

∫

2

0

dx = 2,

〈x2, e2〉 =

∫

2

0

(x3 − x2) dx =
4

3
,

〈e1, e1〉 =

∫

2

0

(x − 1)2 dx =
2

3
.

This gives

q =
4

3
+ 2(x − 1) = 2

(

x −
1

3

)

,

so A = 2, B = −2/3.

3 Compute the Laplace transform of the function

f(t) =











t, 0 < t < 1,

2 − t, 1 < t < 2,

0, t > 2.



Use this to solve the equation

x′′(t) + x(t) = f(t), x(0) = 0, x′(0) = 1.

We first write f in terms of Heaviside’s function as

f(t) = t − 2(t − 1)H(t − 1) + (t − 2)H(t − 2),

which gives the Laplace transform

F (s) =
1 − 2e−s + e−2s

s
.

The Laplace transform of the differential equation is then

(s2 + 1)X(s) − 1 =
1 − 2e−s + e−2s

s2
,

which after a partial fraction decomposition can be written

X(s) =
1

s2 + 1
+

(

1 − 2e−s + e−2s
)

(

1

s2
−

1

s2 + 1

)

.

We can then read off the inverse Laplace transform

x(t) = t − 2 (t − 1 − sin(t − 1)) H(t − 1) + (t − 2 − sin(t − 2)) H(t − 2).

4 Solve the inhomogeneous heat equation

ut = 2uxx + cos x,

ux(0, t) = ux(π, t) = 0,

u(x, 0) = sin2 x

for u = u(x, t) in the region 0 < x < π, t > 0.

We first look for a stationary solution u0 = u0(x) to the equation with boundary
conditions. The equation gives

0 = 2u′′
0(x) + cos x,

with solutions u0(x) = 1

2
cos x+Ax+B. The boundary conditions u′

0(0) = u′
0(π) = 0

gives A = 0, whereas B is arbitrary. We choose B = 0, u0(x) = 1

2
cos x. Writing

u = u0 + v, we find that v satisfies the homogeneous equation

vt = 2vxx,

vx(0, t) = vx(π, t) = 0,

v(x, 0) = sin2 x −
1

2
cos x.

To solve this we should expand v(x, 0) as a Fourier cosine series. But since

sin2 x −
1

2
cos x =

1

2
− cos x,

that series is in fact a finite sum. The solution is v(x, t) = 1

2
− e−2t cos x and the

answer to the original problem u(x, t) = 1

2
− e−2t cos x + 1

2
cos x.



5 Define what it means for a series
∑∞

n=1
fn(x) to converge uniformly to f(x) on R. Formulate and

prove a statement on uniform convergence of Fourier series.

See Folland, Thm. 2.5.

6 In a table of Fourier series, you find the entry

sinh(x) =
2 sinh π

π

∞
∑

n=1

(−1)n+1n

n2 + 1
sin(nx), 0 < x < π.

Use this to compute the sum
∞
∑

n=1

1

(n2 + 1)2
.

We will first integrate the series and then apply Parseval’s formula. By Folland,
Thm. 2.4, we may integrate termwise to obtain the Fourier cosine series

cosh(x) =
a0

2
+

∞
∑

n=1

an cos(nx),

where we can read off

an =
2 sinh π

π

(−1)n

n2 + 1
, n ≥ 1

from the given series. The constant term is obtained from

a0 =
2

π

∫ π

0

cosh(x) dx =
2 sinh(π)

π
.

The relevant version of Parseval’s formula is

∫ π

0

cosh2 x dx =
π

4
|a0|

2 +
π

2

∞
∑

n=1

|an|
2,

where the left-hand side is
∫ π

0

1 + cosh(2x)

2
dx =

[

x

2
+

sinh(2x)

4

]π

0

=
π

2
+

sinh(2π)

4
.

Plugging in the explicit expressions for an, we obtain after simplification

∞
∑

n=1

1

(n2 + 1)2
=

π(2π + sinh(2π))

8 sinh2 π
−

1

2
.


