
Fourier analysis (MMG710/TMA362)

Time: 2014-08-18, 8:30–12:30.

Tools: Only the attached sheet of formulas. No calculator or handbook is allowed.

Questions: John Bondestam-Malmberg, 0703-088304

Grades: Each problem gives 4 points. For MMG710 grades are G (12-17 points) and VG (18-24). For

TMA362 grades are 3 (12-14 points), 4 (15-17) and 5 (18-24).

1 Find a function f such that, for s > 0,

∫ ∞

0

f(t)e−ts dt =
e−s

s2(s + 1)
.

2 Let f(x) = 1 for 0 < x < π/2 and f(x) = 0 for all other values of x. Find (as a
Fourier series) the solution u(x, t), 0 < x < π, t > 0, to the problem











ut = 3uxx,

ux(0, t) = ux(π, t) = 0,

u(x, 0) = f(x).

3 Using Fourier transform, compute the integral

∫ ∞

−∞

cos(x)

x2 − 2x + 2
dx.

4 Suppose that f is given by the Fourier cosine series

f(x) =
∞

∑

n=0

cos(nx)

2n
.

Compute the integral
∫ π

0

f(x)2 dx.

5 Formulate and prove Bessel’s inequality for Fourier series.

6 Consider the Sturm-Liouville problem

u′′ = λu, u(0) = −u(π), u′(0) = −u′(π).

(a) Prove that the problem is symmetric (or self-adjoint in the terminology of Fol-
land), in the sense that

〈u′′, v〉 = 〈u, v′′〉,
for sufficiently differentiable functions u and v satisfying the boundary condi-
tions. (1p)

(b) Find all solutions to the problem. (3p)
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1 Find a function f such that, for s > 0,

∫

∞

0

f(t)e−ts dt =
e−s

s2(s + 1)
.

We need to find the inverse Laplace transform of

F (s) =
e−s

s2(s + 1)
.

Ignoring for a moment the exponential factor, we have the partial fraction expansion

1

s2(s + 1)
=

1

s2
− 1

s
+

1

s + 1
,

with inverse Laplace transform t − 1 + e−t. By the shift rule, the desired function is

f(t) = H(t − 1)
(

(t − 1) − 1 + e−(t−1)
)

= H(t − 1)
(

t − 2 + e1−t
)

.

2 Let f(x) = 1 for 0 < x < π/2 and f(x) = 0 for all other values of x. Find (as a Fourier series) the
solution u(x, t), 0 < x < π, t > 0, to the problem











ut = 3uxx,

ux(0, t) = ux(π, t) = 0,

u(x, 0) = f(x).

In view of the boundary conditions, we should expand f as a Fourier cosine series

f(x) =
A0

2
+

∞
∑

n=1

An cos(nx),

where

An =
2

π

∫ π

0

f(x) cos(nx) dx =
2

π

∫ π/2

0

cos(nx) dx.

This gives A0 = 1 and, for n ≥ 1,

An =
2 sin(nπ/2)

πn
=

{

0, n even,

2(−1)k/π(2k + 1), n = 2k + 1.

In conclusion,

f(x) =
1

2
+

2

π

∞
∑

k=0

(−1)k cos((2k + 1)x)

2k + 1
.

The solution to the given problem is then

u(x, t) =
1

2
+

2

π

∞
∑

k=0

(−1)k cos((2k + 1)x)e−3(2k+1)2t

2k + 1
.



3 Using Fourier transform, compute the integral

∫

∞

−∞

cos(x)

x2 − 2x + 2
dx.

Let

f(x) =
1

x2 − 2x + 2
=

1

(x − 1)2 + 1
.

By standard rules for the Fourier transform,

f̂(ξ) = πe−iξ−|ξ|.

We now observe that

∫ ∞

−∞

cos(x)

x2 − 2x + 2
dx =

1

2

∫ ∞

−∞

eix + e−ix

x2 − 2x + 2
dx =

f̂(−1) + f̂(1)

2
=

π(ei−1 + e−i−1)

2

=
π cos(1)

e
.

4 Suppose that f is given by the Fourier cosine series

f(x) =

∞
∑

n=0

cos(nx)

2n
.

Compute the integral
∫

π

0

f(x)2 dx.

Parseval’s formula for cosine series is

∫ π

0

|f(x)|2 =
π

4
|A0|2 +

π

2

∞
∑

n=1

|An|2,

where

f(x) =
A0

2
+

∞
∑

n=1

An cos(nx).

In the case at hand, f is real-valued, so |f(x)|2 = f(x)2. Moreover, A0 = 2 and
An = 2−n for n ≥ 1. We find that the integral is equal to

π +
π

2

∞
∑

n=1

4−n.

The series is geometric and given by

∞
∑

n=1

4−n =
1

4
· 1

1 − 1
4

=
1

3
.

We conclude that the integral is equal to 7π/6.

5 Formulate and prove Bessel’s inequality for Fourier series.

Look it up.



6 Consider the Sturm-Liouville problem

u′′ = λu, u(0) = −u(π), u′(0) = −u′(π).

(a) Prove that the problem is symmetric (or self-adjoint in the terminology of Folland), in the
sense that

〈u′′, v〉 = 〈u, v′′〉,
for sufficiently differentiable functions u and v satisfying the boundary conditions.

(b) Find all solutions to the problem.

(a) By Lagrange’s identity, it’s enough to show that

[u′v̄ − uv̄′]
π
0 = 0.

For each of the functions u′, v, u, v′, the value at π is −1 times the value at
0. Cancelling two minus signs from each term, we find that the values at the
upper and lower end-point cancel.

(b) We distinguish between the cases λ > 0, λ = 0 and λ < 0.

When λ > 0, the solutions to the differential equation are u(x) = A cosh(µx) +
B sinh(µx), where µ =

√
λ. The boundary conditions give after simplification

A(1 + cosh(µπ)) + B sinh(µπ) = 0, A sinh(µπ) + B(1 + cosh(µπ)) = 0.

This system has non-trivial solutions if and only if the determinant

(1 + cosh(µπ))2 − sinh(µπ)2 = 0,

that is, if
1 + cosh(µπ) = ± sinh(µπ).

Since 1 + cosh(µπ) and sinh(µπ) are both positive, the minus sign is impossi-
ble. Choosing the plus sign and expressing the hyperbolic functions in terms
of exponential functions gives after simplification 1 + e−µπ = 0, which is again
impossible. Thus, there are no non-trivial solutions when λ > 0.

When λ = 0, we have u(x) = A+Bx. The boundary condition give 2A+πB =
2B = 0, which implies A = B = 0. Again, there are no non-trivial solutions.

In the final case, when λ < 0, we have u(x) = A cos(µx) + B sin(µx), where
µ =

√
−λ. Proceeding as before, we get a system with determinant

(1 + cos(µπ))2 + sin(µπ)2.

This vanishes only for cos(µπ) = −1 and sin(µπ) = 0, which is equivalent to µ
being an odd integer (and positive since µ is a square root). Writing µ = 2k+1,
we find the solutions

u(x) = A cos((2k + 1)x) + B sin((2k + 1)x), k = 0, 1, 2, . . . .

These are all the solutions to the given Sturm–Liouville problem.
Remark: In contrast to the problems that we have encountered during the
course, the eigenspaces are two-dimensional rather than one-dimensional.


