Home work. Part 1^1 .

1. (a) Find the Fourier series for the 2π -periodic functions $f(x) = \sin^3 x$ and $g(x) = \cos^3 x$ and compute then $\int_0^{2\pi} f(x)^2 dx$.

(b) Find the Fourier series for $\sin^n x$ and $\cos^n x$ $(n \ge 1 \text{ arbitrary integer})$ (Hint: Use binomial formula and Euler's formula. The expansion depends on n being even or odd.)

2. Are the following series point-wise convergent? If so, how smooth are the functions, i.e., are they in C^0 , C^1 , ..., or C^{∞} ?

(a)
$$f(\theta) = \sum_{n=1}^{\infty} \frac{1}{n+1} \sin n\theta$$

(b) $f(\theta) = \sum_{n=1}^{\infty} \frac{1}{n^3} \sin n\theta$
(c) $f(\theta) = \sum_{n=0}^{\infty} \frac{1}{3^n} \cos n\theta$

¹The deadline for submitting your solutions is Thurs. Sept 15. You may work together in teams of max 3 members each, and you need only submit your team's solutions