Home work. Part 2^1 .

1. (a) Find the sum

$$\sum_{n=1}^{\infty} \frac{1}{n} e^{in\theta}$$

(by using Taylor expansion of some known function - write $z = e^{i\theta}$ check the table of Taylor expansions) and prove that the series is $L^2(-\pi, \pi)$ -convergent but not point-wise convergent.

(b) For which p > 0 is the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} e^{i\theta}$$

 L^2 -convergent?

2. Which of the following Sturm-Liouville problems on $[0, \pi]$ is regular? Solve then the regular problem

(a)
$$f'' + \lambda f = 0, f(0) = 0, f'(0) = 0.$$

(b) $f'' + \lambda f = 0, f(0) = 0, f'(\pi) = 0.$

 $^{^1\}mathrm{The}$ deadline for submitting this home work is Monday, Sept 26