Some useful formulas for curves

Consider a unit speed curve $\gamma(t)$. Let $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ be the Frenet trihedron, with $\mathbf{t} = \gamma'(t)$ the tangent vector, \mathbf{n} the normal vector and \mathbf{b} the binormal. The *Frenet-Serret equations* are

$$egin{array}{rcl} \mathbf{t}' &=& \kappa \mathbf{n} \ \mathbf{n}' &=& -\kappa \mathbf{t} && + \ au \mathbf{b} \ \mathbf{b}' &=& - au \mathbf{n} \end{array}$$

Here the curvature $\kappa = ||\boldsymbol{\gamma}'||$; if $\kappa \neq 0$, the binormal **b** and the torsion τ are defined.

For a general parametrisation the following formulas hold:

$$\kappa = \frac{||\boldsymbol{\gamma}' \times \boldsymbol{\gamma}''||}{||\boldsymbol{\gamma}'||^3}$$
$$\tau = \frac{\det(\boldsymbol{\gamma}', \boldsymbol{\gamma}'', \boldsymbol{\gamma}''')}{||\boldsymbol{\gamma}' \times \boldsymbol{\gamma}''||^2}$$

For a plane curve $\tau \equiv 0$. In that case we can define a signed unit normal vector \mathbf{n}_s , such that $\{\mathbf{t}, \mathbf{n}_s\}$ is a positively oriented orthonormal base. Then the equation $\gamma'' = \kappa_s \mathbf{n}_s$ defines the signed curvature, if γ is unit speed. The Frenet-Serret equations become

$$egin{array}{rcl} {f t}'&=&\kappa_s{f n}_s\ {f n}'_s&=&-\kappa_s{f t} \end{array}$$

For an arbitrary parametrisation $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ the signed curvature is given by

$$\kappa = \frac{\det(\boldsymbol{\gamma}',\boldsymbol{\gamma}'')}{||\boldsymbol{\gamma}'||^3}$$