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1. Viviani’s curve is the intersection of a sphere of radius 2 and a circular cylinder of
radius 1 passing through the origin. It can be parametrised as

γ (t) = (1 + cos 2t, sin 2t, 2 sin t)

with −π ≤ t < π . Compute the curvature and torsion of this curve.

We compute

γ ′(t) = (−2 sin 2t, 2 cos 2t, 2 cos t) ,
γ ′′(t) = (−4 cos 2t,−4 sin 2t,−2 sin t) ,
γ ′′′(t) = (8 sin 2t,−8 cos 2t,−2 cos t) .

Then ‖γ ′‖2 = 4(1 + cos2 t) ,
γ ′ × γ ′′ = (−4 cos 2t sin t+ 8 sin 2t cos t,−8 cos 2t cos t− 4 sin 2t sin t, 8) ,
‖γ ′ × γ ′′‖2 = 16 sin2 t+ 64 cos2 t+ 64 = 80 + 48 cos2 t ,
det(γ ′, γ ′′, γ ′′′) = 48 cos t .
So
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√
5 + 3 cos2 t
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3
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3 cos t

(5 + 3 cos2 t)

2. Prove the Four Vertex Theorem: every convex simple closed curve in R2 has at least
four vertices.

If the function κs is not constant, it attains its maximum and minimum, say in P och Q .
Assume P and Q are the only vertices. The segment PQ , which we may assume to lie on
the x-axis, divides the curve in two parts. On one of it κ′s > 0 , on the other κ′s < 0; we may
assume that y < 0 there. Then

∫
C
yκ′sds > 0 . On the other hand, by partial integration∫

C

yκ′sds = −
∫
C

y′κsds =

∫
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x′′ds = 0 ,

because t′ = κsn , where t =
(
x′

y′

)
and n =

(−y′
x′

)
. This contradiction shows that κ′s has one

more sign change. If there are three sign changes, then there is a fourth.

3. For a surface patch σ : R2 → R4 of a surface in 4-space one can define the first funda-
mental form in the usual way by E = σu · σu , F = σu · σ v and G = σ v · σ v .
Consider a torus in R4 , parametrised with

σ (u, v) = (a cosu, a sinu, b cos v, b sin v) ,

where a and b are positive constants. Show that this torus is locally isometric to the
plane.



As σu = (−a sinu, a cosu, 0, 0) and σ v = (0, 0,−b sin v, b cos v) , the first fundamental
form is a2du2 + b2dv2 . The same first fundamental from is obtained by parametrising the
plane by σ (u, v) = (au, bv) . Therefore the torus is locally isometric to the plane.

4. Compute the principal curvatures of the surface

y cos
z

a
= x sin

z
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where a is a non-zero constant.
Hint: first parametrise the surface, say with (r, ϕ) coordinates, so that z = aϕ .

Consider the parametrisation σ (r, ϕ) = (r cosϕ, r sinϕ, aϕ) . Then

σr = (cosϕ, sinϕ, 0)

σϕ = (−r sinϕ, r cosϕ, a)
σrr = (0, 0, 0)

σr,ϕ = (− sinϕ, cosϕ, 0)

σϕ,ϕ = (−r cosϕ,−r sinϕ, 0)

This gives E = 1 , F = 0 , G = r2 + a2 ,
√
EG− F 2 =

√
r2 + a2 , L = 0 , M =

−a/
√
r2 + a2 and N = 0 . The principal curvatures are the solutions of∣∣∣∣∣ −κ −a√
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−a√
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∣∣∣∣∣ = κ2(r2 + a2)− a2

r2 + a2
= 0

so κ = ± a
r2+a2

.

5. a) Show that a geodesic γ on a surface S , which is also a line of curvature, is a plane
curve.

b) Show that a geodesic with nowhere vanishing curvature, which lies in a plane, is a
line of curvature.

c) Give an example of a line of curvature, which lies in a plane and is not a geodesic.

a) The geodesic condition gives that γ ′′ and the surface normal N are parallel, as the curve
normal n is equal to N or its opposite. On the other hand, N′ and γ ′ are parallel because
γ is a line of curvature. So (N × γ ′)′ = N′ × γ ′ + N × γ ′′ = 0 and therefore N × γ ′
is a constant vector, parallel to the binormal vector of the curve. The curve γ lies in a plane
with N× γ ′ as normal vector, with equation γ · (N× γ ′) = const, as (γ · (N× γ ′))′ =
γ ′ · (N× γ ′) = 0 .
b) Geodesic implies that γ ′′ is a multiple of N . So if γ ′′ 6= 0 , the vector N is parallel to
the plane of the curve, and the same holds then for N′ . Because N′ is perpendicular to N ,
it has to be a multiple of γ ′ , and the curve is a line of curvature.
c) A parallel on a surface of revolution is always a line of curvature, lying in a plane, but it
is not a geodesic, unless the tangent plane is parallel to the axis.

6. Describe (qualitatively) the geodesics on the surface of revolution M ⊂ R3 , given by

M = {(x, y, z) | z = 1, x2 + y2 ≥ 1}
∪ {(x, y, z) | z = −1, x2 + y2 ≥ 1}

∪ {(x, y, z) | |z| ≤ 1, x2 + y2 = ϕ(z)} ,



where ϕ(1) = ϕ(−1) = 1 and ϕ(z) is such that M is a smooth surface, with profile
curve looking like

The surface consists of two parallel planes with a hole. Some geodesics are easy to see and
describe exactly. Every straight line in one of the planes which does not meet the unit circle,
is a geodesic. Also every meridian (like the ones drawn) is a geodesic. A parallel is only a
geodesic if ϕ′(z) = 0 ; this happens only at the point nearest to the axis.
To describe the remaining geodesics qualitatively, we use Clairaut’s Theorem: r sinϑ =
const , where r2 = x2 + y2 . It suffices to look a point on the unit circle, say in the upper
plane. The meridian intersects this circle perpendicularly and goes through the hole; the
angle ϑ is zero in this case. For an angle close to zero the geodesic still goes through the
hole. The tangent to the unit circle is a geodesic, with ϑ = 90◦ ; it just misses the hole. For
an angle close to 90◦ the geodesic goes in the hole , but the angle increases until the tangent
to the curve is horizontal, and from there the curve comes up again. In between there is an
angle ϑ0 such that the geodesic is trapped in the hole. It has the smallest parallel as limit
cycle.


