Lösningar till tentamensskrivningen MMG720, Differentialgeometri, 20090307

1. Prove the Four Vertex Theorem: every convex simple closed curve in \mathbb{R}^2 has at least four vertices.

If the function κ_s is not constant, it attains its maximum and minimum, say in P och Q. Assume P and Q are the only vertices. The segment PQ, which we may assume to lie on the x-axis, divides the curve in two parts. On one of it $\kappa'_s > 0$, on the other $\kappa'_s < 0$; we may assume that y < 0 there. Then $\int_C y \kappa'_s ds > 0$. On the other hand, by partial integration

$$\int_C y\kappa'_s ds = -\int_C y'\kappa_s ds = \int_C x'' ds = 0 ,$$

because $t' = \kappa_s n$, where $t = \binom{x'}{y'}$ and $n = \binom{-y'}{x'}$. This contradiction shows that κ'_s has one more sign change. If there are three sign changes, then there is a fourth.

Let γ(s), s ∈ [0, l], be a positively oriented closed convex plane curve. Let l(γ) be its length and A(int(γ)) be the area of its interior. The curve

$$\boldsymbol{\delta}(s) = \boldsymbol{\gamma}(s) - r \boldsymbol{n}(s) ,$$

where r is a positive constant, and n is the normal vector, is called a parallel curve to γ . Show that

- **a)** $l(\delta) = l(\gamma) + 2\pi r$,
- **b**) $\mathcal{A}(\operatorname{int}(\boldsymbol{\delta})) = \mathcal{A}(\operatorname{int}(\boldsymbol{\gamma})) + rl(\boldsymbol{\gamma}) + \pi r^2$,
- c) $k_{\delta}(s) = k_{\gamma}(s)/(1 + rk_{\gamma}(s))$, where k_{δ} and k_{γ} are the curvatures of the curves δ and γ , respectively.

a) We assume that γ is unit-speed. We have $\delta' = \gamma' - r n' = \gamma' + rk\gamma' = (1 + rk)\gamma'$, so $l(\delta) = \int_0^l 1 + rk \, ds = l(\gamma) + r \int_0^l k \, ds = l(\gamma) + 2\pi r$.

b) By Green's theorem $\mathcal{A}(\operatorname{int}(\boldsymbol{\delta})) = \frac{1}{2} \int_0^l \det(\boldsymbol{\delta}, \boldsymbol{\delta}') ds$. We compute that $\det(\boldsymbol{\delta}, \boldsymbol{\delta}') = \det(\boldsymbol{\gamma}, \boldsymbol{\gamma}') - r(\det(\boldsymbol{\gamma}, \boldsymbol{n}') + \det(\boldsymbol{n}, \boldsymbol{\gamma}')) - r^2 k \det(\boldsymbol{n}, \boldsymbol{\gamma}')$. Observe that $\det(\boldsymbol{n}, \boldsymbol{\gamma}') = -\det(\boldsymbol{\gamma}', \boldsymbol{n}) = -1$, and $\int_0^l \det(\boldsymbol{\gamma}, \boldsymbol{n}') ds = \det(\boldsymbol{\gamma}, \boldsymbol{n})|_0^l - \int_0^l \det(\boldsymbol{\gamma}', \boldsymbol{n}) ds$. As $\boldsymbol{\gamma}$ is a closed curve, $\det(\boldsymbol{\gamma}, \boldsymbol{n})|_0^l = 0$. We are left with the following integral $\frac{1}{2} \int_0^l \det(\boldsymbol{\gamma}, \boldsymbol{\gamma}') + 2r + r^2 k \, ds = \mathcal{A}(\operatorname{int}(\boldsymbol{\gamma})) + rl(\boldsymbol{\gamma}) + \pi r^2$. c) $k_{\delta} = \det(\boldsymbol{\delta}', \boldsymbol{\delta}'')/||\boldsymbol{\delta}'||^3$. We know that $\boldsymbol{\delta}' = (1+rk_{\gamma})\boldsymbol{\gamma}'$. So $\boldsymbol{\delta}'' = (1+rk_{\gamma})\boldsymbol{\gamma}'' + rk'_{\gamma}\boldsymbol{\gamma}'$ and $\det(\boldsymbol{\delta}', \boldsymbol{\delta}'') = (1+rk_{\gamma})^2 \det(\boldsymbol{\gamma}', \boldsymbol{\gamma}'') = k_{\gamma}(1+rk_{\gamma})^2$. Inserting gives the formula.

3. Define the tangent space at a point P of a smooth surface S and show that it is a two-dimensional vector space.

See Pressley, p. 74.

4. Show that Scherk's surface

$$z = \ln\left(\frac{\cos y}{\cos x}\right)$$

is a minimal surface, i.e., $H \equiv 0$.

We parametrise and compute derivatives:

$$\boldsymbol{\sigma} = (u, v, \ln\left(\frac{\cos v}{\cos u}\right))$$
$$\boldsymbol{\sigma}_u = (1, 0, \tan u)$$
$$\boldsymbol{\sigma}_v = (0, 1, -\tan v)$$
$$\boldsymbol{\sigma}_{uu} = (0, 0, 1/\cos^2 u)$$
$$\boldsymbol{\sigma}_{uv} = (0, 0, 0)$$
$$\boldsymbol{\sigma}_{vv} = (0, 0, -1/\cos^2 v)$$

This gives $E = 1 + \tan^2 u = 1/\cos^2 u$, $F = -\tan u \tan v$, $G = 1 + \tan^2 v = 1/\cos^2 v$. Therefore $EG - F^2 = 1 + \tan^2 u + \tan^2 v$. We find $L = 1/\cos^2 u\sqrt{EG - F^2}$, M = 0 och $N = -1/\cos^2 v\sqrt{EG - F^2}$. To find the principal curvatures, we have to solve, upon replacing κ by a multiple,

$$\det \begin{pmatrix} (1-\lambda)/\cos^2 u & \lambda \tan u \tan v \\ \lambda \tan u \tan v & (-1-\lambda)/\cos^2 v \end{pmatrix} = 0$$

This gives $(\lambda^2 - 1)/\cos^2 u \cos^2 v - \lambda^2 \tan^2 u \tan^2 v = 0$. Without explicitly computing the values of λ and κ one sees that there are two solutions with opposite sign, so H = 0. Alternatively, one can use the formula $H = \frac{LG - 2MF + NE}{2(EG - F^2)}$. As M = 0 it suffices to show that LG + NE = 0.

5. Describe the geodesics on a torus.

See Pressley, p. 312.

- 6. a) Show that a geodesic γ on a surface S, which is also a line of curvature, is a plane curve.
 - b) Show that a geodesic with nowhere vanishing curvature, which lies in a plane, is a line of curvature.
 - c) Give an example of a line of curvature, which lies in a plane and is not a geodesic.

(**5p**).

a) If a geodesic γ is a line of curvature, then $\mathbf{N} \times \gamma'$ is a constant vector, where \mathbf{N} is the normal of the surface, because $(\mathbf{N} \times \gamma')' = \mathbf{N}' \times \gamma' + \mathbf{N} \times \gamma''$. The geodesic consdition gives that γ'' and \mathbf{N} are parallel, whereas \mathbf{N}' and γ' are parallel because γ is a line of curvature. The curve γ lies in a plane with $\mathbf{N} \times \gamma'$ as normal vector, with equation $\gamma \cdot (\mathbf{N} \times \gamma') = \text{const}$, as $(\gamma \cdot (\mathbf{N} \times \gamma'))' = \gamma' \cdot (\mathbf{N} \times \gamma') = 0$.

b) Geodesic implies that γ'' is a multiple of N. So if $\gamma'' \neq 0$, the vector N is parallel to the plane of the curve, and the same holds then for N'. Because N' is perpendicular to N, it has to be a multiple of γ' , and the curve is a line of curvature.

c) A parallel on a surface of revolution is always a line of curvature, lying in a plane, but it is not a geodesic, unless the tangent plane is parallel to the axis.