MATEMATIK Göteborgs universitet Datum: 090307 Klockan: 8.30–13.30 Hjälpmedel: Inga Telefon: 076-272 1861 Aron Lagerberg

Tentamensskrivning i MMG720, Differentialgeometri

- 1. Prove the Four Vertex Theorem: every convex simple closed curve in \mathbb{R}^2 has at least four vertices.
- 2. Let $\gamma(s)$, $s \in [0, l]$, be a positively oriented closed convex plane curve. Let $l(\gamma)$ be its length and $\mathcal{A}(int(\gamma))$ be the area of its interior. The curve

$$\boldsymbol{\delta}(s) = \boldsymbol{\gamma}(s) - r \boldsymbol{n}(s) \; ,$$

where r is a positive constant, and n is the normal vector, is called a parallel curve to γ . Show that

- a) $l(\boldsymbol{\delta}) = l(\boldsymbol{\gamma}) + 2\pi r$,
- b) $\mathcal{A}(\operatorname{int}(\boldsymbol{\delta})) = \mathcal{A}(\operatorname{int}(\boldsymbol{\gamma})) + rl(\boldsymbol{\gamma}) + \pi r^2$,
- c) $k_{\delta}(s) = k_{\gamma}(s)/(1 + rk_{\gamma}(s))$, where k_{δ} and k_{γ} are the curvatures of the curves δ and γ , respectively.
- 3. Define the tangent space at a point P of a smooth surface S and show that it is a twodimensional vector space.
- 4. Show that Scherk's surface

$$z = \ln\left(\frac{\cos y}{\cos x}\right)$$

is a minimal surface, i.e., $H \equiv 0$.

- 5. Describe the geodesics on a torus.
- 6. a) Show that a geodesic γ on a surface S, which is also a line of curvature, is a plane curve.
 - b) Show that a geodesic with nowhere vanishing curvature, which lies in a plane, is a line of curvature.
 - c) Give an example of a line of curvature, which lies in a plane and is not a geodesic.

(5p).

Varje uppgift (utom en) ger maximalt 4 poäng. För godkänd skrivning krävs minst 12 poäng. För väl godkänd krävs minst 18 poäng.

Tentan räknas vara färdigrättad fredagen den 20 mars. Lycka till!

Jan Stevens