Lösningar till tentamensskrivningen MMG720, Differentialgeometri, 20130314

1. Compute the signed curvature for the logarithmic spiral $\gamma(t) = (e^{at} \cos t, e^{at} \sin t)$.

We have $\gamma(t) = e^{at}(\cos t, \sin t)$, so $\gamma'(t) = ae^{at}(\cos t, \sin t) + e^{at}(-\sin t, \cos t)$ and $\gamma''(t) = (a^1 - 1)e^{at}(\cos t, \sin t) + 2ae^{at}(-\sin t, \cos t)$. Then $\|\gamma'(t)\| = e^{at}\sqrt{a^2 + 1}$ and

$$\kappa_s = \frac{e^{2at}}{e^{3at}(\sqrt{a^2 + 1})^3} \begin{vmatrix} a & a^2 - 1 \\ 1 & 2a \end{vmatrix} = \frac{1}{e^{at}\sqrt{a^2 + 1}}$$

2. Prove the Isoperimetric Inequality for simple closed curves; you may assume Wirtinger's Inequality.

See the handout.

3. Let $\gamma(t)$ be a positively oriented regular plane curve and λ a constant. The *parallel* curve γ_{λ} of γ is defined by

$$\boldsymbol{\gamma}_{\lambda}(t) = \boldsymbol{\gamma}(t) + \lambda \boldsymbol{n}(t)$$

where $\boldsymbol{n}(t)$ is the positive unit normal vector. Show that

- a) γ_{λ} is a regular curve, if $\lambda \kappa_s < 1$ for all t,
- b) the signed curvature of γ_{λ} is $\kappa_s/(1-\lambda\kappa_s)$; here κ_s is the signed curvature of γ .

We assume that γ is unit-speed.

a) We have $\gamma'_{\lambda} = \gamma' + \lambda n' = \gamma' - \lambda \kappa_s \gamma' = (1 - \lambda \kappa_s) \gamma'$, so γ_{λ} is a regular curve, if $\lambda \kappa_s < 1$ for all t.

b) $\gamma'_{\lambda} = (1 - \lambda \kappa_s) \gamma'' + (1 - \lambda \kappa_s)' \gamma'$, so the signed curvature is $\det(\gamma'_{\lambda}, \gamma''_{\lambda}) / \|\gamma'_{\lambda}\|^3 = (1 - \lambda \kappa_s)^2 \det(\gamma', \gamma'') / (1 - \lambda \kappa_s)^3 = \kappa_s / (1 - \lambda \kappa_s)$.

4. Find the principal curvatures and the principal vectors associated to each principal curvature for the Enneper surface, parametrised by

$$\boldsymbol{\sigma}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + u^2v, u^2 - v^2\right).$$

We compute derivatives:

$$\sigma = (u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + u^2v, u^2 - v^2)$$

$$\sigma_u = (1 - u^2 + v^2, 2uv, 2u)$$

$$\sigma_v = (2uv, 1 + u^2 - v^2, -2v)$$

$$\sigma_{uv} = (-2u, 2v, 2)$$

$$\sigma_{uv} = (2v, 2u, 0)$$

$$\sigma_{vv} = (2u, -2v, -2)$$

This gives $E = G = (1 + u^2 + v^2)^2$, F = 0. Therefore $\sqrt{EG - F^2} = (1 + u^2 + v^2)^2$. We find $L = 2(1 + u^2 + v^2)^2/(1 + u^2 + v^2)^2 = 2$, M = 0 och N = -2. The principal curvatures are $L/E = 2/(1 + u^2 + v^2)^2$ and $N/G = -2/(1 + u^2 + v^2)^2$ with principal vectors (1, 0) and (0, 1) respectively.

5. Let σ be the ruled surface

$$\boldsymbol{\sigma}(u,v) = \boldsymbol{\gamma}(u) + v \boldsymbol{\delta}(u) ,$$

where γ is a unit-speed curve in \mathbb{R}^3 and $\delta(u)$ a unit vector for all u. Prove that the map $\sigma : \mathbb{R}^2 \supset U \rightarrow \sigma(U) \subset \mathbb{R}^3$ is an isometry if and only if $\delta(u)$ is constant and γ lies in a plane perpendicular to δ . What kind of surface is σ in this case?

As $\sigma_u = \gamma' + v\delta'$ and $\sigma_v = \delta$ the first fundamental form is $(\gamma' \cdot \gamma' + 2v\gamma' \cdot \delta' + v^2\delta' \cdot \delta')du^2 + 2\gamma' \cdot \delta dudv + \delta \cdot \delta dv^2 = (1 + 2v\gamma' \cdot \delta' + v^2\delta' \cdot \delta')du^2 + 2\gamma' \cdot \delta dudv + dv^2$. Here we used that δ is a unit vector, so $\delta \cdot \delta' = 0$. The first fundamental form of the plane is $du^2 + dv^2$. Therefore σ is an isometry if and only if $\gamma' \cdot \delta = 0$ and $1 + 2v\gamma' \cdot \delta' + v^2\delta' \cdot \delta' = 1$ for all v. The second equation gives the two equations $\gamma' \cdot \delta' = 0$ and $\delta' \cdot \delta' = 0$, so $\delta' = 0$ and δ is constant. The first equation then gives that γ' is perpendicular to δ , so the curve lies in a plane perpendicular to δ . In fact, as $(\gamma \cdot \delta)' = 0$, the equation satisfied by γ is $\gamma \cdot \delta = k$, k a constant.

The surface is then a generalised cylinder.

6. Describe the geodesics on a spheroid, the surface of revolution obtained by rotating an ellipse around one of its axes.

See Pressley.