An intrinsic algebraic characterization of C*-simplicity (for discrete groups)

Matthew Kennedy

University of Waterloo, Waterloo, Canada

August 17, 2016

C*-simplicity and the unique trace property

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

We say that \mathbb{F}_2 is **C*-simple** and has the **unique trace property**.

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

We say that \mathbb{F}_2 is **C*-simple** and has the **unique trace property**.

Variants of Powers' proof became the main method for establishing these properties.

Definition

A group G has Powers' averaging property if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i} a\lambda_{g_i^{-1}} - au(a)\mathbf{1}
ight\| < \epsilon.$$

Definition

A group G has Powers' averaging property if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i}\mathsf{a}\lambda_{g_i^{-1}}- au(\mathsf{a})\mathbf{1}
ight\|<\epsilon.$$

Theorem (Powers 1975)

A group with Powers' averaging property is C*-simple and has the unique trace property.

Definition

A group G has Powers' averaging property if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i} \mathsf{a}\lambda_{g_i^{-1}} - au(\mathsf{a})\mathbf{1}
ight\| < \epsilon.$$

Theorem (Powers 1975)

A group with Powers' averaging property is C*-simple and has the unique trace property.

Proof.

For C*-simplicity, let I be a non-trivial closed two-sided ideal of $C_r^*(G)$. By faithfulness there is $a \in I$ with $\tau(a) = 1$. Applying Powers' averaging property implies $1 \in I$. The unique trace property is similarly straightforward.

Theorem (Powers 1975)

The free group \mathbb{F}_2 has Powers' averaging property. Hence it is C^* -simple and has the unique trace property.

Question

Is there an (intrinsic) group-theoretic characterization of C*-simplicity and the unique trace property?

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

In other words, if

$$\lambda_{g} \to \rho_{g}, \quad g \in G$$

extends to a bounded *-homomorphism, then it is necessarily an isomorphism.

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

In other words, if

$$\lambda_{g} \rightarrow \rho_{g}, \quad g \in G$$

extends to a bounded *-homomorphism, then it is necessarily an isomorphism.

Proposition

C*-simple groups have no non-trivial normal amenable subgroups.

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

In other words, if

$$\lambda_{g} \rightarrow \rho_{g}, \quad g \in G$$

extends to a bounded *-homomorphism, then it is necessarily an isomorphism.

Proposition

C*-simple groups have no non-trivial normal amenable subgroups.

Proof.

If N < G is amenable and normal then $\lambda_{G/N} \precsim \lambda_G$.

Many (40+) years of work shows that the converse almost always holds.

Many (40+) years of work shows that the converse almost always holds.

C*-simple and unique trace equivalent to trivial amenable radical	Authors
Free groups \mathbb{F}_n for $n \geq 2$	Powers (1975)
÷	÷
Linear groups	T. Poznansky (2008)
Groups with non-zero first ℓ^2 -Betti number	J. Peterson and A. Thom (2010)
Acylindrically hyperbolic groups	F. Dahmani, V. Guirardel, and D. Osin (2011)
Free Burnside groups $B(m, n)$ for $m \ge 2$ and n odd and large	A.Y. Olshanskii and D.V. Osin (2014)

Many (40+) years of work shows that the converse almost always holds.

C*-simple and unique trace equivalent to trivial amenable radical	Authors
Free groups \mathbb{F}_n for $n \geq 2$	Powers (1975)
:	:
Linear groups	T. Poznansky (2008)
Groups with non-zero first ℓ^2 -Betti number	J. Peterson and A. Thom (2010)
Acylindrically hyperbolic groups	F. Dahmani, V. Guirardel, and D. Osin (2011)
Free Burnside groups $B(m, n)$ for $m \ge 2$ and n odd and large	A.Y. Olshanskii and D.V. Osin (2014)

All the above results were proved using variants of Powers' ideas.

Are C*-simplicity and the unique trace property always equivalent to triviality of the amenable radical?

Characterizations of C*-simplicity and the unique trace property

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Most "natural" topological group-theoretic boundaries are boundaries in the above sense (e.g. Gromov boundaries of non-elementary hyperbolic groups). But any non-amenable group has many boundaries.

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Most "natural" topological group-theoretic boundaries are boundaries in the above sense (e.g. Gromov boundaries of non-elementary hyperbolic groups). But any non-amenable group has many boundaries.

Example

The Gromov boundary $\partial \mathbb{F}_n$ of the Free group \mathbb{F}_n can be identified with the set of infinite reduced words

$$\partial \mathbb{F}_n = \{ w = w_1 w_2 w_3 \cdots \mid w_i \in \{1, \ldots, n\} \}.$$

equipped with the relative product topology.

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Most "natural" topological group-theoretic boundaries are boundaries in the above sense (e.g. Gromov boundaries of non-elementary hyperbolic groups). But any non-amenable group has many boundaries.

Example

The Gromov boundary $\partial \mathbb{F}_n$ of the Free group \mathbb{F}_n can be identified with the set of infinite reduced words

$$\partial \mathbb{F}_n = \{ w = w_1 w_2 w_3 \cdots \mid w_i \in \{1, \ldots, n\} \}.$$

equipped with the relative product topology.

Fact

Every compact G-space contains a (potentially trivial) G-boundary. A trivial G-boundary is a fixed point.

Theorem (Kalantar-K 2014)

 C^* -simplicity is equivalent to the existence of a (topologically) free action on a G-boundary.

Theorem (Kalantar-K 2014)

C-simplicity is equivalent to the existence of a (topologically) free action on a G-boundary.*

Theorem (Breuillard-Kalantar-K-Ozawa 2014)

The unique trace property is equivalent to triviality of the amenable radical. In particular, every C*-simple group has the unique trace property.

A characterization of the unique trace property

Theorem (Breuillard-Kalantar-K-Ozawa 2014)

The unique trace property is equivalent to triviality of the amenable radical.

Theorem (Breuillard-Kalantar-K-Ozawa 2014)

The unique trace property is equivalent to triviality of the amenable radical.

Specifically, tracial state on $C_r^*(G)$ concentrate on the amenable radical $R_a(G)$, i.e. for every tracial state τ on $C_r^*(G)$,

 $\tau(\lambda_s) = 0, \quad \forall s \in G \setminus R_a(G).$

Theorem (Breuillard-Kalantar-K-Ozawa 2014)

The unique trace property is equivalent to triviality of the amenable radical.

Specifically, tracial state on $C_r^*(G)$ concentrate on the amenable radical $R_a(G)$, i.e. for every tracial state τ on $C_r^*(G)$,

$$\tau(\lambda_s) = 0, \quad \forall s \in G \setminus R_a(G).$$

Corollary

Every C*-simple group has the unique trace property.

Is C*-simplicity equivalent to triviality of the amenable radical, and hence equivalent to the unique trace property?

Is C*-simplicity equivalent to triviality of the amenable radical, and hence equivalent to the unique trace property?

Answer: No! There are groups with trivial amenable radical that are not C*-simple.

Is C*-simplicity equivalent to triviality of the amenable radical, and hence equivalent to the unique trace property?

Answer: No! There are groups with trivial amenable radical that are not C*-simple.

Example (Le Boudec 2015)

Constructed from groups acting on trees.

Is C*-simplicity equivalent to triviality of the amenable radical, and hence equivalent to the unique trace property?

Answer: No! There are groups with trivial amenable radical that are not C*-simple.

Example (Le Boudec 2015)

Constructed from groups acting on trees.

Example (Ivanov-Omland 2016)

Constructed from free products.

A new characterization of C*-simplicity

Theorem (K 2015)

A group G is C*-simple if and only if the singleton $\{\tau\}$ is the only G-boundary in the state space $S(C^*_{\lambda}(G))$.

Theorem (K 2015)

A group G is C*-simple if and only if the singleton $\{\tau\}$ is the only G-boundary in the state space $S(C^*_{\lambda}(G))$.

Tracial states correspond to singleton *G*-boundaries in $S(C_r^*(G))$. But there may be larger *G*-boundaries in $S(C_r^*(G))$.

Theorem (K 2015)

A group G is C*-simple if and only if the singleton $\{\tau\}$ is the only G-boundary in the state space $S(C^*_{\lambda}(G))$.

Tracial states correspond to singleton *G*-boundaries in $S(C_r^*(G))$. But there may be larger *G*-boundaries in $S(C_r^*(G))$.

For groups with the unique trace property that are not C*-simple, e.g. Le Boudec's examples, there is one singleton *G*-boundary (corresponding to the canonical trace) in $S(C_r^*(G))$ and at least one non-singleton *G*-boundary in $S(C_r^*(G))$.

Theorem (Haagerup 2015, K 2015)

A group G is C*-simple if and only if it has Powers' averaging property, i.e. if and only if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|\frac{1}{n}\sum \lambda_{g_i} a \lambda_{g_i^{-1}} - \tau(a) \mathbf{1}\right\| < \epsilon.$$

An (intrinsic) algebraic characterization of C*-simplicity

A sequence $(H_n) \subset \mathcal{S}(G)$ converges to $G \in \mathcal{S}(G)$ if

- 1. every $h \in H$ eventually belongs to H_n and
- 2. for every subsequence (H_{n_k}) , $\cap H_{n_k} \subset H$.

- A sequence $(H_n) \subset \mathcal{S}(G)$ converges to $G \in \mathcal{S}(G)$ if
 - 1. every $h \in H$ eventually belongs to H_n and
 - 2. for every subsequence (H_{n_k}) , $\cap H_{n_k} \subset H$.

Then S(G) is a compact G-space with respect to conjugation,

$$g \cdot H = gHg^{-1}, \quad g \in G, \ H \in S(G).$$

- A sequence $(H_n) \subset \mathcal{S}(G)$ converges to $G \in \mathcal{S}(G)$ if
 - 1. every $h \in H$ eventually belongs to H_n and
 - 2. for every subsequence (H_{n_k}) , $\cap H_{n_k} \subset H$.

Then S(G) is a compact G-space with respect to conjugation,

$$g \cdot H = gHg^{-1}, \quad g \in G, \ H \in S(G).$$

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a minimal (i.e. every orbit is dense) G-subspace of S(G). It is amenable if it is a subset of the (closed) set of amenable subgroups of G.

Theorem (K 2015)

A group G is C^* -simple if and only if it has non-trivial amenable uniformly recurrent subgroups.

Theorem (K 2015)

A group G is C^* -simple if and only if it has non-trivial amenable uniformly recurrent subgroups.

Key idea is that amenable uniformly recurrent subgroups correspond to boundaries in the state space of $C_r^*(G)$.

Unwinding the definition of a uniformly recurrent subgroup gives an algebraic characterization of C*-simplicity.

Unwinding the definition of a uniformly recurrent subgroup gives an algebraic characterization of C*-simplicity.

Definition

A subgroup H < G is *recurrent* if for every sequence (g_n) in G there is a subsequence (g_{n_k}) such that

$$\bigcap g_{n_k} H g_{n_k}^{-1} \neq \{e\}.$$

Unwinding the definition of a uniformly recurrent subgroup gives an algebraic characterization of C*-simplicity.

Definition

A subgroup H < G is *recurrent* if for every sequence (g_n) in G there is a subsequence (g_{n_k}) such that

$$\bigcap g_{n_k} H g_{n_k}^{-1} \neq \{e\}.$$

Theorem (K 2015)

A group G is C^* -simple if and only if it has no amenable recurrent subgroups.

Connection to Thompson's groups

Thompson (1965) introduced three groups F < T < V.

Thompson (1965) introduced three groups F < T < V.

The group F can be identified with the group of piecewise linear homeomorphisms of [0, 1] that are differentiable, except at finitely many dyadic rationals, with derivative a power of 2 when it exists.

Thompson (1965) introduced three groups F < T < V.

The group F can be identified with the group of piecewise linear homeomorphisms of [0, 1] that are differentiable, except at finitely many dyadic rationals, with derivative a power of 2 when it exists.

Big Open Question

Is F amenable?

Big Open Question

Is F amenable?

Theorem (Haagerup-Olesen 2014)

If T is C^* -simple, then F is non-amenable.

Proof.

It is easy to check that F is a recurrent subgroup of T. If T is C*-simple, then it has no non-trivial amenable recurrent subgroups by [K2015]. Hence F is necessarily non-amenable.

Theorem (Le Boudec, Bon 2016)

- 1. Every non-trivial recurrent subgroup of V is non-amenable.
- 2. Every non-trivial recurrent subgroup of T contains an isomorphic copy of F.

Theorem (Le Boudec, Bon 2016)

- 1. Every non-trivial recurrent subgroup of V is non-amenable.
- 2. Every non-trivial recurrent subgroup of T contains an isomorphic copy of F.

Corollary

Thompson's group V is C^* -simple.

Theorem (Le Boudec, Bon 2016)

- 1. Every non-trivial recurrent subgroup of V is non-amenable.
- 2. Every non-trivial recurrent subgroup of T contains an isomorphic copy of F.

Corollary

Thompson's group V is C^* -simple.

Corollary

Thompson's group F is non-amenable if and only if T is C^* -simple.

Proof.

If F is non-amenable then every non-trivial recurrent subgroup of T (which contains a copy of F) is non-amenable. Hence T has no non-trivial amenable recurrent subgroups, so the result follows from [K2015].

Application to crossed products

Let (A, G, α, σ) be a (twisted) C*-dynamical system and let $I \lhd A$ be closed and G-invariant.

Let (A, G, α, σ) be a (twisted) C*-dynamical system and let $I \triangleleft A$ be closed and G-invariant.

Let (A, G, α, σ) be a (twisted) C*-dynamical system and let $I \lhd A$ be closed and G-invariant.

$$0 \longrightarrow I \rtimes_{\alpha,r}^{\sigma} G \longrightarrow A \rtimes_{\alpha,r}^{\sigma} G \xrightarrow{\pi \rtimes_{\alpha,r}^{\circ} id} A/I \rtimes_{\dot{\alpha},r}^{\dot{\sigma}} G \longrightarrow 0$$
$$\downarrow^{E_{I}} \qquad \qquad \qquad \downarrow^{E_{A}} \qquad \qquad \downarrow^{E_{A/I}} 0 \longrightarrow I \xrightarrow{\pi} A/I \longrightarrow 0$$

We say (A, G, α, σ) is **exact** if the upper sequence is exact . This happens iff

$$I\rtimes_{\alpha,r}^{\sigma}G=\ker(\pi\rtimes_{\alpha,r}^{\sigma}\mathrm{id})=:I\overline{\rtimes}_{\alpha,r}^{\sigma}G.$$

Theorem (Bedos-Conti 2015)

Let G be a "Powers-type" group and let (A, G, α, σ) be an exact twisted C*-dynamical system. Then there is bijective correspondence between maximal closed ideals of $A \rtimes_{r,\alpha}^{\sigma} G$ and maximal G-invariant closed ideals of A.

Theorem (Bryder-K 2016)

Let G be a C*-simple group and let (A, G, α, σ) be a (not necessarily exact) twisted C*-dynamical system. Then there is bijective correspondence between maximal closed ideals of $A \rtimes_{r,\alpha}^{\sigma} G$ and maximal G-invariant closed ideals of A:

 $A \rtimes_{r,\alpha}^{\sigma} G \vartriangleright J \mapsto J \cap A \lhd A$

$$A \rhd I \mapsto I \overline{\rtimes}_{\alpha,r}^{\sigma} G. \lhd A \rtimes_{r,\alpha}^{\sigma} G$$

Theorem (Bryder-K 2016)

Let G be a C*-simple group and let (A, G, α, σ) be a (not necessarily exact) twisted C*-dynamical system. Then there is bijective correspondence between maximal closed ideals of $A \rtimes_{r,\alpha}^{\sigma} G$ and maximal G-invariant closed ideals of A:

$$A \rtimes_{r,\alpha}^{\sigma} G \vartriangleright J \mapsto J \cap A \lhd A$$

$$A \rhd I \mapsto I \overline{\rtimes}_{\alpha,r}^{\sigma} G. \lhd A \rtimes_{r,\alpha}^{\sigma} G$$

Corollary

Let (A, G, α, σ) be a twisted C*-dynamical system over a C*-simple group Then $A \rtimes_{r,\alpha}^{\sigma} G$ is simple if and only if A has no proper non-trivial G-invariant ideals. In particular, if A = C(X) then $C(X) \rtimes_{r,\alpha}^{\sigma} G$ is simple if and only if $G \curvearrowright X$ is minimal.

Thanks!