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C*-simplicity and the unique trace property



Let F2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra C∗
r (F2) is simple and has a unique trace.

We say that F2 is C*-simple and has the unique trace property.

Variants of Powers’ proof became the main method for establishing
these properties.
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Definition

A group G has Powers’ averaging property if for every a ∈ C∗
r (G ) and

ε > 0 there are g1, . . . , gn ∈ G such that∥∥∥∥1

n

∑
λgiaλg−1

i
− τ(a)1

∥∥∥∥ < ε.

Theorem (Powers 1975)

A group with Powers’ averaging property is C*-simple and has the
unique trace property.

Proof.

For C*-simplicity, let I be a non-trivial closed two-sided ideal of C∗
r (G ).

By faithfulness there is a ∈ I with τ(a) = 1. Applying Powers’
averaging property implies 1 ∈ I . The unique trace property is similarly
straightforward.
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Theorem (Powers 1975)

The free group F2 has Powers’ averaging property. Hence it is
C*-simple and has the unique trace property.



Question

Is there an (intrinsic) group-theoretic characterization of C*-simplicity
and the unique trace property?



A group G is C*-simple iff whenever ρ is a unitary representation of G ,

ρ ≺ λ =⇒ ρ ∼ λ,

i.e. weak containment implies weak equivalence.

In other words, if
λg → ρg , g ∈ G

extends to a bounded *-homomorphism, then it is necessarily an
isomorphism.

Proposition

C*-simple groups have no non-trivial normal amenable subgroups.

Proof.

If N < G is amenable and normal then λG/N � λG .
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Many (40+) years of work shows that the converse almost always holds.

C*-simple and unique trace
equivalent to trivial
amenable radical

Authors

Free groups Fn for n ≥ 2 Powers (1975)

...
...

Linear groups T. Poznansky (2008)

Groups with non-zero first
`2-Betti number

J. Peterson and A. Thom
(2010)

Acylindrically hyperbolic groups F. Dahmani, V. Guirardel, and
D. Osin (2011)

Free Burnside groups B(m, n)
for m ≥ 2 and n odd and large

A.Y. Olshanskii and D.V. Osin
(2014)

All the above results were proved using variants of Powers’ ideas.
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Problem

Are C*-simplicity and the unique trace property always equivalent to
triviality of the amenable radical?



Characterizations of C*-simplicity and the unique
trace property



Definition (Furstenberg 1973)

A compact G -space X is a G -boundary if for every probability
measure µ ∈ P(X ), the weak* closure of the orbit Gµ contains the
point masses {δx | x ∈ X}.

Most “natural” topological group-theoretic boundaries are boundaries in
the above sense (e.g. Gromov boundaries of non-elementary hyperbolic
groups). But any non-amenable group has many boundaries.

Example

The Gromov boundary ∂Fn of the Free group Fn can be identified with
the set of infinite reduced words

∂Fn = {w = w1w2w3 · · · | wi ∈ {1, . . . , n}} .

equipped with the relative product topology.

Fact

Every compact G -space contains a (potentially trivial) G -boundary. A
trivial G -boundary is a fixed point.
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Theorem (Kalantar-K 2014)

C*-simplicity is equivalent to the existence of a (topologically) free
action on a G-boundary.
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The unique trace property is equivalent to triviality of the amenable
radical. In particular, every C*-simple group has the unique trace
property.
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A characterization of the unique trace property



Theorem (Breuillard-Kalantar-K-Ozawa 2014)

The unique trace property is equivalent to triviality of the amenable
radical.

Specifically, tracial state on C∗
r (G ) concentrate on the amenable

radical Ra(G ), i.e. for every tracial state τ on C∗
r (G ),

τ(λs) = 0, ∀s ∈ G\Ra(G ).

Corollary

Every C*-simple group has the unique trace property.
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Problem

Is C*-simplicity equivalent to triviality of the amenable radical, and
hence equivalent to the unique trace property?

Answer: No! There are groups with trivial amenable radical that are
not C*-simple.

Example (Le Boudec 2015)

Constructed from groups acting on trees.

Example (Ivanov-Omland 2016)

Constructed from free products.



Problem

Is C*-simplicity equivalent to triviality of the amenable radical, and
hence equivalent to the unique trace property?

Answer: No! There are groups with trivial amenable radical that are
not C*-simple.

Example (Le Boudec 2015)

Constructed from groups acting on trees.

Example (Ivanov-Omland 2016)

Constructed from free products.



Problem

Is C*-simplicity equivalent to triviality of the amenable radical, and
hence equivalent to the unique trace property?

Answer: No! There are groups with trivial amenable radical that are
not C*-simple.

Example (Le Boudec 2015)

Constructed from groups acting on trees.

Example (Ivanov-Omland 2016)

Constructed from free products.



Problem

Is C*-simplicity equivalent to triviality of the amenable radical, and
hence equivalent to the unique trace property?

Answer: No! There are groups with trivial amenable radical that are
not C*-simple.

Example (Le Boudec 2015)

Constructed from groups acting on trees.

Example (Ivanov-Omland 2016)

Constructed from free products.



A new characterization of C*-simplicity



Let A be a unital G -C*-algebra. Then the state space S(A), equipped
with the weak* topology, is naturally a compact G -space.

Theorem (K 2015)

A group G is C*-simple if and only if the singleton {τ} is the only
G-boundary in the state space S(C∗

λ(G )).

Tracial states correspond to singleton G -boundaries in S(C∗
r (G )). But

there may be larger G -boundaries in S(C∗
r (G )).

For groups with the unique trace property that are not C*-simple, e.g.
Le Boudec’s examples, there is one singleton G -boundary
(corresponding to the canonical trace) in S(C∗

r (G )) and at least one
non-singleton G -boundary in S(C∗

r (G )).



Let A be a unital G -C*-algebra. Then the state space S(A), equipped
with the weak* topology, is naturally a compact G -space.

Theorem (K 2015)

A group G is C*-simple if and only if the singleton {τ} is the only
G-boundary in the state space S(C∗

λ(G )).

Tracial states correspond to singleton G -boundaries in S(C∗
r (G )). But

there may be larger G -boundaries in S(C∗
r (G )).

For groups with the unique trace property that are not C*-simple, e.g.
Le Boudec’s examples, there is one singleton G -boundary
(corresponding to the canonical trace) in S(C∗

r (G )) and at least one
non-singleton G -boundary in S(C∗

r (G )).



Let A be a unital G -C*-algebra. Then the state space S(A), equipped
with the weak* topology, is naturally a compact G -space.

Theorem (K 2015)

A group G is C*-simple if and only if the singleton {τ} is the only
G-boundary in the state space S(C∗

λ(G )).

Tracial states correspond to singleton G -boundaries in S(C∗
r (G )). But

there may be larger G -boundaries in S(C∗
r (G )).

For groups with the unique trace property that are not C*-simple, e.g.
Le Boudec’s examples, there is one singleton G -boundary
(corresponding to the canonical trace) in S(C∗

r (G )) and at least one
non-singleton G -boundary in S(C∗

r (G )).



Let A be a unital G -C*-algebra. Then the state space S(A), equipped
with the weak* topology, is naturally a compact G -space.

Theorem (K 2015)

A group G is C*-simple if and only if the singleton {τ} is the only
G-boundary in the state space S(C∗

λ(G )).

Tracial states correspond to singleton G -boundaries in S(C∗
r (G )). But

there may be larger G -boundaries in S(C∗
r (G )).

For groups with the unique trace property that are not C*-simple, e.g.
Le Boudec’s examples, there is one singleton G -boundary
(corresponding to the canonical trace) in S(C∗

r (G )) and at least one
non-singleton G -boundary in S(C∗

r (G )).



Theorem (Haagerup 2015, K 2015)

A group G is C*-simple if and only if it has Powers’ averaging property,
i.e. if and only if for every a ∈ C∗

r (G ) and ε > 0 there are
g1, . . . , gn ∈ G such that∥∥∥∥1
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An (intrinsic) algebraic characterization of
C*-simplicity



Let S(G ) denote the space of subgroups of G , equipped with the
Chabauty topology (i.e. the product topology on {0, 1}G ).

A sequence (Hn) ⊂ S(G ) converges to G ∈ S(G ) if

1. every h ∈ H eventually belongs to Hn and

2. for every subsequence (Hnk ), ∩Hnk ⊂ H.

Then S(G ) is a compact G -space with respect to conjugation,

g · H = gHg−1, g ∈ G , H ∈ S(G ).

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a minimal (i.e. every orbit is
dense) G -subspace of S(G ). It is amenable if it is a subset of the
(closed) set of amenable subgroups of G .
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Key idea is that amenable uniformly recurrent subgroups correspond to
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Unwinding the definition of a uniformly recurrent subgroup gives an
algebraic characterization of C*-simplicity.

Definition

A subgroup H < G is recurrent if for every sequence (gn) in G there is
a subsequence (gnk ) such that⋂

gnkHg
−1
nk 6= {e}.

Theorem (K 2015)

A group G is C*-simple if and only if it has no amenable recurrent
subgroups.
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Connection to Thompson’s groups



Thompson (1965) introduced three groups F < T < V .

The group F can be identified with the group of piecewise linear
homeomorphisms of [0, 1] that are differentiable, except at finitely
many dyadic rationals, with derivative a power of 2 when it exists.
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Big Open Question

Is F amenable?

Theorem (Haagerup-Olesen 2014)

If T is C*-simple, then F is non-amenable.

Proof.

It is easy to check that F is a recurrent subgroup of T . If T is
C*-simple, then it has no non-trivial amenable recurrent subgroups by
[K2015]. Hence F is necessarily non-amenable.
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Very recently, Le Boudec and Bon completely classified the uniformly
recurrent subgroups of F ,T ,V . In particular, they obtained the
following results.

Theorem (Le Boudec, Bon 2016)

1. Every non-trivial recurrent subgroup of V is non-amenable.

2. Every non-trivial recurrent subgroup of T contains an isomorphic
copy of F .

Corollary

Thompson’s group V is C*-simple.

Corollary

Thompson’s group F is non-amenable if and only if T is C*-simple.

Proof.

If F is non-amenable then every non-trivial recurrent subgroup of T
(which contains a copy of F ) is non-amenable. Hence T has no
non-trivial amenable recurrent subgroups, so the result follows from
[K2015].
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Application to crossed products



Let (A,G , α, σ) be a (twisted) C*-dynamical system and let I C A be
closed and G -invariant.

0 I oσα,r G Aoσα,r G A/I oσ̇α̇,r G 0

0 I A A/I 0

EI

πoσα,r id

EA EA/I

π

We say (A,G , α, σ) is exact if the upper sequence is exact .This
happens iff

I oσα,r G = ker(π oσα,r id) =: Ioσα,rG .

28
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Theorem (Bedos-Conti 2015)

Let G be a“Powers-type”group and let (A,G , α, σ) be an exact
twisted C*-dynamical system. Then there is bijective correspondence
between maximal closed ideals of Aoσr ,α G and maximal G-invariant
closed ideals of A.



Theorem (Bryder-K 2016)

Let G be a C*-simple group and let (A,G , α, σ) be a (not necessarily
exact) twisted C*-dynamical system. Then there is bijective
correspondence between maximal closed ideals of Aoσr ,α G and
maximal G-invariant closed ideals of A:

Aoσr ,α G B J 7→ J ∩ A C A

A B I 7→ Ioσα,rG . C Aoσr ,α G

Corollary

Let (A,G , α, σ) be a twisted C*-dynamical system over a C*-simple
group Then Aoσr ,α G is simple if and only if A has no proper
non-trivial G-invariant ideals. In particular, if A = C (X ) then
C (X )oσr ,α G is simple if and only if G y X is minimal.
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