Property (T) and Haagerup property for quantum groups – a global point of view
based on joint work with M. Daws, P. Fima, A. Viselter and S. White

Adam Skalski
IMPAN
18 August 2016
Unitary representations

\(G \) – locally compact group

A (unitary, strongly continuous) representation \(\pi \) of \(G \) on a Hilbert space \(H \)

- contains an invariant vector if
 \[
 \exists \xi \in H, \|\xi\| = 1 \quad \forall g \in G \quad \pi(g)\xi = \xi;
 \]

- contains almost invariant vectors if
 \[
 \exists \xi_i \in H, \|\xi_i\| = 1 \quad \forall g \in G \quad \pi(g)\xi_i - \xi_i \to 0
 \]
 (uniformly on compact subsets)

- is mixing if
 \[
 \forall \xi, \eta \in H \quad \langle \xi, \pi(\cdot)\eta \rangle \in C_0(G);
 \]

- is ergodic if it does not contain an invariant vector;

- is weakly mixing if \(\pi \otimes \bar{\pi} \) is ergodic.
Unitary representations

G – locally compact group

A (unitary, strongly continuous) representation π of G on a Hilbert space H

- **contains an invariant vector** if

 $$\exists \xi \in H, \|\xi\| = 1 \forall g \in G \ \pi(g)\xi = \xi;$$

- **contains almost invariant vectors** if

 $$\exists \xi_i \in H, \|\xi_i\| = 1 \forall g \in G \ \pi(g)\xi_i - \xi_i \to 0$$

 (uniformly on compact subsets)

- **is mixing** if

 $$\forall \xi, \eta \in H \ \langle \xi, \pi(\cdot)\eta \rangle \in C_0(G);$$

- **is ergodic** if it does not contain an invariant vector;

- **is weakly mixing** if $\pi \otimes \bar{\pi}$ is ergodic.
A (unitary, strongly continuous) representation \(\pi \) of \(G \) on a Hilbert space \(H \)

- **contains an invariant vector** if
 \[
 \exists \xi \in H, \|\xi\| = 1 \quad \forall g \in G \quad \pi(g)\xi = \xi;
 \]

- **contains almost invariant vectors** if
 \[
 \exists \xi_i \in H, \|\xi_i\| = 1 \quad \forall g \in G \quad \pi(g)\xi_i - \xi_i \to 0
 \]
 (uniformly on compact subsets)

- **is mixing** if
 \[
 \forall \xi, \eta \in H \quad \langle \xi, \pi(\cdot)\eta \rangle \in C_0(G);
 \]

- **is ergodic** if it does not contain an invariant vector;

- **is weakly mixing** if \(\pi \otimes \overline{\pi} \) is ergodic.
Unitary representations

G – locally compact group

A (unitary, strongly continuous) representation π of G on a Hilbert space H

- **contains an invariant vector** if
 \[\exists \xi \in H, \| \xi \| = 1 \ \forall g \in G \ \pi(g)\xi = \xi; \]

- **contains almost invariant vectors** if
 \[\exists \xi_i \in H, \| \xi_i \| = 1 \ \forall g \in G \ \pi(g)\xi_i - \xi_i \rightarrow 0 \]
 (uniformly on compact subsets)

- **is mixing** if
 \[\forall \xi, \eta \in H \ \langle \xi, \pi(\cdot)\eta \rangle \in C_0(G); \]

- **is ergodic** if it does not contain an invariant vector;

- **is weakly mixing** if $\pi \otimes \bar{\pi}$ is ergodic.
Unitary representations

G – locally compact group

A (unitary, strongly continuous) representation π of G on a Hilbert space H

- contains an invariant vector if
 $$\exists \xi \in H, \|\xi\| = 1 \ \forall g \in G \ \pi(g)\xi = \xi;$$

- contains almost invariant vectors if
 $$\exists \xi_i \in H, \|\xi_i\| = 1 \ \forall g \in G \ \pi(g)\xi_i - \xi_i \rightarrow 0$$
 (uniformly on compact subsets)

- is mixing if
 $$\forall \xi, \eta \in H \ \langle \xi, \pi(\cdot)\eta \rangle \in C_0(G);$$

- is ergodic if it does not contain an invariant vector;

- is weakly mixing if $\pi \otimes \bar{\pi}$ is ergodic.
Haagerup property and property (T)

Definition

G has the **Haagerup property (HAP)** if it admits a mixing representation with almost invariant vectors.

Definition

G has the **Kazhdan Property (T)** if its every representation with almost invariant vectors contains an invariant vector.

Amenable groups have HAP; G has both HAP and property (T) if and only if G is compact.
Haagerup property and property (T)

Definition

G has the **Haagerup property** (HAP) if it admits a mixing representation with almost invariant vectors.

Definition

G has the Kazhdan **Property (T)** if its every representation with almost invariant vectors contains an invariant vector.

Amenable groups have HAP; G has both HAP and property (T) if and only if G is compact.
Definition

G has the **Haagerup property (HAP)** if it admits a mixing representation with almost invariant vectors.

Definition

G has the **Kazhdan Property (T)** if its every representation with almost invariant vectors contains an invariant vector.

Amenable groups have HAP; G has both HAP and property (T) if and only if G is compact.
General notations

\(\mathbb{G} \) – a locally compact quantum group à la Kustermans-Vaes

\(L^\infty(\mathbb{G}) \) – a von Neumann algebra equipped with the *coproduct*

\[\Delta : L^\infty(\mathbb{G}) \rightarrow L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{G}) \]

carrying all the information about \(\mathbb{G} \)

\(C_0(\mathbb{G}) \) – the corresponding (reduced) \(C^* \)-object, \(C_b(\mathbb{G}) := M(C_0(\mathbb{G})) \)

\(C_0^u(\mathbb{G}) \) – the universal version of \(C_0(\mathbb{G}) \)

\(L^2(\mathbb{G}) \) – the GNS Hilbert space of the *right invariant Haar weight* on \(\mathbb{G} \)

\(W^\mathbb{G} \in B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G})) \) – the multiplicative unitary associated to \(\mathbb{G} \):

\[\Delta(f) = W^\mathbb{G}(f \otimes 1)(W^\mathbb{G})^*, \quad f \in L^\infty(\mathbb{G}). \]

Note the inclusions

\[C_0(\mathbb{G}) \subset C_b(\mathbb{G}) \subset L^\infty(\mathbb{G}) = C_0(\mathbb{G})'' \]
General notations

\(\mathbb{G} \) – a locally compact quantum group à la Kustermans-Vaes

\(L^\infty(\mathbb{G}) \) – a von Neumann algebra equipped with the *coproduct*

\[
\Delta : L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G}) \hat{\otimes} L^\infty(\mathbb{G})
\]

carrying all the information about \(\mathbb{G} \)

\(C_0(\mathbb{G}) \) – the corresponding (reduced) \(C^* \)-object, \(C_b(\mathbb{G}) := M(C_0(\mathbb{G})) \)

\(C_0^u(\mathbb{G}) \) – the universal version of \(C_0(\mathbb{G}) \)

\(L^2(\mathbb{G}) \) – the GNS Hilbert space of the *right invariant Haar weight* on \(\mathbb{G} \)

\(W^G \in B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G})) \) – the multiplicative unitary associated to \(\mathbb{G} \):

\[
\Delta(f) = W^G(f \otimes 1)(W^G)^*, \quad f \in L^\infty(\mathbb{G}).
\]

Note the inclusions

\[
C_0(\mathbb{G}) \subset C_b(\mathbb{G}) \subset L^\infty(\mathbb{G}) = C_0(\mathbb{G})''
\]
General notations

\(\mathcal{G} \) – a locally compact quantum group à la Kustermans-Vaes

\(L^\infty(\mathcal{G}) \) – a von Neumann algebra equipped with the *coproduct*

\[\Delta : L^\infty(\mathcal{G}) \to L^\infty(\mathcal{G}) \overline{\otimes} L^\infty(\mathcal{G}) \]

carrying all the information about \(\mathcal{G} \)

\(C_0(\mathcal{G}) \) – the corresponding (reduced) \(C^* \)-object, \(C_b(\mathcal{G}) := M(C_0(\mathcal{G})) \)

\(C_0^u(\mathcal{G}) \) – the universal version of \(C_0(\mathcal{G}) \)

\(L^2(\mathcal{G}) \) – the GNS Hilbert space of the *right invariant Haar weight* on \(\mathcal{G} \)

\(W^\mathcal{G} \in B(L^2(\mathcal{G}) \otimes L^2(\mathcal{G})) \) – the multiplicative unitary associated to \(\mathcal{G} \):

\[\Delta(f) = W^\mathcal{G}(f \otimes 1)(W^\mathcal{G})^*, \quad f \in L^\infty(\mathcal{G}). \]

Note the inclusions

\[C_0(\mathcal{G}) \subset C_b(\mathcal{G}) \subset L^\infty(\mathcal{G}) = C_0(\mathcal{G})^{''} \]
General notations

\(G \) – a locally compact quantum group à la Kustermans-Vaes

\(L^\infty(G) \) – a von Neumann algebra equipped with the coproduct

\[
\Delta : L^\infty(G) \to L^\infty(G) \otimes L^\infty(G)
\]
carrying all the information about \(G \)

\(C_0(G) \) – the corresponding (reduced) \(C^* \)-object, \(C_b(G) := M(C_0(G)) \)

\(C_0^u(G) \) – the universal version of \(C_0(G) \)

\(L^2(G) \) – the GNS Hilbert space of the right invariant Haar weight on \(G \)

\(W^G \in B(L^2(G) \otimes L^2(G)) \) – the multiplicative unitary associated to \(G \):

\[
\Delta(f) = W^G(f \otimes 1)(W^G)^*, \quad f \in L^\infty(G).
\]

Note the inclusions

\[
C_0(G) \subset C_b(G) \subset L^\infty(G) = C_0(G)^{''}
\]
General notations

\mathbb{G} – a locally compact quantum group à la Kustermans-Vaes

$L^\infty(\mathbb{G})$ – a von Neumann algebra equipped with the coproduct

$$\Delta : L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{G})$$

carrying all the information about \mathbb{G}

$C_0(\mathbb{G})$ – the corresponding (reduced) C^*-object, $C_b(\mathbb{G}) := M(C_0(\mathbb{G}))$

$C_0^u(\mathbb{G})$ – the universal version of $C_0(\mathbb{G})$

$L^2(\mathbb{G})$ – the GNS Hilbert space of the right invariant Haar weight on \mathbb{G}

$W^\mathbb{G} \in B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G}))$ – the multiplicative unitary associated to \mathbb{G}:

$$\Delta(f) = W^\mathbb{G}(f \otimes 1)(W^\mathbb{G})^*, \quad f \in L^\infty(\mathbb{G}).$$

Note the inclusions

$$C_0(\mathbb{G}) \subset C_b(\mathbb{G}) \subset L^\infty(\mathbb{G}) = C_0(\mathbb{G})''$$
Dual quantum groups

Each LCQG G admits the dual LCQG \widehat{G}.

$L^\infty(\widehat{G})$, $C_0(\widehat{G})$ – subalgebras of $B(L^2(G))$

$W^G \in M(C_0(\widehat{G}) \otimes C_0(G))$ and

$W^{\widehat{G}} = (\sigma(W^G))^*$

In particular for G – locally compact group

$L^\infty(\widehat{G}) = VN(G)$

$C_0(\widehat{G}) = C^*_r(G)$, $C^*_0(\widehat{G}) = C^*(G)$
Dual quantum groups

Each LCQG \mathcal{G} admits the dual LCQG $\hat{\mathcal{G}}$.

$L^\infty(\hat{\mathcal{G}})$, $C_0(\hat{\mathcal{G}})$ – subalgebras of $B(L^2(\mathcal{G}))$

$W^G \in M(C_0(\hat{\mathcal{G}}) \otimes C_0(\mathcal{G}))$ and

$W^{\hat{G}} = (\sigma(W^G))^*$

In particular for G – locally compact group

$L^\infty(\hat{G}) = VN(G)$

$C_0(\hat{G}) = C^*_r(G)$, $C^*_0(\hat{G}) = C^*(G)$
Dual quantum groups

Each LCQG \mathcal{G} admits the dual LCQG $\hat{\mathcal{G}}$.

$L^\infty(\hat{\mathcal{G}})$, $C_0(\hat{\mathcal{G}})$ – subalgebras of $B(L^2(\mathcal{G}))$

$W^\mathcal{G} \in M(C_0(\hat{\mathcal{G}}) \otimes C_0(\mathcal{G}))$ and

$$W^{\hat{\mathcal{G}}} = (\sigma(W^\mathcal{G}))^*$$

In particular for \mathcal{G} – locally compact group

$$L^\infty(\hat{\mathcal{G}}) = VN(\mathcal{G})$$

$$C_0(\hat{\mathcal{G}}) = C^*_r(\mathcal{G}), \quad C^*_0(\hat{\mathcal{G}}) = C^*(\mathcal{G})$$
Dual quantum groups

Each LCQG \mathbb{G} admits the dual LCQG $\hat{\mathbb{G}}$.

$L^\infty(\hat{\mathbb{G}})$, $C_0(\hat{\mathbb{G}})$ – subalgebras of $B(L^2(\mathbb{G}))$

$W^\mathbb{G} \in M(C_0(\hat{\mathbb{G}}) \otimes C_0(\mathbb{G}))$ and

$W^{\hat{\mathbb{G}}} = (\sigma(W^\mathbb{G}))^*$

In particular for G – locally compact group

$L^\infty(\hat{G}) = VN(G)$

$C_0(\hat{G}) = C^*_r(G)$, $C_0^u(\hat{G}) = C^*(G)$
Further properties of LCQGs

Definition

A locally compact quantum groups \mathbb{G} is

- **compact** if $C_0(\mathbb{G})$ is unital (equivalently the Haar weights are finite);
- **discrete** if $\hat{\mathbb{G}}$ is compact;
- **unimodular** if the left and right Haar weights coincide;
- **of Kac type** if the so-called scaling group is trivial (the antipode is a bounded map);
- **amenable** if $L^\infty(\mathbb{G})$ admits a bi-invariant mean;
- **coamenable** if the universal and reduced algebras $C_0(\mathbb{G})$ and $C_0^u(\mathbb{G})$ are naturally isomorphic;
- **second countable** if $C_0(\mathbb{G})$ is separable.
Further properties of LCQGs

Definition

A locally compact quantum groups G is

- **compact** if $C_0(G)$ is unital (equivalently the Haar weights are finite);
- **discrete** if \hat{G} is compact;
- **unimodular** if the left and right Haar weights coincide;
- **of Kac type** if the so-called scaling group is trivial (the antipode is a bounded map);
- **amenable** if $L^\infty(G)$ admits a bi-invariant mean;
- **coamenable** if the universal and reduced algebras $C_0(G)$ and $C_0^u(G)$ are naturally isomorphic;
- **second countable** if $C_0(G)$ is separable.
Further properties of LCQGs

Definition

A locally compact quantum group G is

- **compact** if $C_0(G)$ is unital (equivalently the Haar weights are finite);
- **discrete** if \hat{G} is compact;
- **unimodular** if the left and right Haar weights coincide;
- **of Kac type** if the so-called scaling group is trivial (the antipode is a bounded map);
- **amenable** if $L^\infty(G)$ admits a bi-invariant mean;
- **coamenable** if the universal and reduced algebras $C_0(G)$ and $C_0^u(G)$ are naturally isomorphic;
- **second countable** if $C_0(G)$ is separable.
Further properties of LCQGs

Definition

A locally compact quantum groups G is

- **compact** if $C_0(G)$ is unital (equivalently the Haar weights are finite);
- **discrete** if \hat{G} is compact;
- **unimodular** if the left and right Haar weights coincide;
- **of Kac type** if the so-called scaling group is trivial (the antipode is a bounded map);
- **amenable** if $L^\infty(G)$ admits a bi-invariant mean;
- **coamenable** if the universal and reduced algebras $C_0(G)$ and $C_0^u(G)$ are naturally isomorphic;
- **second countable** if $C_0(G)$ is separable.
Further properties of LCQGs

Definition

A locally compact quantum groups \mathbb{G} is

- **compact** if $C_0(\mathbb{G})$ is unital (equivalently the Haar weights are finite);
- **discrete** if $\hat{\mathbb{G}}$ is compact;
- **unimodular** if the left and right Haar weights coincide;
- **of Kac type** if the so-called scaling group is trivial (the antipode is a bounded map);
- **amenable** if $L^{\infty}(\mathbb{G})$ admits a bi-invariant mean;
- **coamenable** if the universal and reduced algebras $C_0(\mathbb{G})$ and $C_0^u(\mathbb{G})$ are naturally isomorphic;
- **second countable** if $C_0(\mathbb{G})$ is separable.
Further properties of LCQGs

Definition

A locally compact quantum groups G is

- **compact** if $C_0(G)$ is unital (equivalently the Haar weights are finite);
- **discrete** if \hat{G} is compact;
- **unimodular** if the left and right Haar weights coincide;
- **of Kac type** if the so-called scaling group is trivial (the antipode is a bounded map);
- **amenable** if $L^\infty(G)$ admits a bi-invariant mean;
- **coamenable** if the universal and reduced algebras $C_0(G)$ and $C_0^u(G)$ are naturally isomorphic;
- **second countable** if $C_0(G)$ is separable.
Further properties of LCQGs

Definition

A locally compact quantum groups \mathbb{G} is

- **compact** if $C_0(\mathbb{G})$ is unital (equivalently the Haar weights are finite);
- **discrete** if $\hat{\mathbb{G}}$ is compact;
- **unimodular** if the left and right Haar weights coincide;
- **of Kac type** if the so-called scaling group is trivial (the antipode is a bounded map);
- **amenable** if $L^\infty(\mathbb{G})$ admits a bi-invariant mean;
- **coamenable** if the universal and reduced algebras $C_0(\mathbb{G})$ and $C_0^u(\mathbb{G})$ are naturally isomorphic;
- **second countable** if $C_0(\mathbb{G})$ is separable.
Some examples of locally compact quantum groups

- locally compact groups (all coamenable);
- duals of locally compact groups (all amenable);
- quantum deformations of classical Lie groups: for example $SU_q(2)$, quantum $ax + b$, $E_q(2)$ (amenable and coamenable, usually not Kac);
- quantum symmetry groups: quantum permutation groups S_n^+, quantum automorphism groups of Wang $G_{\text{aut}}(M_n)$, quantum orthogonal groups O_n^+ (mostly non-coamenable, mostly Kac).
Some examples of locally compact quantum groups

- locally compact groups (all coamenable);
- duals of locally compact groups (all amenable);
- quantum deformations of classical Lie groups: for example $SU_q(2)$, quantum $ax + b$, $E_q(2)$ (amenable and coamenable, usually not Kac);
- quantum symmetry groups: quantum permutation groups S_n^+, quantum automorphism groups of Wang $G_{\text{aut}}(M_n)$, quantum orthogonal groups O_n^+ (mostly non-coamenable, mostly Kac).
Some examples of locally compact quantum groups

- locally compact groups (all coamenable);
- duals of locally compact groups (all amenable);
- quantum deformations of classical Lie groups: for example $SU_q(2)$, quantum $ax + b$, $E_q(2)$ (amenable and coamenable, usually not Kac);
- quantum symmetry groups: quantum permutation groups S_n^+, quantum automorphism groups of Wang $G_{\text{aut}}(M_n)$, quantum orthogonal groups O_n^+ (mostly non-coamenable, mostly Kac).
Some examples of locally compact quantum groups

- locally compact groups (all coamenable);
- duals of locally compact groups (all amenable);
- quantum deformations of classical Lie groups: for example $SU_q(2)$, quantum $ax + b$, $E_q(2)$ (amenable and coamenable, usually not Kac);
- quantum symmetry groups: quantum permutation groups S_n^+, quantum automorphism groups of Wang $G_{\text{aut}}(M_n)$, quantum orthogonal groups O_n^+ (mostly non-coamenable, mostly Kac).
Representations of LCQGs

Definition

A (unitary) representation of \mathbb{G} on a Hilbert space H is a unitary $U \in \mathcal{M}(C_0(\mathbb{G}) \otimes K(H))$ such that

$$(\Delta \otimes \iota)(U) = U_{13} U_{23}.$$

The operators $(\iota \otimes \omega_{\xi,\eta})(U) \in C_b(\mathbb{G})$, where $\xi, \eta \in H$, are called coefficients of U.

Representations of \mathbb{G} are in a 1-1 correspondence with C^*-representations of $C_0^u(\hat{\mathbb{G}})$.

One can also tensor representations of \mathbb{G} ($U \boxtimes V$), take direct sums ($U \oplus V$) and pass to a contragredient representation U^c.
Representations of LCQGs

Definition

A (unitary) representation of \hat{G} on a Hilbert space H is a unitary $U \in M(C_0(\hat{G}) \otimes K(H))$ such that

$$(\Delta \otimes \iota)(U) = U_{13}U_{23}.$$

The operators $(\iota \otimes \omega_{\xi,\eta})(U) \in C_b(\hat{G})$, where $\xi, \eta \in H$, are called **coefficients** of U.

Representations of \hat{G} are in a 1-1 correspondence with C^*-representations of $C^*_u(\hat{G})$.

One can also tensor representations of \hat{G} ($U \boxtimes V$), take **direct sums** ($U \oplus V$) and pass to a **contragredient representation** U^c.
Representations of LCQGs

Definition

A (unitary) representation of \mathbb{G} on a Hilbert space H is a unitary $U \in M(C_0(\mathbb{G}) \otimes K(H))$ such that

$$(\Delta \otimes \iota)(U) = U_{13} U_{23}.$$

The operators $(\iota \otimes \omega_{\xi,\eta})(U) \in C_b(\mathbb{G})$, where $\xi, \eta \in H$, are called coefficients of U.

Representations of \mathbb{G} are in a 1-1 correspondence with C^*-representations of $C_u^0(\hat{\mathbb{G}})$.

One can also tensor representations of \mathbb{G} ($U \boxtimes V$), take direct sums ($U \oplus V$) and pass to a contragredient representation U^c.
Representations of LCQGs – continued

Definition

A representation U of G is mixing if all its coefficients belong to $C_0(G)$. It has almost invariant vectors if there exists a net of unit vectors $(\xi_i)_{i \in I}$ such that for all $a \in C_0(G)$

$$U(a \otimes \xi_i) - a \otimes \xi_i \rightarrow 0$$

– equivalently for all $b \in C_0^u(\hat{G})$

$$\phi_U(b)\xi_i - \hat{\epsilon}(b)\xi_i \rightarrow 0$$ strictly.

The multiplicative unitary W^G plays the role of the left regular representation of G on $L^2(G)$; it is mixing.
Definitions and first facts

Definition

A locally compact quantum group G has the Haagerup property (HAP) if it admits a mixing representation containing almost invariant vectors.

Definition

A locally compact quantum group G has Kazhdan Property (T) if it admits a mixing representation containing almost invariant vectors.

Proposition

If \hat{G} is coamenable, then G has HAP. In particular, amenable discrete quantum groups have HAP. G is compact if and only if it has both HAP and Property (T).
Definitions and first facts

Definition
A locally compact quantum group G has the Haagerup property (HAP) if it admits a mixing representation containing almost invariant vectors.

Definition
A locally compact quantum group G has Kazhdan Property (T) if it admits a mixing representation containing almost invariant vectors.

Proposition
If \hat{G} is coamenable, then G has HAP. In particular, amenable discrete quantum groups have HAP. G is compact if and only if it has both HAP and Property (T).
Definitions and first facts

Definition

A locally compact quantum group G has the Haagerup property (HAP) if it admits a mixing representation containing almost invariant vectors.

Definition

A locally compact quantum group G has Kazhdan Property (T) if it admits a mixing representation containing almost invariant vectors.

Proposition

If \hat{G} is coamenable, then G has HAP. In particular, amenable discrete quantum groups have HAP. G is compact if and only if it has both HAP and Property (T).
Definitions and first facts

Definition

A locally compact quantum group \mathbb{G} has the Haagerup property (HAP) if it admits a mixing representation containing almost invariant vectors.

Definition

A locally compact quantum group \mathbb{G} has Kazhdan Property (T) if it admits a mixing representation containing almost invariant vectors.

Proposition

If $\hat{\mathbb{G}}$ is coamenable, then \mathbb{G} has HAP. In particular, amenable discrete quantum groups have HAP. \mathbb{G} is compact if and only if it has both HAP and Property (T).
Space of representations

\mathcal{G} – second countable locally compact quantum group, H – fixed infinite dimensional separable Hilbert space. Then $\text{Rep}_G(H)$ is a Polish space with a natural (‘point-weak’) topology. It is equipped with two natural operations: **direct sum** (finite or countable) and **tensoring** (after we fix some unitary identifications of $H \otimes H$ with H, etc.).

Lemma (DFSW)

Suppose $\mathcal{R} \subset \text{Rep}_G(H)$

1. is stable under unitary equivalence;
2. is stable under tensoring with any $V \in \text{Rep}_G(H)$;
3. contains a representation with almost invariant vectors.

Then \mathcal{R} is dense in $\text{Rep}_G(H)$.
Space of representations

\(\mathcal{G} \) – second countable locally compact quantum group, \(H \) – fixed infinite dimensional separable Hilbert space. Then \(\text{Rep}_G(H) \) is a Polish space with a natural (‘point-weak’) topology. It is equipped with two natural operations: **direct sum** (finite or countable) and **tensoring** (after we fix some unitary identifications of \(H \otimes H \) with \(H \), etc.).

Lemma (DFSW)

Suppose \(\mathcal{R} \subset \text{Rep}_G(H) \)

1. is stable under unitary equivalence;
2. is stable under tensoring with any \(V \in \text{Rep}_G(H) \);
3. contains a representation with almost invariant vectors.

Then \(\mathcal{R} \) is dense in \(\text{Rep}_G(H) \).
Theorem (DFSW)

A second countable locally compact quantum group \mathbb{G} has HAP if and only if the set of mixing representations is dense in $\text{Rep}_\mathbb{G}(H)$.

Proof.

\Leftarrow

Approximate the trivial representation with mixing ones and take their direct sum (still mixing!).

\Rightarrow

Use the lemma with $\mathcal{R} –$ mixing representations.

Ideas go back to the work of Halmos for \mathbb{Z}.
HAP and density of mixing representations

Theorem (DFSW)
A second countable locally compact quantum group G has HAP if and only if the set of mixing representations is dense in $\text{Rep}_G(H)$.

Proof.

\Leftarrow
Approximate the trivial representation with mixing ones and take their direct sum (still mixing!).

\Rightarrow
Use the lemma with \mathcal{R} – mixing representations.

Ideas go back to the work of Halmos for \mathbb{Z}.
HAP and density of mixing representations

Theorem (DFSW)

A second countable locally compact quantum group \mathbb{G} has HAP if and only if the set of mixing representations is dense in $\text{Rep}_\mathbb{G}(H)$.

Proof.

\Leftarrow
Approximate the trivial representation with mixing ones and take their direct sum (still mixing!).

\Rightarrow
Use the lemma with \mathcal{R} – mixing representations.

Ideas go back to the work of Halmos for \mathbb{Z}.
Theorem (Kerr-Pichot, 2012)

Let G – classical locally compact group, second countable. Then G does not have Property (T) if and only if weakly mixing representations are dense in $\text{Rep}_G(H)$.

We want to show the same for (a class of) quantum groups.

Recall: $U \in \text{Rep}_G(H)$ is weakly mixing if $U \overline{\otimes} U^c$ is ergodic.

- when is the class of weakly mixing representations stable under tensoring?
- when not (T) means that there is a weakly mixing representation with almost invariant vectors?
Theorem (Kerr-Pichot, 2012)

Let G – classical locally compact group, second countable. Then G does not have Property (T) if and only if weakly mixing representations are dense in $\text{Rep}_G(\mathcal{H})$.

We want to show the same for (a class of) quantum groups. Recall: $U \in \text{Rep}_G(\mathcal{H})$ is weakly mixing if $U \tilde{\otimes} U^c$ is ergodic.

- when is the class of weakly mixing representations stable under tensoring?
- when not (T) means that there is a weakly mixing representation with almost invariant vectors?
(T) via ‘typical’ representations

Theorem (Kerr-Pichot, 2012)

Let G – classical locally compact group, second countable. Then G does not have Property (T) if and only if weakly mixing representations are dense in $\text{Rep}_G(H)$.

We want to show the same for (a class of) quantum groups.
Recall: $U \in \text{Rep}_G(H)$ is weakly mixing if $U^\dagger U^c$ is ergodic.

- when is the class of weakly mixing representations stable under tensoring?
- when not (T) means that there is a weakly mixing representation with almost invariant vectors?
Weak mixing representations revisited

Classically: U is not weakly mixing if and only if $U \uplus U^c$ contains an invariant vector if and only if U contains a finite dimensional subrepresentation. More generally: $U \uplus V^c$ contains a fixed vector if and only if U and V contain the same finite dimensional subrepresentation.

Lemma (Chen+Ng 2015, see also Kyed+Soltan, Viselter)

If G is of Kac type, then a representation of G is weakly mixing if and only if it does not contain a finite dimensional subrepresentation; hence then the class of weakly mixing representations is stable under tensoring.
Weak mixing representations with almost invariant vectors

Let us contradict the statement: there is a representation of \mathbb{G} which is weakly mixing and has almost invariant vectors.

Definition

\mathbb{G} has Property (T)1,1 (of Bekka and Valette) if for every representation U of \mathbb{G} with almost invariant vectors $U \Upsilon U^c$ has a fixed vector.

Obviously $(T) \implies (T)^{1,1}$.

Theorem (Bekka and Valette)

For classical groups $(T) \iff (T)^{1,1}$.

This gives the result of Kerr and Pichot.
Weak mixing representations with almost invariant vectors

Let us contradict the statement: there is a representation of \mathbb{G} which is weakly mixing and has almost invariant vectors.

Definition

\mathbb{G} has Property $(T)^{1,1}$ (of Bekka and Valette) if for every representation U of \mathbb{G} with almost invariant vectors $U \circledast U^c$ has a fixed vector.

Obviously $(T) \implies (T)^{1,1}$.

Theorem (Bekka and Valette)

For classical groups $(T) \iff (T)^{1,1}$.

This gives the result of Kerr and Pichot.
Discrete quantum groups with low duals

Γ – discrete quantum group. Then

\[c_0(\Gamma) = \bigoplus_{i \in I} M_{n_i} \]

Definition

Γ as above has a low dual if \(\sup_{i \in I} n_i < \infty \).

In other words, we have a uniform bound on the size of irreducible representations of the compact quantum group dual to Γ.
Main theorem

Theorem (DSV, 2016)
Let Γ – discrete unimodular second countable quantum group with a low dual. Then Γ has Property (T) if and only if it has Property (T)1,1

Corollary (DSV, 2016)
Let Γ – discrete unimodular second countable quantum group with a low dual. Then Γ does not have (T) if and only if weakly mixing representations form a dense G_δ-set in $\text{Rep}_\Gamma(H)$.
Main theorem – ingredients of the proof

Problem: assume \(\Gamma \) does not have \((T)\). Construct a representation \(U \) of \(\Gamma \) with almost invariant vectors such that \(U \dagger U^c \) contains no invariant vector.

Idea (Jolissaint): use non \((T)\) of \(\Gamma \) to construct a semigroup of states on the algebra \(C(\hat{\Gamma}) \) with particular properties.
Main theorem – ingredients of the proof

Problem: assume Γ does not have (T). Construct a representation U of Γ with almost invariant vectors such that $U \oplus U^c$ contains no invariant vector.

Idea (Jolissaint): use non (T) of Γ to construct a semigroup of states on the algebra $C(\hat{\Gamma})$ with particular properties.
Main theorem – ingredients of the proof

Actual ingredients:

- development of the notion of Kazhdan pairs for quantum groups with Property (T);
- application of this to showing that if a locally compact \mathbb{G} is of Kac type and does not have (T) then one can find a net of positive-definite normalised positive elements in $C_b(\mathbb{G})$ which converge to 1 strictly, but not in norm;
- use of Yukio Arano’s work on central Property (T) to show that for discrete unimodular case one can choose the elements above in the centre;
- construction of a strongly unbounded symmetric generating functional L on $\hat{\Gamma}$;
- using L to generate a convolution semigroup of states μ_t on $C^u(\hat{\Gamma})$;
- building out of μ_t ‘symmetric’ GNS representations of $C^u(\hat{\Gamma})$ (thus self-contragredient representations U_t of Γ);
- showing that the representations $U_t \oplus U_t$ cannot contain invariant vectors (and only here the low dual assumption comes in), and concluding by another Kazhdan pair argument.
Main theorem – ingredients of the proof

Actual ingredients:

- development of the notion of Kazhdan pairs for quantum groups with Property (T);
- application of this to showing that if a locally compact \mathbb{G} is of Kac type and does not have (T) then one can find a net of positive-definite normalised positive elements in $C_b(\mathbb{G})$ which converge to 1 strictly, but not in norm;
- use of Yukio Arano’s work on central Property (T) to show that for discrete unimodular case one can choose the elements above in the centre;
- construction of a strongly unbounded symmetric generating functional L on $\hat{\Gamma}$;
- using L to generate a convolution semigroup of states μ_t on $C^u(\hat{\Gamma})$;
- building out of μ_t ‘symmetric’ GNS representations of $C^u(\hat{\Gamma})$ (thus self-contragredient representations U_t of Γ);
- showing that the representations $U_t \oplus U_t$ cannot contain invariant vectors (and only here the low dual assumption comes in), and concluding by another Kazhdan pair argument.
Main theorem – ingredients of the proof

Actual ingredients:

- development of the notion of Kazhdan pairs for quantum groups with Property (T);
- application of this to showing that if a locally compact G is of Kac type and does not have (T) then one can find a net of positive-definite normalised positive elements in $C_b(G)$ which converge to 1 strictly, but not in norm;
- use of Yukio Arano’s work on central Property (T) to show that for discrete unimodular case one can choose the elements above in the centre;
- construction of a strongly unbounded symmetric generating functional L on $\hat{\Gamma}$;
- using L to generate a convolution semigroup of states μ_t on $C^u(\hat{\Gamma})$;
- building out of μ_t ‘symmetric’ GNS representations of $C^u(\hat{\Gamma})$ (thus self-contragredient representations U_t of $\hat{\Gamma}$);
- showing that the representations $U_t \oplus U_t$ cannot contain invariant vectors (and only here the low dual assumption comes in), and concluding by another Kazhdan pair argument.
Main theorem – ingredients of the proof

Actual ingredients:

- development of the notion of Kazhdan pairs for quantum groups with Property (T);
- application of this to showing that if a locally compact G is of Kac type and does not have (T) then one can find a net of positive-definite normalised positive elements in $C_b(G)$ which converge to 1 strictly, but not in norm;
- use of Yukio Arano’s work on central Property (T) to show that for discrete unimodular case one can choose the elements above in the centre;
- construction of a strongly unbounded symmetric generating functional L on $\hat{\Gamma}$;
- using L to generate a convolution semigroup of states μ_t on $C^u(\hat{\Gamma})$;
- building out of μ_t ‘symmetric’ GNS representations of $C^u(\hat{\Gamma})$ (thus self-contragredient representations U_t of Γ);
- showing that the representations $U_t \otimes U_t$ cannot contain invariant vectors (and only here the low dual assumption comes in), and concluding by another Kazhdan pair argument.
Main theorem – ingredients of the proof

Actual ingredients:

- development of the notion of Kazhdan pairs for quantum groups with Property (T);
- application of this to showing that if a locally compact G is of Kac type and does not have (T) then one can find a net of positive-definite normalised positive elements in $C_b(G)$ which converge to 1 strictly, but not in norm;
- use of Yukio Arano’s work on central Property (T) to show that for discrete unimodular case one can choose the elements above in the centre;
- construction of a strongly unbounded symmetric generating functional L on $\hat{\Gamma}$;
- using L to generate a convolution semigroup of states μ_t on $C^u(\hat{\Gamma})$;
- building out of μ_t ‘symmetric’ GNS representations of $C^u(\hat{\Gamma})$ (thus self-contragredient representations U_t of $\hat{\Gamma}$);
- showing that the representations $U_t \mathbin{\hat{\circ}} U_t$ cannot contain invariant vectors (and only here the low dual assumption comes in), and concluding by another Kazhdan pair argument.
Main theorem – ingredients of the proof

Actual ingredients:

- development of the notion of Kazhdan pairs for quantum groups with Property (T);
- application of this to showing that if a locally compact \mathbb{G} is of Kac type and does not have (T) then one can find a net of positive-definite normalised positive elements in $C_b(\mathbb{G})$ which converge to 1 strictly, but not in norm;
- use of Yukio Arano’s work on central Property (T) to show that for discrete unimodular case one can choose the elements above in the centre;
- construction of a strongly unbounded symmetric generating functional L on $\hat{\Gamma}$;
- using L to generate a convolution semigroup of states μ_t on $C^u(\hat{\Gamma})$;
- building out of μ_t ‘symmetric’ GNS representations of $C^u(\hat{\Gamma})$ (thus self-contragredient representations U_t of $\hat{\Gamma}$);
- showing that the representations $U_t \oplus U_t$ cannot contain invariant vectors (and only here the low dual assumption comes in), and concluding by another Kazhdan pair argument.
Main theorem – ingredients of the proof

Actual ingredients:

- development of the notion of Kazhdan pairs for quantum groups with Property (T);
- application of this to showing that if a locally compact G is of Kac type and does not have (T) then one can find a net of positive-definite normalised positive elements in $C_b(G)$ which converge to 1 strictly, but not in norm;
- use of Yukio Arano’s work on central Property (T) to show that for discrete unimodular case one can choose the elements above in the centre;
- construction of a strongly unbounded symmetric generating functional L on $\hat{\Gamma}$;
- using L to generate a convolution semigroup of states μ_t on $C^u(\hat{\Gamma})$;
- building out of μ_t ‘symmetric’ GNS representations of $C^u(\hat{\Gamma})$ (thus self-contragredient representations U_t of Γ);
- showing that the representations $U_t \bigoplus U_t$ cannot contain invariant vectors (and only here the low dual assumption comes in), and concluding by another Kazhdan pair argument.
Other consequences of \((T) \iff (T)^{1,1}\)

Theorem (DSV, 2016)

Let \(\Gamma\) – discrete unimodular second countable quantum group with a low dual. Then the following are equivalent:

1. \(\Gamma\) has Property (T);
2. for every action of \(\Gamma\) on a von Neumann algebra invariant states are limits of normal invariant states;
3. every ergodic action of \(\Gamma\) on a von Neumann algebra preserving a faithful normal state is strongly operator ergodic (i.e. asymptotically invariant nets of elements in the von Neumann algebra are trivial).

These generalize classical results of Li, Ng, Connes and Weiss.
Other consequences of $(T) \iff (T)^{1,1}$

Theorem (DSV, 2016)

Let Γ – discrete unimodular second countable quantum group with a low dual. Then the following are equivalent:

1. Γ has Property (T);
2. for every action of Γ on a von Neumann algebra invariant states are limits of normal invariant states;
3. every ergodic action of Γ on a von Neumann algebra preserving a faithful normal state is strongly operator ergodic (i.e. asymptotically invariant nets of elements in the von Neumann algebra are trivial).

These generalize classical results of Li, Ng, Connes and Weiss.
Other consequences of \((T) \iff (T)^{1,1}\)

Theorem (DSV, 2016)

Let \(\Gamma\) – discrete unimodular second countable quantum group with a low dual. Then the following are equivalent:

1. \(\Gamma\) has Property \((T)\);
2. for every action of \(\Gamma\) on a von Neumann algebra invariant states are limits of normal invariant states;
3. every ergodic action of \(\Gamma\) on a von Neumann algebra preserving a faithful normal state is strongly operator ergodic (i.e. asymptotically invariant nets of elements in the von Neumann algebra are trivial).

These generalize classical results of Li, Ng, Connes and Weiss.