MATEMATIK

Göteborgs universitet
Tentamen
2016-06-09, 08:30-12:30

MMGF30, Transformteori och analytiska funktioner

- Examiner: Mahmood Alaghmandan
- Telefonvakt: Olof Giselsson 5325
- Materials allowed: Nothing. Only a language dictionary is allowed.
- Evaluation criteria: The exam has 7 questions with 100 points. You need at least 50 points for pass (G), and at least 80 points for distinguished pass (VG).
- Solution: The solution to the exam will appear on the homepage of the course shortly after the exam.

Note: You must justify all of your answers unless otherwise is instructed!!! Unjustified answers will receive little or no marks. The hints are just hints. You are free to choose any correct approach to answer questions, unless the question specifically asks you to use one. There are 9 questions in this exam. Points of each question is indicated at the end. Many of the questions in the exam have more than one part. Be careful that you answer every part.

Questions

Question 1 (a) Let $z=2+i$ and $z / w=3-2 i$. find w in the Cartesian form $a+i b$. (5 points)
(b) Let $p(z)=c_{2} z^{2}+c_{1} z+c_{0}$ for real numbers c_{2}, c_{1}, c_{0}. Prove that if a complex number z_{0} is a root of $p(z)$, then z_{0}^{*} is also a root of $p(z)$. (10 points)

Question 2 Let $f(x+i y)=u(x, y)+i v(x, y)$ for $u(x, y)=x^{2}-y^{2}$.
(a) Find $v(x, y)$ such that f is analytic. (10 points)
(b) Find the derivative of f. (5 points)

Question 3 Integrate each of the following functions over the circle $|z|=2$, oriented counterclockwise. (5 point each)
(a) $f(z)=z^{*}$.
(b) $f(z)=\frac{\cos (z)}{z-1}$.
(c) $f(z)=z^{3} \cos \left(\frac{3}{z}\right)$.

$$
\text { (Note: The Taylor series of } \left.\cos (z) \text { is } \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!} .\right)
$$

Question 4 Find the value of the integral $\int_{0}^{\infty} \frac{1}{x^{2}+3} d x$. (15 points)

Question 5 For $f(z)=\frac{1+e^{z}}{(z-1)^{4}}$ decide what kind of singularity it has at $z=1$. (Justify your answer using Laurent coefficients of $f(z)$) (15 points)

Question 6 Prove that $\mathcal{F}(f * g)(\omega)=\mathcal{F}(f)(\omega) \mathcal{F}(g)(\omega)$ for two integrable functions f, g. (10 points)

Question 7 Solve the following initial value problem using the Laplace transform. (15 points)

- $y^{\prime}-6 y=2 \sin (3 t)$ where $y(0)=2$.

Good Luck in this and your other exams!
Bests, Mahmood

Formula Sheet

Some trigonometric identities

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B), \\
& \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B), \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) \\
& \sin (2 A)=2 \sin (A) \cos (A), \\
& \cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A)=2 \cos ^{2}(A)-1=1-2 \sin ^{2}(A) . \\
& \cos (A) \cos (B)=\frac{1}{2}(\cos (A+B)+\cos (A-B)), \\
& \sin (A) \sin (B)=\frac{1}{2}(\cos (A-B)-\cos (A+B)), \\
& \sin (A) \cos (B)=\frac{1}{2}(\sin (A+B)+\sin (A-B)) . \\
& \cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i} .
\end{aligned}
$$

Cauchy-Riemann conditions

For a complex function $f(x+i y)=u(x, y)+i v(x, y)$, the Cauchy-Riemann conditions are

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Laurent series

If $f(z)$ is analytic throughout an annulus D encircling z_{0} and C is any closed counterclockwise circle centred at z_{0} and lied completely inside D. Then the Laurent series of f around z_{0} is defined as follows

$$
\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
$$

Fourier series

Suppose $f(x)$ is a $2 L$-periodic piecewise smooth function, then Fourier series of f is given by

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \omega x)+b_{n} \sin (n \omega x)\right.
$$

where

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos (n \omega x) d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin (n \omega x) d x
$$

for $\omega=\frac{2 \pi}{2 L}$ and $n \in \mathbb{N}$.

Complex Fourier series

Let $f(x)$ be a $2 L$-periodic piecewise smooth function. The complex form of the Fourier series of f is

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n \omega x}
$$

where $\omega=2 \pi /(2 L)$ and $c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i n \omega x} d x$.

Fourier transform

Let $f(t)$ and $F(\omega)$ be integrable functions then the Fourier transform of f is

$$
\mathcal{F}(f)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

and its inverse Fourier transform of F is

$$
\mathcal{F}^{-1}(F)(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} d \omega
$$

Laplace transform

Suppose that $f(t)$ is a function define on $[0, \infty)$, the Laplace transform of f if it exists is defined by

$$
\mathcal{L}(f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Laplace transform table

The following table has the Laplace transform of the required functions.

$f(t)$	$\mathcal{L}(f(t))(s)$	Limitations	Argument
1	$\frac{1}{s}$	$s>0$	Example J2
$e^{a t}$	$\frac{1}{s-a}$	$s>a$	Proposition J4
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$	$s>a$	Example J7 (4)
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$	$s>a$	Proposition J8 (1)
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$	$s>a$	Proposition J8 (2)
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$	$s>0$	Proposition J8 (3)
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$	$s>0$	Proposition J8 (4)
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$s>a$	Assignment 6 Question 1
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>a$	Assignment 6 Question 1
$t \cos (a t)$	$\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$	$s>0$	Assignment 6 Question 2
$t \sin (a t)$	$\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$	$s>0$	Assignment 6 Question 2

