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The basic idea of analytic geometry is to represent the plane (or
3-dimensional space) by coordinates.

If we denote by

Rn = {x = (x1, ...xn); xj ∈ R},

this means that we think of the space of geometry as R2 or R3. Notice
that the idea that a line is represented by R is actually the main
motivation or inspiration for the introduction of the real numbers. The
idea to represent higher dimensional spaces by coordinates is usually
attributed to Descartes and Fermat (both lived in the first half of the
seventeenth century), although similar ideas can be traced back to
antiquity.

Now the basic objects of geometry can be described in terms of
coordinates.
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1. A point is an element of Rn.

2. A line through the point a ∈ Rn with direction v ∈ Rn is a set
La,v := {a + tv ; t ∈ R}.

3. The distance between two points x and y is
|x − y | =

√
(x1 − y1)2 + ....(xn − yn)2

4. A circle or sphere is the set of points that satisfy |x − c| = R for a
fixed center c and radius R.

5. The angle between two directions v and w is given by

arccos(
v · w
|v ||w |

),

where v · w =
∑

vjwj .
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This way every statement in classical geometry corresponds to a
statement about real numbers, and geometry becomes a part of the
theory of real numbers.

It is actually a rather small part: Geometry is decidable in the sense
that for any statement it can be checked automatically if it holds or not
(Tarski ), whereas the theory of the real numbers is not (Godel). This
does not mean that it is easy to check – the game of Chess is also
decidable (whatever that means).
There is an extra (unexpected ?) bonus with the translation to
coordinates: We can do geometry in any dimension, and it is in
principle as easy as in two dimensions. Here is an example of this:
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The method of least squares
Let (x1, y1), ...(xn, yn) be a number of points in the plane. If n > 2 we
cannot draw a line through all of the points in general.

But, we can try
to find a line that ‘comes as close as possible’ to doing that.

Two numbers, a and b determine the line y = ax + b. Instead of trying
to solve the overdetermined system of equations

yj = axj + b

we try to minimize the error

ε2 =
∑

j

(yj − (axj + b))2

over all choices of a and b.
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Let x = (x1, ...xn), 1 = (1,1...1) (two points in Rn!!) and let P be the
twodimensional plane

P = {ax + b1; a,b ∈ R}.

Any line in R2 corresponds to a choice of a,b and therefore to a point
in P. The minimal error ε that we want to find is the distance from the
point y in Rn to the plane P. Why?

The distance from y to the plane is

d = min |y− z|,

where z ranges over all points in the plane P. But, any point z in the
plane is of the form z = ax + b1, so d = ε.

How do we find it?
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It is clear from a figure that the minimum will occur in a point (a0,b0)
such that y− (a0x + b01) is perpendicular to any vector in the plane.
(Excercise: prove this!).

Since the plane is spanned by the vectors x
and 1, his means that

[y− (a0x+b01] · x = 0, [y− (a0x + b01) · 1] = 0.

This is a homogenous system of two equations and two unknowns
which always has a solution. Observe that a0 and b0 are the
unknowns, and x, y are given!
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In the same way we can find the best polynomial of degree two
ax2 + bx + c (we now get three equations with three unknowns
instead), or any other type of functions involving exponentials,
trigonometric functions or ....

If we choose polynomials of degree n − 1,
P will in general have dimension n, and d = ε = 0, so we can find a
polynomial that takes the values yi at the points xi . Unless ...?

Notice that it solves a problem in the plane by using geometry in n
dimensions, where n is the number of points and can be arbitrary big.
The method of least squares was probably first used by Gauss, who
applied it to find a ‘lost planet’.
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The astronomers had found a dwarf planet Ceres and recorded its
positions for some time, but suddenly they could not see it anymore,
because it was close to aligned with the sun. Gauss extrapolated the
position from the known trajectory and could tell the astronomers
where to look.

The method of least squares is now indispensable in statistics, and is a
good illustration of the use of abstractions.

Like Gauss, we can try to use it to predict many other things from
known observations, like stockmarkets.
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Why least squares? Why not ‘least sums’∑
|yi − (axi + b)|?

Least squares fit better with Euclidean geometry. But, recent research
in compressed sensing has indicated that least sums might be better
in some cases!

The basic problem that the least squares method addresses is to
describe data with many degrees of freedom ( the points (xi , yi)
approximately with few parameters (a and b).

A similar problem arises when we try to compress a picture with many
pixels to few kilobytes. This is where ‘least sums’ have proved to be
surprisingly useful.
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One central topic in linear algebra is the solution of linear systems of
equations

a11x1 + ....a1nxn = y1
a21x1 + ...a2nxn = y2...
am1x1 + ...amnxn = ym

,

or
Ax = y ,

where A is the coefficient matrix of the system.

Here is the most important theorem in that context. We think of A as a
linear map x → Ax from Rn to Rm. Recall that Ker(A) = {x ; Ax = 0}
and Im(A) = {Ax ; x ∈ Rn}; they are both linear subspaces of Rn and
Rm respectively.
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Theorem
Let A be a linear map from Rn to Rm. Then

dim(Ker(A)) + dim(Im(A)) = n.

The statement and the proof hinges on the notion of dimension. A
linear space, like Rn has many different bases, but they have all the
same number of elements. (Exercise: Prove this!) This is the
dimension of the space. Say the dimension of Ker(A) is k , and let
e1, ...ek be a basis. We can find vectors in Rn, f1, ...fn−k that complete
e1, ...ek to a basis of Rn. Let F be the linear span of f1, ...fn−k . Then the
restriction of A to F is injective (why?). Hence, Af1, ...Afn−k is a basis
for Im(A). Thus the dimension of Im(A) is n− k which is the statement.

11 oktober 2017 12 / 29



Theorem
Let A be a linear map from Rn to Rm. Then

dim(Ker(A)) + dim(Im(A)) = n.

The statement and the proof hinges on the notion of dimension. A
linear space, like Rn has many different bases, but they have all the
same number of elements. (Exercise: Prove this!) This is the
dimension of the space. Say the dimension of Ker(A) is k , and let
e1, ...ek be a basis. We can find vectors in Rn, f1, ...fn−k that complete
e1, ...ek to a basis of Rn. Let F be the linear span of f1, ...fn−k . Then the
restriction of A to F is injective (why?).

Hence, Af1, ...Afn−k is a basis
for Im(A). Thus the dimension of Im(A) is n− k which is the statement.

11 oktober 2017 12 / 29



Theorem
Let A be a linear map from Rn to Rm. Then

dim(Ker(A)) + dim(Im(A)) = n.

The statement and the proof hinges on the notion of dimension. A
linear space, like Rn has many different bases, but they have all the
same number of elements. (Exercise: Prove this!) This is the
dimension of the space. Say the dimension of Ker(A) is k , and let
e1, ...ek be a basis. We can find vectors in Rn, f1, ...fn−k that complete
e1, ...ek to a basis of Rn. Let F be the linear span of f1, ...fn−k . Then the
restriction of A to F is injective (why?). Hence, Af1, ...Afn−k is a basis
for Im(A). Thus the dimension of Im(A) is n− k which is the statement.

11 oktober 2017 12 / 29



The theorem can be reformulated in the following way. Let
G = Rm/Im(A) := coker(A). Then

Theorem

ind(A) := dim(Ker(A))− dim(cokernel(A)) = n −m.

The advantage with this formulation is that the kernel and the cokernel
may have finite dimensions even if A acts on an infinite dimensional
space. If A : V → V where V is a vector space of finite dimension, then
the index is always zero. This is not always the case in infinite
dimensions as we shall see later. The index is an important object to
study in the theory of partial differential equations, when A is a
differential operator.
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Matrices as we have seen arise in the study of linear maps between
finite dimensional vector spaces, but they also appear in a somewhat
different context.

Let
Q(x) =

∑
aijxixj

be a quadratic form. If A = (aij) we may write

Q(x) = x tAx ,

and we may assume that A is symmetric. If we change basis in Rn,
x = My , where M is an invertible matrix, we have

Q(x) = y tM tAMy = Q′(y).

We now have the second important theorem of linear algebra:

Theorem
We may find an (orthonormal) M such that

Q′(y) =
∑

λjy2
j .
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This is the Spectral Theorem. If we interpret A as a linear operator,
A′ = M−1AM is the matrix for the same operator in the new basis,
where y are coordinates. But, since M is orthonormal, M t = M−1.
hence the theorem says that we change coordinates so that A′ is the
diagonal with eigenvalues λj .

We are now ready to discuss the corresponding facts in infinite
dimension.
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Infinite dimension and Hilbert space.
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The study of R2 and Rn from a geometric viewpoint, led to the notion of
an abstract linear space.

Its elements can be added and multiplied by
scalars according to certain rules. Nothing in this general picture
presupposes that the space is finite dimensional, i e has a finite basis.

However, just being a linear space is not enough structure to give
interesting or useful mathematics. The interest starts when we
introduce geometry, i e have a way to measure distances.

In the case of Hilbert spaces, this way of measuring distances comes
from a scalar product:

(u, v).

The length, or norm, of a vector is then given by

‖u‖2 = (u,u).
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In the infinite dimensional case one needs an extra assumption (that is
automatic in finite dimensions): The norm is complete.

This means that Cauchy sequences are convergent, or equivalently
that if ∑

‖uj‖ <∞,

then

lim
n∑

uj

exists.
In other words, there is an element u in the space such that

‖u −
n∑

uj‖ → 0.
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Example 1: Let
V = {u = (u0, ...un, ...),uk = 0 for k sufficiently large}, with norm

‖u‖2 =
∑
|uj |2.

Example 2: Let V = {u = (u0, ...un, ...),
∑
|uk |2 <∞}, with norm

‖u‖2 =
∑
|uj |2.

Example 2 is complete, Example 1 is not.
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Theorem
Every Hilbert space V has an orthonormal basis, i e there is an
orthonormal set of vectors {eα}α∈A such that any vector in V can be
written

x =
∑

A

cαeα,

and
‖x‖2 =

∑
A

|cα|2.

In practice, the most interesting case is when A is countable. The
Hilbert space is then said to be separable.

The theorem says that any separable ( i e interesting) Hilbert space is
isomorphic to

l2 = {(cn)n∈N ;
∑
|cn|2 <∞}.

Briefly, there is only one Hilbert space.
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Corresponding to matrices we now have linear maps, or operators,
A : V → V . Let B = {x ; ‖x‖ ≤ 1} be the unit ball in V .

1. We say that A is bounded if A(B) is bounded.

2. We say that A is compact if A(B) is compact.

3. There is also a weaker notion of closed linear map that I will not give.
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Theorem
Let A be a compact operator on a Hilbert space H. Assume A is
selfadjoint, i e

(Ax , y) = (x ,Ay).

Then the quadratic form (Ax , x) can be diagonalized. This means that
there is an orthonormal basis (ej) of eigenvectors of A.

Moreover, the
eigenvalues λj tend to 0.
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As our first example of a Hilbert space we take L2(T ), the space of
square integrable functions on the circle, with norm given by∫

T
|f |2dθ = ‖f‖2.

Let
Q(f ) =

∫
|f ′|2dθ = −

∫
f ′′ f̄ dθ = 〈−f ′′, f 〉.

This corresponds to the linear map Af = −f ′′, which is not bounded
and certainly not compact. Nevertheless the theorem applies,
essentially because the inverse of A is compact. Hence there is a
basis of eigenvectors, namely ej(θ) = eijθ.
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The eigenvalues of A are λj = j2 and any function can be written

f =
∑

j

cjeijθ.

This ‘explains’ Fourier analysis but has much wider scope. E g we can
consider instead a domain D in the plane and the Hilbert space of
functions that are square integrable on D, with the quadratic form∫

D
|∇f |2.
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Let us continue with the last example and consider the plane in our
Hilbert space

P := {f ; f = g on ∂D},

where g is given.

Let f0 be an element in P that minimises Q(f ). Think
of it as the element in P of smallest ’norm’, where ’norm’ squared is
Q(f ).

Then f0 must be ‘orthogonal’ with respect to Q to any vector u in the
plane P − f0. Such functions u are of the form u = f − f0, where both f
and f0 equal g on the boundary of D, i e they are just functions that
vanish on the boundary of D.

Hence
0 = Q(f0,u) = 〈(−∆f0),u〉,

where ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator.

If this holds for all u that vanish on the boundary, ∆f0 = 0 ( and f = g
on the boundary). So, we have solved Dirichlet’s problem.
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Notice how similar this is to the method of least squares.

One can also
use similar ideas to solve partial differential equations (like ∆f = 0)
numerically, by looking at finite dimensional subspaces of the space of
‘all’ functions. This leads to the finite element method.

Building on work of Ivar Fredholm Hilbert also considered equations of
the form

(λI − T )f = g,

where λ is a number and T is a compact operator. A typical compact
operator is

Tf (x) =

∫
K (x , y)f (y)dy ,

where K is continuous. This is the integral version of an operator given
by matrix multiplication.
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Theorem
(The Fredholm alternative) Let

Tf (x) =

∫
K (x , y)f (y)dy ,

where K is continuous. Then, for any complex number λ, either the
equation

(λI − T )f = g

has a solution f for any choice of g, or the equation

(λI − T )f = 0

has a non trivial solution.
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The second alternative means that λ is an eigenvalue of T .

The full
story is that the index of an operator I − T , where T is compact is
always zero. Many differential equations can be rewritten in this form
and the Fredholm-Hilbert theory is extremely important and useful in
mathematics and applications.

Fredholms article was published in 1903 and inspired Hilbert’s general
theory on integral equations and the solvability of ‘equations in
infinitely many variables’. (1912).

The next big step was John von Neumann’s general theory of Hilbert
spaces (he introduced that name) as a foundation of quantum
mechanics in 1932 (when von Neumann was 29 years old).
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In this theory the state of a quantum mechanical system is a vector in
a Hilbert space.

In classical mechanics a state is given by the position
and momentum of all particles in the system at a given time, i e a
vector in R2n. An observable quantity in quantum theory is given by an
(self adjoint) operator, and the eigenvalues of that operator correspond
to the numbers that we can get when measuring the quantity.

The quantum mechanical system can be an isolated system like one
hydrogen atom, or the entire world. In both cases, a state is a vector in
Hilbert space, or a ‘wave function’. There is room for everybody and
anything in Hilbert space!

In this way we can see Hilbert space as the mathematical theory of
quantum mechanics, similarily to how Riemannian geometry is the
mathematics of the theory general relativity. We shall next turn to the
mathematics of classical mechanics, i e calculus.
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