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Complex analysis.
Complex numbers appear already in Cardano’s formula for the solution
of third degree equations, where combinations of complex numbers
could be used to get real solutions of an equation. They were also
used in the middle 18:th century by de Moivre and Euler in their
famous formulas

(cos θ + i sin θ)n = cos nθ + i sin nθ,

and
eiθ = cos θ + i sin θ.

It is unclear (to me) when complex numbers began to be considered
as a well defined mathematical structure. Perhaps this did not happen
until Gauss, who however had been reluctant to compute openly with
complex numbers in his early work. Complex analysis, involving e g
the Cauchy-Riemann equations goes back at least to d’Alembert,
Euler and Riemann in the 18:th century, and became a fully developed
theory with Cauchy’s work.
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The representation of complex numbers as points in R2 is usually
ascribed to the Norwegian cartographer C Wessel who published his
findings in 1797. His work went unnoticed for many years, but the idea
was rediscovered by Argand in 1806 and later Gauss. Argand had a
bookstore in Paris and was an amateur mathematician. Today he is
also given credit for the first correct proof of the fundamental theorem
of algebra in (1814). Previous proofs had been given by Euler,
d’Alembert and Gauss, but none of them is considered complete.

Gauss gave four different proofs of the theorem – probably a reflection
of the fact that he was not content with his first attempts. Today it is
easy to see where the obstacle lay: The crucial point which makes the
theorem hold is a property of the real number system, not the complex
numbers. This property is the completeness, or in other words the
supremum axiom, and these matters were not clarified until later.
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Let us start by giving an idea of Gauss’ first proof. In modern language
he considered an algebraic equation

p(z) = zn + a1zn−1 + ...an = 0,

where aj are real, and wanted to show that it has a complex solution.

Taking real and imaginary parts, and writing z = r(cos θ + i sin θ) we
get two equations

u(z) = rn cos nθ + a1rn−1 cos nθ + ... = 0

and
v(z) = rn sin nθ + rn−1 sin(n − 1)θ + ... = 0.

He then argued that the solution set of the first equation is an algebraic
curve C1, the solution set of the second equation is also an algebraic
curve, C2, and we want to prove that these two curves intersect.
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For this he took a large disk, {|z| < R, and considered the intersection
of the curves with the boundary of the disk.

He argued (correctly) that
the first curve intersects the circle in 2n points, as does the second
curve, and these intersection points are intertwined: First a C1-point,
then a C2-point, then a C1-point etc. (This was based on comparison
with the case p(z) = zn which approximates our p well when R is
large. ) He then claimed:

“It seems to be well demonstrated that an algebraic curve neither ends
abruptly (as it happens in the transcendental curve y = 1/ log x), nor
loses itself after an infinite number of windings in a point (like a
logarithmic spiral). As far as I know nobody has ever doubted this, but
if anybody requires it, I take it on me to present, on another occasion,
an indubitable proof.”
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Accepting this, the argument is concluded by a combinatorical
argument. The argument is clearly not complete by modern standards.

Let us now see a modern proof of the theorem, which seems to be
essentially what d’Alembert proposed:

1. The function |p(z)| tends to infinity at infinity, so it must have
minimum some place.

2. If the minimum value is zero we are done, so assume it is not equal
to zero.

3. We may assume that the minimum is attained at z = 0 (If the
minimum is attained at a, consider q(z) = p(a + z) which is also a
polynomial. Then |q| has a non zero minimum at z = 0.)

4. Then p(z) = an + zk (b0 + zb1 + ...) . There are (small) values of z
which makes this smaller than |an|.

5. This contradiction proves the theorem.
(d’Alembert also used 4., which is known as d’Alembert’s lemma, but it
seems his argument was shaky. Exercise: Help him!)
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But, the main step forward was with the introduction of the holomorphic
functions. The usual text book definition is :

A function f : C→ C is
holomorphic if the complex derivative of f ,

f ′(z) = lim
w→z

f (w)− f (z)
w − z

exists at every point (in its domain of definition).

This seemingly simple definition has many not so simple
consequences:

1. f has a series expansion f (z) = a0 + a1z + a2z2 + .....

2. Any function that is holomorphic in all of C and bounded must be
constant.

3. If two holomorphic functions are equal on R then they are equal
everywhere. Example: ex+y = exey implies eiθ+iφ = eiθeiφ implies

sin(θ + φ) + i cos(θ + φ) = (sin θ + i cos θ)(sinφ+ i cosφ).
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From a more modern view point the definition can be described as
follows. Let f : C→ C be a smooth function. We can view it as a
function from R2 to R2. Then it has a differential at any point z

df |z = fxdx + fydy .

Fixing the point z the differential is a linear map from R2 to R2:

df |z(a + ib) = fxa + fyb.

The function is holomorphic if the differential is linear as a map from
C to C:

df (ib) = idf (b),

which means
fyb = ifxb,

i e
fx + ify = 0.

This is called the Cauchy-Riemann equations and usually written
fz̄ = 0.
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If the Cauchy-Riemann equations hold, then

df |z(a + ib) = fx(a + ib) = A(a + ib), df |z(w) = Aw .

Such linear maps preserve angles between lines. This is because A
can be written A = reiφ, so the map w → Aw is the composition of two
maps; w → rw and w → eiφw . The first map is just a dilation, so it
preserves angles. The second map is a rotation, so it also preserves
angles.

Therefore holomorphic functions preserve angles between curves;
they are conformal. (At least where f ′(z) 6= 0.) This means that they
preserve shapes, and for that reason they are often used when making
maps. All elementary functions are holomorphic, so there are many to
make maps with.

But, how do we map the surface of the earth (a sphere) to the plane?
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This can be ackomplished with the stereographic projection:

Take the earth in form of a globe and put it on table (the complex
plane), with the north pole facing up. For any other point p on the
surface of the earth, draw a line through the north pole and p. That line
(extended) intersects the table (complex plane) in one point, s(p).

The map p → s(p) is the stereographic projection. This map is also
conformal! The ‘Mercator projection’, often used in maps, is log s(p).

Note that the north pole corresponds to infinity! The sphere looked
upon this way, as C together with infinity, is called the Riemann sphere.
We can therefore talk about holomorphic functions on a sphere too.

Any other (orientable) closed surface without boundary (like the
sphere) can also be looked at in a similar way, as a complex manifold.
This leads to the concept of a Riemann surface.
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Many things in real analysis can only be understood from a complex
view point. Here is a very simple example :

Let
g(x) =

1
1 + x2 .

It is perfectly smooth on all of R. Its Taylor expansion is

g(x) =
∞∑
0

(−1)kx2k .

It converges only for |x | < 1. Why?

Because g has a singularity when x = i .
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Fourier Analysis

Fourier Analysis concerns the expression of arbitrary functions as a
superposition – sum or integral – of trigonometric functions, or
equivalently by Euler’s formula of complex exponentials. The creation
of the theory is certainly Fourier’s achievement, even though special
cases had previously been studied by others.
It is also worth to point out that Ptolemaios’ description of the motion of
the planets as a sum of epicycles can be seen as an early version of
the same idea. This viewpoint is far from dead; it plays an important
role in the modern mathematical theory of stability of the solar system.

J-B Fourier was born in 1768. He studied mathematics at a military
academy, run by the Benedictine monks, and planned to become a
monk himself, stopped only by the dissolution of the religuous orders
during the French revolution, two days before he were to make his
oath. He was himself active in the revolution, and narrowly escaped to
be executed during the reign of terror. He became a professor of
mathematics at Ecole Polytechnique in 1797.
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One year later he was sent by Napoleon with the expedition to Egypt,
and became a prominent actor in the scientifique part of the
expedition. His name is therfore also well known in Egyptology, and he
wrote the preface to the treatise ‘Description de l’Egypte’, a general
description of all the historical findings of the french in Egypt (many of
which were exported to Paris).

Coming back to France, Napoleon named him (‘Citizen Fourier’)
‘prefect’ of the department of Isere, in 1802. His election to the French
Academy of Sciences in 1816 was stopped by the king (Louis XVIII) –
Fourier was not a nobleman – but he entered the academy one year
later.

Then, in 1822, he published his ‘Theorie analytique de la chaleur’.
Here he introduced the heat equation and Fourier analysis as a tool to
solve it.
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So, what is Fourier analysis? We look at two cases:

Let f be a function on the interval (−π, π). (If we want to we can extend
it to a periodic function on all of R).

Let

ck (f ) =
1

2π

∫ π

−π
f (t)e−iktdt .

These numbers, for k ∈ Z are called the Fourier coefficients of the
function f . Then Fourier’s main result is that

f =
∞∑
−∞

ck (f )eikt ,

so we can write ‘any’ function as a sum of trigonometric functions.

If we are a bit more precise and assume that f lies in

L2(T ) = {f ;
∫
|f |2dt <∞},

we can give this representation a meaning:
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L2 is a Hilbert space and {ek = eikt}k is a basis for L2.

Moreover, it is
an orthonormal basis

〈ek ,em〉 =
1

2π

∫ π

−π
eikte−imtdt =

1
2π

∫ π

−π
ei(k−m)tdt = δk ,m.

It is a special orthonormal basis. If A is the operator Af = −i(d/dt),
then Aek = kek , so it is an orthonormal basis of eigenvectors of A, with
ek corresponding to eigenvalue k .

Fourier’s theorem then says that there is an orthonormal basis of
eigenvectors for A,. i e that A can be diagonalized.
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The second version of Fourier analysis is for functions defined on R, or
why not Rn. Let

L2(Rn) = {f ;
∫
Rn
|f |2dt} <∞.

Then the Fourier transform of f is

f̂ (x) =
1

2π

∫
Rn

f (t)e−ix ·tdt ,

where x · t =
∑

xj tj . It is a function on Rn. Then

f (t) =
1

2π

∫
Rn

f̂ (x)eix ·tdx .

This is the Fourier inversion formula. It is less easy to interpret in the
Hilbert space sense; we have now a ‘continuous basis’, and one needs
von Neumann’s general operator theory to discuss such matters: The
operator id/dx has continuous spectrum on R, i e a continuous family
of eigenvalues, namely R.
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Fourier introduced his transforms to solve (partial) differential
equations. But, it turned out to have many other magical applications.
Here is one example, the Radon transform:

Say we have a function f in the plane and that for any line l in the plane
we know the integral of f over l . Can we reconstruct f? A special case,
when f is the characteristic function of a set K in the plane: We know
the length of the intersection l ∩ K for any line l . Can we reconstruct
K ? Yes, we can! It is enough to find the Fourier transform

f̂ (x) =
1

2π

∫
R2

f (t)e−ix ·tdt

To illustrate, say x = (x1,0). Then

f̂ (x1,0) =
1

2π

∫ ∞
−∞

e−ix1t1dt1
∫ ∞
−∞

f (t1, t2)dt2.

The integral with respect to t2 is the integral over vertical lines, which
we assume we know. So, we know f̂ , so we know f by Fourier
inversion!
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This method – tomography – is used in medical imaging. The set K is
something inside the body ( a tumor, organ or ...), the length of the
intersection with a line is measured by how much of an X-ray in that
direction is absorbed. It was awarded the Nobel prize in medicine in
1979.

Our next example of applications of Fourier analysis is the Shannon
Sampling Theorem:

Theorem

Let f (t) be a function on R which is such that its Fourier transform f̂ (x)
vanishes outside the interval [−π, π]. Then f is uniquely determined by
its values at the integers, and more precisely

f (t) =
∑

f (n)
sinπ(t − n)
π(t − n)
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We can also rescale the function and get equivalently

Theorem

Let f (t) be a function on R which is such that its Fourier transform f̂ (x)
vanishes outside the interval [−Bπ,Bπ]. Then f is uniquely determined
by its values at the points n/B,

f (t) =
∑

f (n/B)
sinπ(Bt − n)
π(Bt − n)

Think of f (t) as a signal varying with time, like the sound of music. (f (t)
is then the air pressure at a given fixed point at time t .) The theorem
says that if the signal does not ‘contain frequences’ higher than Bπ
then we can, from a sequence of discrete measurements with interval
1/B, reconstruct the signal perfectly. This is what is done in digital
recording of music. It is also (I believe) what lies behind the term
broadband. The broader the frequency band, i e the larger B is, the
denser you need or can choose the points, which means that you can
transmit more information per time unit.
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Let us now sketch the proof of Shannon’s theorem.

By the inversion
formula for the Fourier transform

f (t) = (1/2π)
∫ π

−π
f̂ (x)eixtdx .

Hence
f (n) = (1/2π)

∫ π

−π
f̂ (x)eixndx = c−n(f̂ ),

the Fourier coefficients of f̂ . By the theorem on Fourier series,

f̂ (x) =
∑

c−ne−int ,

so
f (t) = (1/2π)

∑
f (n)

∫ π

−π
ei(x−t),

which is the claim.

And now, we turn to something completely different...
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