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The Elements

The Elements of Euclid (from around 300 BC) were based on a
number of axioms and postulates.

The axioms are considered to be evidently true. Examples are

(1) Things that are equal to the same thing are equal.
or
(2) The whole is greater than the part.
or even the somewhat more obscure
(3) Things which coincide with each other are equal to each other.

We will focus on the postulates which with modern eyes should not be
considered as evident, but rather as assumptions:
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Postulates

(1) We can draw a line segment between any two points.

(2) Any line segment can be extended to a straight line.

(3) Given a point and a line segment, there is a circle with the given
point as center and the line segment as a radius.

(4) All right angles are equal to each other.

(5) Through any point outside a given line there is exactly one line
which does not intersect the given line. (PA)
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Given the axioms and postulates, all the other claims should be
obtained as logical consequences.

It is however dubious if Euclid really
achieved this. Example:

The sum of angles in any triangle is equal to 180◦ = π. We will give
two proofs of this.

Other highlights are Pythagora’s theorem, The inscribed angles
theorem, and various constructions with ruler and compass.
It also also contains theorems on the length of a circle – it is
proportional to the radius – and even the volume of e g cones – they
are proportional to the cube of the lengths.

These theorems use the method of exhaustion by Euxudus (390-327
BC), and are obviously of a different nature than the other. E g , what is
the length of a circle? These results are precursors of calculus.
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Euclid’s Elements also contain results from arithmetics, like the
Euclidean algorithm and the infinitude of the number of primes.

We will
give two proofs of the latter fact:
Assume there are only finitely many primes, say p1,p2, ...pN . Then any
number is divisible by one of these numbers (why?). Let
x = p1p2...pn + 1. Then x is not divisible by any pj . This contradiction
proves the theorem.

The second proof is by Euler, roughly 2000 years later. Consider the
infinite product ∏

p

(1− 1/p)−1.

We have
(1− 1/p)−1 =

∑
j

1/pj .

Hence ∏
p

(1− 1/p)−1 =
∏

p

∑
j

1/pj =
∑
n∈N

1/n =∞.
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The second proof is more powerful.

Euclid’s book was used as a standard textbook until around 1900, for
more than 2000 years. But it was not the end.

Greek geometry developed e g with the work of Archimedes (287-212
BC), who computed the value of π with high accuracy, found the area
of the circular disk and the surface area of the sphere – among many
other things.
Here is how he found the area of a sphere:

Erathostenes (276-195 BC) computed the circumference of the earth.
When Columbus set out to sail to India it had become a matter of
debate whether the earth was round.

15 september 2017 6 / 16



The second proof is more powerful.

Euclid’s book was used as a standard textbook until around 1900, for
more than 2000 years. But it was not the end.

Greek geometry developed e g with the work of Archimedes (287-212
BC), who computed the value of π with high accuracy, found the area
of the circular disk and the surface area of the sphere – among many
other things.
Here is how he found the area of a sphere:

Erathostenes (276-195 BC) computed the circumference of the earth.
When Columbus set out to sail to India it had become a matter of
debate whether the earth was round.

15 september 2017 6 / 16



The second proof is more powerful.

Euclid’s book was used as a standard textbook until around 1900, for
more than 2000 years. But it was not the end.

Greek geometry developed e g with the work of Archimedes (287-212
BC), who computed the value of π with high accuracy, found the area
of the circular disk and the surface area of the sphere – among many
other things.

Here is how he found the area of a sphere:

Erathostenes (276-195 BC) computed the circumference of the earth.
When Columbus set out to sail to India it had become a matter of
debate whether the earth was round.

15 september 2017 6 / 16



The second proof is more powerful.

Euclid’s book was used as a standard textbook until around 1900, for
more than 2000 years. But it was not the end.

Greek geometry developed e g with the work of Archimedes (287-212
BC), who computed the value of π with high accuracy, found the area
of the circular disk and the surface area of the sphere – among many
other things.
Here is how he found the area of a sphere:

Erathostenes (276-195 BC) computed the circumference of the earth.
When Columbus set out to sail to India it had become a matter of
debate whether the earth was round.

15 september 2017 6 / 16



The second proof is more powerful.

Euclid’s book was used as a standard textbook until around 1900, for
more than 2000 years. But it was not the end.

Greek geometry developed e g with the work of Archimedes (287-212
BC), who computed the value of π with high accuracy, found the area
of the circular disk and the surface area of the sphere – among many
other things.
Here is how he found the area of a sphere:

Erathostenes (276-195 BC) computed the circumference of the earth.

When Columbus set out to sail to India it had become a matter of
debate whether the earth was round.

15 september 2017 6 / 16



The second proof is more powerful.

Euclid’s book was used as a standard textbook until around 1900, for
more than 2000 years. But it was not the end.

Greek geometry developed e g with the work of Archimedes (287-212
BC), who computed the value of π with high accuracy, found the area
of the circular disk and the surface area of the sphere – among many
other things.
Here is how he found the area of a sphere:

Erathostenes (276-195 BC) computed the circumference of the earth.
When Columbus set out to sail to India it had become a matter of
debate whether the earth was round.

15 september 2017 6 / 16



The Elements raise a philosophical question: How can we deduce
properties of the outside world by pure thinking?

Answer (?): The axioms are laws of logic. The postulates are
hypotheses that may or may not be true in our world.

Case in point: Does (PA) hold? Does it follow from the other
postulates? This question led to non Euclidean geometry.

Compare to the axioms (Peano’s axioms) for the natural numbers.

Compare also to set theory: Does the axiom of choice hold? Does the
continuum hypothesis hold? Can we prove it? How does one prove
that something can not be proved?

At any rate: The Elements became a model for how a scientific theory
should look: A set of assumptions (preferably small), and deductions
and predictions from them. This is perhaps the most important role of
the Elements.
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Non euclidean geometry was introduced around 1830 by J Bolyai and
N I Lobachevsky (although Gauss apparently already knew about it).

The way to prove that something (the parallell axiom) can not be
proved from the other postulates was to construct a model where the
other postulates hold, but the parallell axiom does not hold.

Let us first consider how we can construct other models, i e other
systems of geometry. Here is a simple (but non historical) way:
Geometry is based on the measurement of distance, which in turn
leads to straigh lines as the shortest curves between two points. So let
us change the notion of distance:

Divide the (x , y)-plane into the upper half plane (y > 0) and the lower
half plane (y < 0). Let us say that the distance between two points in
the upper half plane is the usual distance, whereas the distance
between two points in the lower half plane is twice the usual one. What
is the distance between a point in the upper half plane and a point in
the lower half plane?
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Say that P lies in the upper half plane and Q in the lower half plane. A
curve γ between P and Q has to intersect the x-axis in some point M
(say only one).

If γ minimizes distance the part in the upper plane must
be a straight line, and the part in the lower plane is also a straight line.
So, γ is a broken line. A moments reflection shows that if the segment
in the upper half plane is not perpendicular to the x-axis, then the
direction of the segment in the lower half plane will form a smaller
angle with the normal than the upper segment.

This is of course the standard model for the refraction of light between
a denser and a lighter medium. ( Exercise: Show that sinα/ sinβ = a if
the distances in the lower half plane are a times the distances in the
upper half plane.)
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We can generalize this model. Recall that if γ(t), t ∈ [a,b] is a
(piecewise) smooth curve its length is

L(γ) =

∫ b

a
|γ̇(t)|dt .

Now let ρ(x , y) > 0 be a function in the plane, and let

Lρ(γ) =

∫ b

a
ρ(γ(t))|γ̇(t)|dt .

This is a new way to measure lengths. If ρ = 1 in the upper half plane
and 2 (or a ) in the lower half plane, it is the distance that gives
refraction of light. A curve of shortest length is called a geodesic, and
the geodesics are our new straight lines. Here is an interesting choice:
Poincarè’s model of hyperbolic geometry.
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Instead of looking at the whole (complex) plane, we look at a part of it,
the unit disk (|z| < 1).

There we take

ρ(z) =
1

1− |z|2
.

What are the geodesics? It is fairly easy to see that if −1 < P,Q < 1,
then the shortest curve between P and Q is the line segment beween
them. An important property of our new geometry is that any Möbius
transformation

w = M(z) = eiθ z − α
1− zᾱ

preserves length. This gives (using some basic facts about Möbius
transformations) that the geodesics are the half circles (or line
segments) that intersect |z| = 1 in two right angles:

The line segment [−1,1] is a geodesic. It is a straight line that
intersects the unit circle at right angles. Therefore, by a result from
complex analysis, its image under M is either a line or a circle,
intersecting the image of the unit circle at right angles. But, the image
of the unit circle is the unit circle.
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1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’. Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle. Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π. Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π. So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’.

Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle. Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π. Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π. So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’. Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle. Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π. Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π. So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’. Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle. Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π. Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π. So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’. Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle.

Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π. Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π. So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’. Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle. Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π.

Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π. So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’. Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle. Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π. Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π.

So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



1. In this hyperbolic geometry there are infinitely many geodesics
through a point outside a given geodesic, that do not intersect the
given geodesic. Hence, PA does not hold.

To see this, take a half circle C, not containing the origin, intersecting
the unit circle at right angles. This is our ’straight line’. Now look at the
origin. This is our point outside the ’straight line’. Clearly there are
many diameters of the circle that do not intersect C. Thus, PA does not
hold, but one can check that the other postulates do hold.

2. The sum of angles in a triangle is smaller than π.

To see this, take two half lines through the origin. This gives us two
sides of a triangle. Let the third side be a half circle intersecting the
unit circle at right angles outside the sector formed by the two half
lines. Inspection of the figure shows that the sum of angles is smaller
than π. Note however that if the half circle is close to a diameter, so
that our triangle is very small, then the sum of angles is almost π. So,
on small scales, the new geometry is almost Euclidean.

15 september 2017 13 / 16



More generally still we can define lengths by

Lg(γ) =

∫ b

a

√∑
gij(x(t))ẋi(t)ẋj(t)dt ,

where g(x) = (gij(x) is a matrix valued function that is positive definite
at any point.

A particular case is when we measure lengths of curves on a surface
in R3, using a parametrization with a domain in the plane. Gauss
defined the curvature of the metric g and showed that it is zero if and
only if our ’new’ geometry is equivalent to the Euclidean geometry. In
particular, the curvature of a surface in R3 depends only on the
intrinsic distance, and not on the way the surface lies in three
dimensional space. (Gauss’s Theorema Egregium).
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particular, the curvature of a surface in R3 depends only on the
intrinsic distance, and not on the way the surface lies in three
dimensional space. (Gauss’s Theorema Egregium).
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For instance, if we look at the surface

{(x , y , z) ∈ R3; x2 + y2 = 1},

it has Gauss curvature zero.

But, the sphere

{(x , y , z) ∈ R3; x2 + y2 + z2 = 1}

has Gauss curvature greater than zero.

Riemann generalized Gauss’s theory to ’surfaces’ (manifolds) of
arbitrary dimension. He defined the Riemann curvature tensor,
R = (Rijkl), which vanishes precisely when the geometry is Euclidean.
R is then not just a function, but a tensor with four indices. (Whatever
that means!)
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The Riemann Curvature tensor

If (gij) is the metric, we first define the Christoffel symbols

Γm
ij = 1/2

∑
k

gmk (
∂gki

∂xj
+
∂gkj

∂xi
−
∂gij

∂xk
).

Then we simply have

R l
ijk =

∂Γl
ik

∂xj
−
∂Γl

ij

∂xk
+

∑
s

Γl
jsΓs

ik − Γl
ksΓs

ij .
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