33. Let P be an n-element poset. For $x \in P$, let $I_{x}=\#\{y \in P \mid y \leq x\}$. Let $e(P)$ be the number of linear extensions of P. Show that

$$
e(P) \geq \frac{n!}{\prod_{x \in P} I_{x}}
$$

34. Let P_{n} be the poset with elements $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, defined by $x_{i}<x_{i+1}$ and $x_{i}<y_{i}$ for all i. For example, P_{3} is shown in the margin.
a) Give a simple formula for the rank-generating function $R\left(J\left(P_{n}\right), q\right)$.
$J(P)$ is the lattice of order ideals in P (ordered by inclusion). $R(G, q)$ is the number of elements of rank q in a graded poset G.
b) Let $P=\lim _{n \rightarrow \infty} P_{n}$. Determine $R(J(P), q)$.
c) Give a simple formula for $e\left(P_{n}\right)$, the number of linear extensions of P_{n}.
d) Let $\Omega\left(P_{n}, k\right)$ be the order polynomial for P_{n}. Express $\Omega\left(P_{n}, k\right)$, for $k \in \mathbb{P}$, in terms of the Stirling numbers of the second kind.
e) Express $\Omega\left(P_{n},-k\right)$ in terms of the Stirling numbers of the first kind.
35. How many maximal chains are there in Π_{n}, the lattice of all partitions of $[n]$?
36. Let P be a finite poset and let μ be the Möbius function of $\widehat{P}=P \cup\{\hat{0}, \hat{1}\}$. Suppose P has a fixed- point-free automorphism $\phi: P \rightarrow P$ of prime order p (that is, $\phi(x) \neq x$ and $\phi^{p}(x)=x$ for all $\left.x \in P\right)$. Show that $\mu(\hat{0}, \hat{1}) \equiv-1(\bmod p)$. What is this result called in the case when $P=\Pi_{p}$, the partition lattice?
37. Let E_{n} be the poset (ordered by inclusion) of all subsets of $[n]$ whose elements have even sum.
a) Compute $\# E_{n}$.
b) Compute $\mu(S, T)$ for all S and T in E_{n}. Hint: "Rank-Selection". But think first.
c) (Hopeless?) Do b) for all subsets whose elements have sum divisible by k.
38. Do there exist any infinite antichains in the lattice \mathbb{N}^{2} ordered by

$$
(x, y) \leq(z, w) \Longleftrightarrow x \leq z \text { and } y \leq w ?
$$

39. (a) Let P be a finite poset with a least element. If $f: P \longrightarrow P$ is an order preserving map, show that f has a fixed point.
(b) Define an element $x \in P$ to be central if x is comparable to every element in P. Generalize (a) to show that if P has a central element then every o.p. self-map of P has a fixed point.
linear extension: order preserving map from P to a chain of size $|P|$

10 point

 problem(c) Give an example of a poset P with no central element such that every o.p. self-map of P has a fixed point.
Note: A thereom by Baclawski and Björner (Adv. in Math. 31 (1979)), says that every self-map of P has a fixed point if the order complex of P is acyclic, i.e. if the (reduced) homology groups of the complex are trivial. If P has a central element c then the order complex $\Delta(P)$ of P is a cone complex with apex c-i.e. every maximal simplex contains c-so the topological space realizing $\Delta(P)$ is contractible (it can be contracted onto c) and hence $\Delta(P)$ is acyclic.
40. A theorem of Stanley's (Discrete Math, 1973) gives a combinatorial interpretation of the values of the chromatic polynomial of a graph at negative integers. A particular case is $\chi_{G}(-1)$ which, up to a sign, equals the number of acyclic orientations of G. Can you find a simple combinatorial proof of this?
Hint(?): How many acyclic orientations are there of the complete graph on n vertices?
41. Compute the chromatic polynomial $\chi_{k}(n)$ of the k-cycle C_{k}. Can you find a direct proof (assuming you give a simple answer)?
Define the W-polynomial of C_{k} by

$$
\sum_{n \geq 0} \chi_{k}(n) x^{n}=\frac{W_{k}(x)}{(1-x)^{k+1}}
$$

Can you find a simple formula for the coefficients of the W-polynomial? In particular, can you show that it is symmetric if k is odd?
42. The numbers in the following triangle are defined recursively. The numbers on the edges are the Euler numbers. The numbers in between also count alternating permutations, but on a finer scale, that is, subject to some restrictions. Interpret these numbers combinatorially and show that they satisfy the recurrence defining the triangle. Hint: Look at the last letter of each permutation.

This triangle appears in V.I. Arnold: Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Math. J. 63 No. 2 (1991), 537-555. Arnold states that each line in the triangle defines finite mass distributions and he shows, among other things, that the Euler number E_{d} is the number of maximal morsifications of the function x^{d+1}.

