COMBINATORICS — FALL 02

‘ The Catalan numbers ‘

Definition 1 The n-th Catalan number, Cy,, is the number of paths from (0,0)
to (2n,0), with steps of type (1,1) and (1,—1) that never go below the z-axis.

Theorem 2 For alln > 1 we have Cp, = ), Cy—1Cp_.

Corollary 3 The Catalan numbers have the generating function
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so0, if we let F(z) =Y, <, Crnz™, we have zF(z)? — F(z) + 1 = 0, which gives
the solution claimed. (That we must choose the minus sign in front of the root
follows from F'(0) = 1.) O

Definition 4 If « is a real number and n > 0 an integer, then

<a> a (@—1) - (a—n+1)
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Theorem 5 (Binomial Theorem) For all a € R we have
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Proof: The right hand side is the Taylor expansion of the left hand side about 0.
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Proof: We have

(1—42) 2 =% (—;11/2> (—azy = 3 (-1 (_;11/2)4n$n.
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It therefore suffices to show that (2:) = (—1)"(72/ 2)4“, which is left to the
interested reader. U]
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Theorem 7 The Catalan numbers satisfy Cp, = ?< n)
n

Proof: If we integrate both sides in Lemma 6 and divide by = we get
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where C is a constant. This constant is 0, because W11 (2(')0) = 1 and the fraction

in the RHS has the limit 1 as £ — 0. This, together with Corollary 3, proves
the claim. 0



