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Abstract. We say that a word w on a totally ordered alphabet avoids the word
v if there are no subsequences in w order-equivalent to v. In this paper we suggest
a new approach to the enumeration of words on at most k letters avoiding a given
pattern. By studying an automaton which for fixed k generates the words avoiding a
given pattern we derive several previously known results for these kind of problems,
as well as many new. In particular, we give a simple proof of the formula [20] for
exact asymptotics for the number of words on k letters of length n that avoids the
pattern 12 · · · (` + 1). Moreover, we give the first combinatorial proof of the exact
formula [9] for the number of words on k letters of length n avoiding a three letter
permutation pattern.

2000 Mathematics Subject Classification: 05A05, 05A15, 68Q45.

1. Introduction

In this paper we study pattern avoidance in words. The subject of pattern avoidance
in permutations has thrived in the last decades, see [30] and the references there. Only
very recently Alon and Friedgut [3] studied pattern avoidance in words to achieve an
upper bound on the number of permutations in Sn avoiding a given pattern. We study
pattern avoidance in words by defining a finite automaton that generates the words
avoiding a given pattern and use the transfer matrix method to count them. By this
approach we are able to find the asymptotics, as n → ∞, for the number of words
on k letters of length n avoiding a pattern p, as well as exact enumeration results. In
particular we re-derive Regev’s [20] result on the exact asymptotics for the number
of words on k letters of length n avoiding a pattern 12 · · · (` + 1), and give the first
combinatorial proof of a formula for the number of words on k letters of length n
avoiding the pattern 123.

Let Sn denote the set of permutations of the set [n] := {1, 2, . . . , n}. If σ ∈ Sk and
τ ∈ Sn, we say that τ contains σ if there is a sequence 1 ≤ t1 < t2 < · · · < tk ≤ n of
integers such that for all 1 ≤ i, j ≤ k we have τ(ti) ≤ τ(tj) if and only if σ(i) ≤ σ(j).
Here σ is called a pattern. If τ does not contain σ we say that τ avoids σ. In the
study of pattern avoidance the focus has been on enumerating and giving estimates to
the number of elements in the set Sn(σ), the set of permutations in Sn that avoids σ.
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2 FINITE AUTOMATA AND PATTERN AVOIDANCE

Maybe the most interesting open problem in the field is: Does there exists a constant
c such that |Sn(τ)| < cn for all n ≥ 0? This problem is equivalent to the seemingly
stronger statement, see [4]:

Conjecture 1.1. (Stanley, Wilf) For any pattern τ ∈ S`, the limit

lim
n→∞

|Sn(τ)|
1

n ,

exists and is finite.

The conjecture has been verified for layered patterns [8] and for all patterns which can
be written as an increasing subsequence followed by a decreasing [3]. In the latter
reference Alon and Friedgut proved a weaker version of Conjecture 1.1, namely: For
any permutation σ there exists a constant c = c(σ) such that |Sn(σ)| ≤ cnγ?(n), where
γ? is an extremely slow growing function, related to the Ackermann hierarchy. The
method of proof in [3] was by considering pattern avoidance in words. This is also the
theme of this paper.

Denote by [k]∗ the set of all finite words with letters in [k]. If w = w1w2 · · ·ws ∈ [k]∗

and v = v1v2 · · · vr ∈ [m]∗ where r ≤ s, we say that w contains the pattern v if there is
a sequence 1 ≤ t1 < t2 < · · · < tr ≤ s such that for all 1 ≤ i, j ≤ s we have

wti ≤ wtj if and only if vi ≤ vj.

If w does not contain v we say that w avoids v. For example, the word w = 323122411 ∈
[4]9 avoids the pattern 132 and contains the patterns 123, 212, 213, 231, 312, and 321.
If S is any set of finite words we denote the set of words in S that avoids v by S(v).

The history of pattern avoidance in words is not as rich as the one in permutations.
We mention the references [2, 3, 9, 10, 14, 20]. In [20] Regev gave a complete answer
for the asymptotics for |[k]n(p`)| when n → ∞, where p` = 12 · · · (` + 1):

Theorem 1.2 (Regev). For all k ≥ ` we have

|[k]n(p`)| ' C`,kn
`(k−`)`n (n → ∞),

where

C−1
`,k = ``(k−`)

∏̀

i=1

k−∏̀

j=1

(i + j − 1).

1.1. Organization of the paper. The paper is organized as follows. In Section 2
we present the relevant definitions and attain some preliminary results, and in Section
3 we use the transfer matrix method to determine the asymptotic growth for the
sequence n 7→ |[k]n(p)|. In Section 4.1 we study the special features of the automaton,
A(p`, k), which generates the words with letters in [k] that avoids the increasing pattern
12 · · · (`+1). Here we will give a simple proof of Theorem 1.2 using the transfer matrix
method and give a combinatorial proof for the formula [9] for |[k]n(p)|, where p is any
permutation pattern of length three. We also consider the diagonal sequence |[n]n(123)|
and determine its asymptotic growth as well as showing that its generating function
is transcendental. We conclude the paper by indicating further problems connected to
the work in this paper.
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2. Definitions and preliminary results

Given a word-pattern p and an integer k > 0 we define an equivalence relation ∼p on
[k]∗ by: v ∼p w if for all words r ∈ [k]∗ we have

vr avoids p if and only if wr avoids p.

For example, if p = 132, k ≥ 4, v = 13 and w = 14, then v �p w, since 133 avoids p
but 143 contains p. At first sight it may seem difficult to determine if v ∼p w, since a
priori there is an infinite number of right factors r to check. By the following lemma
we have to check only a finite number words r.

Lemma 2.1. Let p be a pattern of length ` and let v, w ∈ [k]∗ be any two words. Then
v ∼p w if and only if for all words r ∈ [k]s, 0 ≤ s ≤ `, we have

vr avoids p if and only if wr avoids p.

Proof. Define an equivalence relation ∼′
p on [k]∗ by: v ∼′

p w if for all words r ∈ [k]s,
0 ≤ s ≤ `, we have

vr avoids p if and only if wr avoids p.

Clearly, v ∼p w implies v ∼′
p w. On the other hand if v �p w we may assume that

there is an r ∈ [k]∗ such that vr contains p and wr avoids p. Any occurrence of p in
vr can use at most ` letters of r. Thus there is a subsequence r′ of r of length at most
` such that vr′ contains p and wr′ avoids p, i.e., v �

′
p w. �

Let E(p, k) be the set of equivalence classes of ∼p. By Lemma 2.1 the number of
equivalence classes is finite. We denote the equivalence class of a word w by 〈w〉. The
equivalence classes of ∼p for p ∈ S3 and k = 3, 4, 5 are given in Table 1.

Definition 2.2. Given a positive integer k and a pattern p we define a finite automa-
ton1, A(p, k) = (E(p, k), [k], δ, 〈ε〉, E(p, k) \ {〈p〉}), by

• the states are, E(p, k), the equivalence-classes of ∼p,
• [k] is the input alphabet,
• δ : E(p, k)× [k] → E(p, k) is the transition function defined by δ(〈w〉, i) = 〈wi〉,

where wi is w concatenated with the letter i ∈ [k],
• 〈ε〉 is the initial state, where ε is the empty word,
• all states but 〈p〉 are final states.

For an example see Fig. 1.

We will identify A(p, k) with the (labelled) directed graph with vertices E(p, k) and with

a (labelled) edge
i

−→ between 〈v〉 and 〈w〉 if vi ∼p w. Clearly, we may order the states
as x1, x2, . . . , xe so that if i < j there is no path from xj to xi. The transition matrix,
T (p, k), of A(p, k) is the matrix of size e × e with non-negative integer coefficients
defined by:

[T (p, k)]ij = |{s ∈ [k] : δ(xi, s) = xj}|.

Thus [T (p, k)]ij counts the number of edges between xi and xj, and T (p, k) is triangular.

1For a definition of a finite automaton, see [1] and references therein.
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k p The equivalences classes in E(p, k)
3 123 〈ε〉, 〈1〉, 〈12〉, 〈123〉

132 〈ε〉, 〈1〉, 〈13〉, 〈132〉
213 〈ε〉, 〈2〉, 〈21〉, 〈213〉
231 〈ε〉, 〈2〉, 〈23〉, 〈231〉
312 〈ε〉, 〈3〉, 〈31〉, 〈312〉
321 〈ε〉, 〈3〉, 〈32〉, 〈321〉

4 123 〈ε〉, 〈1〉, 〈2〉, 〈12〉, 〈13〉, 〈23〉, 〈123〉
132 〈ε〉, 〈1〉, 〈2〉, 〈13〉, 〈14〉, 〈24〉, 〈132〉, 〈241〉
213 〈ε〉, 〈2〉, 〈3〉, 〈21〉, 〈23〉, 〈31〉, 〈32〉, 〈213〉
231 〈ε〉, 〈2〉, 〈3〉, 〈23〉, 〈24〉, 〈32〉, 〈34〉, 〈231〉
312 〈ε〉, 〈3〉, 〈4〉, 〈31〉, 〈41〉, 〈42〉, 〈312〉, 〈314〉
321 〈ε〉, 〈3〉, 〈4〉, 〈32〉, 〈42〉, 〈43〉, 〈321〉

5 123 〈ε〉, 〈1〉, 〈2〉, 〈3〉, 〈12〉, 〈13〉, 〈14〉, 〈23〉, 〈24〉, 〈34〉, 〈123〉
132 〈ε〉, 〈1〉, 〈2〉, 〈3〉, 〈13〉, 〈14〉, 〈15〉, 〈24〉, 〈25〉, 〈35〉, 〈132〉, 〈241〉, 〈251〉, 〈351〉, 〈352〉, 〈3513〉
213 〈ε〉, 〈2〉, 〈3〉, 〈4〉, 〈21〉, 〈23〉, 〈24〉, 〈31〉, 〈32〉, 〈34〉, 〈41〉, 〈42〉, 〈43〉, 〈213〉, 〈234〉, 〈243〉
231 〈ε〉, 〈2〉, 〈3〉, 〈4〉, 〈23〉, 〈24〉, 〈25〉, 〈32〉, 〈34〉, 〈35〉, 〈42〉, 〈43〉, 〈45〉, 〈231〉, 〈243〉, 〈432〉
312 〈ε〉, 〈3〉, 〈4〉, 〈5〉, 〈31〉, 〈41〉, 〈42〉, 〈51〉, 〈52〉, 〈53〉, 〈312〉, 〈314〉, 〈315〉, 〈415〉, 〈425〉, 〈3153〉
321 〈ε〉, 〈3〉, 〈4〉, 〈5〉, 〈32〉, 〈42〉, 〈43〉, 〈52〉, 〈53〉, 〈54〉, 〈321〉

Table 1. The equivalence classes of ∼p for p ∈ S3 and k = 3, 4, 5.

Example 2.3. If p = 2314 and k = 5, then it is easy to check (see [18]) that the states
are 〈ε〉, 〈2〉, 〈3〉, 〈32〉, 〈34〉, 〈24〉, 〈23〉, 〈324〉, 〈341〉, 〈241〉, 〈234〉, 〈2342〉, 〈231〉, and
〈2314〉 (see Fig. 1).
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Figure 1. The figure shows the final states in the automaton A(2314, 5).
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Note that there are two edges between the states 〈324〉 and 〈241〉, namely 〈324〉
1

−→

〈241〉 and 〈324〉
2

−→ 〈241〉. Moreover, all final states in A(2314, 5) have 3 loops, except
〈324〉 which has 2 loops.

The following simple lemma will be helpful in finding the asymptotic growth of the
sequence |[n]k(p)|, for fixed k.

Lemma 2.4. Let the automaton A(p, k) be given, let d be the number of distinct letters
in p and suppose that k ≥ d− 1. If 〈v〉 is any state different from 〈p〉, then the number
of loops at 〈v〉 does not exceed d − 1. Moreover, there are exactly d − 1 loops at 〈ε〉.

Proof. Suppose that there are more than d − 1 loops at 〈v〉. Then the loops use at
least d different labels. From these labels we can form a word w order-isomorphic to
p. But then vw ∼p v which is a contradiction.

Let p1 be the first letter of p. Then, if i < p1 or i > k − d + p1 we have i ∼p ε. But
there are d − 1 such is, which proves the lemma. �

Although pattern avoidance in words and pattern avoidance in permutations share
many common features, there are some important aspects in which they differ. For
permutations there are three simple operations, f , that respects pattern-avoidance in
the sense that f(τ) avoids f(σ) if and only if τ avoids σ, namely the reversal, the
complement and the inverse of a permutation. The first two operations have obvious
generalizations to words, while the inverse does not. It has in fact been an open question
to construct an inverse for words possessing “the right” properties. Such an inverse was
recently constructed by Hohlweg and Reutenauer [13]. Unfortunately it is not possible
to construct an inverse that respects pattern avoidance in words, which would imply the
identity |[k]n(p)| = |[k]n(p−1)|, for all k, n ≥ 0 and permutation patterns p. The first
counter example to this is |[5]7(1342)| = 67854 > 67853 = |[5]7(1423)|, see Table 5.2. If
w ∈ [k]n let the complement of w in [k]n be wc = (k+1−w1)(k+1−w2) · · · (k+1−wn).
Then we have in fact that A(p, k) and A(pc, k) are isomorphic as automata for any
p ∈ [k]∗, since v ∼p w if and only if vc ∼pc wc.

Certainly w avoids p if and only if wr avoids pr, where r is the reversal operator and
w and p are any words. However A(p, k) and A(pr, k) are not in general isomorphic.
Indeed, for p = 2314 and k = 5 we have that |E(2314, 5)| = 13 and |E(4132, 5)| = 14.

3. Transfer matrix method

In this section we use the transfer matrix method (see [26, Theorem 4.7.2]) to obtain
information about the sequences |[k]n(p)|. Given a matrix A let (A; i, j) be the matrix
with row i and column j deleted. If p is a pattern and k > 0 an positive integer let
T ′(p, k) = (T (p, k), ek − 1, ek − 1).

Theorem 3.1. Let k be a positive integer, p be a pattern and ek be the number of states
in A(p, k). Then the generating function for |[k]n(p)| is

∑

n≥0

|[k]n(p)|xn =

∑ek−1
j=1 (−1)j+1 det(I − xT ′, j, 1)

∏ek−1
i=1 (1 − λix)

=
det B(x)

∏ek−1
i=1 (1 − λix)

,
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where λi is the number of loops at state xi, and B(x) is the matrix obtained by replacing
the first column in I − xT ′ with a column of all ones.

Proof. The theorem follows from the transfer matrix method, see [26, Theorem 4.7.2],
since we want to count the number of paths from 〈ε〉 to any state other than 〈p〉 of
length n in A(p, k). �

Regev [20] computed the exact asymptotics for |[k]n(p`)|, where p` is the increasing
pattern 12 · · · (` + 1) and n → ∞. We will next find the exact asymptotics (up to a
constant) for |[k]n(p)| for all patterns p. Given two sequences {an} and {bn} of real
numbers, we denote an ' bn if limn→∞

an

bn
= 1. A path in A(p, k) is called simple if it

starts at 〈ε〉, does not use any loops, and does not end in 〈p〉.

Theorem 3.2. Let p be any pattern with d distinct letters and let k ≥ d − 1 be given.
Then there is a constant C > 0 such that

|[k]n(p)| ' CnM (d − 1)n (n → ∞),

where M + 1 is the maximum number of states with d − 1 loops, in a simple path.

Proof. Let P := x1, x2, . . . , xj be a simple path in A(p, k). Moreover, let `j be the
number of loops at state xj. Then |[k]n(p)| =

∑
P N(P, n) where

N(P, n) =
∑

α1+···+αj=n−j+1

`α1

1 `α2

2 · · · `
αj

j ,

and the sum is over all weak compositions of n − j + 1 into at most j parts. Now,
N(P, n) is equal to the coefficient to tn−j+1 in (1 − `1t)

−1 · · · (1 − `jt)
−1. Let r be

the number of i such that `i = d − 1. Note that by Lemma 2.4 r is greater than or
equal to one. The dominant term of (1 − `1t)

−1 · · · (1 − `jt)
−1 is (by partial fraction

decomposition) equal to
f(t)

(1 − (d − 1)t)r
,

where f(t) is a polynomial of degree less than r and f((d − 1)−1) 6= 0. By well known
results it follows that N(P, n) ' C(P )(d − 1)nnr−1, where C(P ) > 0 is a constant
depending on P and k. Taking the greatest possible r yields the desired results. �

When there are exactly d− 1 loops at every state except 〈p〉 in A(p, k), then it follows
from Theorem 3.1 that |[k]n(p)| = (d − 1)nQ(n), where Q is a polynomial in n. We
have in fact:

Corollary 3.3. Let A(p, k) be such that all states but 〈p〉 has exactly d−1 loops. Then

|[k]n(p)| =

M∑

j=0

aj(d − 1)n−j

(
n

j

)
,

where aj counts the number of simple paths of length j in A(p, k). Moreover, if p is a
pattern of length ` + 1 then aj = (k − d + 1)j for all j = 0, 1, . . . , `.

Proof. The corollary follows from the proof of Theorem 3.2 since N(P, n) = (d −
1)n−j

(
n
j

)
. If p is a pattern of length ` + 1 then we have that aj = (k − d + 1)j where

j = 0, 1, . . . , `, since kj =
∑j

i=0 ai(d − 1)j−i
(

j
i

)
for all j = 0, 1, . . . , `. �
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As an example of Corollary 3.3 we note that if p is any pattern of length ` + 1 with
exactly d different letters then

|[d]n(p)| =
∑̀

j=0

(d − 1)n−j

(
n

j

)
.

4. The increasing patterns

We will in this section investigate the properties of A(p`, k), where p` = 12 · · · (` + 1).
The following lemma describes the structure of A(p`, k):

Lemma 4.1. Let k ≥ ` be given. For any subset S of [k] of size ` let wS be the word
consisting of the elements of S listed in increasing order. Then the words wS together
with p` constitute a complete set of representatives for the equivalence-classes E(p`, k).
In particular we have:

|E(p`, k)| =

(
k

`

)
+ 1.

If S = {s1 < · · · < s`} ⊆ [k] and j ∈ [k] let

Sj = {s1 < · · · < si−1 < j < si+1 < · · · < s`},

where i is the integer such that si−1 < j ≤ si, (s0 := 0, s`+1 := k + 1). Then

δ(〈wS〉, j) =

{
〈wSj〉 if j ≤ s`,

〈p`〉 otherwise .

In particular, the loops of wS are the elements of S.

Proof. It is clear that the words wS are representatives for different classes. Let v ∈
[k]∗(p`). We say that an increasing subword x1x2 · · ·xj of v is extendible if xj ≤
k + j − `− 1, i.e., if we may extend x1x2 · · ·xj to an occurrence of p` using letters from
[k]. Suppose that the maximum length of an extendible increasing subsequence in v is
equal to s, s ≤ `. For 1 ≤ j ≤ s let

rj(v) := min{xj : x1x2 · · ·xj is an extendible subword of v}.

Clearly r1(v) < r2(v) < · · · < rs(v). Let

S = {r1(v), r2(v), . . . , rs(v), k + s + 1 − `, k + s − `, . . . , k − 1, k}.

Then we see that wS ∼ v. The statement about the transition function follows from
the construction. �

In the sequel we will use some standard notation from the theory of partitions and
symmetric functions. For undefined terminology we refer the reader to Chapter 7 of
[27].

Theorem 4.2. Define a partial order on the final states in A(p`, k) by: x ≤ y if there
exists a path from x to y in A(p`, k). Then this partial order is isomorphic to

J([`] × [k − `]),

the lattice of order ideals of the poset [`] × [k − `].
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Proof. Let S = {s1 < s2 < · · · < s`} and T = {t1 < t2 < · · · < t`} be subsets of
[k]. We claim that there exists a path from 〈wS〉 to 〈wT 〉 if and only if si ≥ ti for all
1 ≤ i ≤ `. From this the theorem follows since the latter poset is isomorphic to the
interval [∅, λ`,k−`], in the Young’s lattice, where λ`,k−` := (k − `, k − `, . . . , k − `) is of
length `. Indeed, consider the bijection defined by:

(s1, s2, . . . , s`) 7→ (s` − `, s`−1 − ` + 1, . . . , s1 − 1) ∈ [∅, λ`,k−`].

Then si ≥ ti for all 1 ≤ i ≤ j if and only if the image of S is greater than the image of
T in [∅, λ`,k−`]. But [∅, λ`,k−`] is its own dual, so the statement follows from the simple
fact that [∅, λ`,k−`] is isomorphic to J([`] × [k − `]).

If there is an edge between 〈wS〉 and 〈wT 〉, we are done by Lemma 4.1. The “only if”
direction thus follows by induction on the length of the path.

Now, if si ≥ ti for all 1 ≤ i ≤ ` consider the path

〈wS〉
t1−→ 〈wSt1〉

t2−→ 〈wSt1t2〉
t3−→ · · ·

t`−→ 〈wSt1t2 · · · t`〉.

It is not hard to see that 〈wSt1t2 · · · t`〉 = 〈wT 〉, which completes the proof. �

We now have a different proof of the following theorem of Regev [20]:

Theorem 4.3 (Regev). For all k ≥ ` we have

|[k]n(p`)| ' C`,kn
`(k−`)`n (n → ∞),

where

C−1
`,k = ``(k−`)

∏̀

i=1

k−∏̀

j=1

(i + j − 1).

Proof. By Corollary 3.3 and Theorem 4.2 we have that

|[k]n(p`)| ' aM`−M

(
n

M

)
`n '

aM

M !
`−MnM`n (n → ∞),

where M = `(k−`) and aM is equal to the number of maximal chains in J([`]× [k−`]).
By [27, Proposition 7.10.3] and the hook-length formula [27, Corollary 7.21.6] we have
that

a`(k−`) = fλ`,k−` =
(`(k − `))!

∏̀

i=1

k−∏̀

j=1

(i + j − 1)

,

from which the theorem follows. �

It should be clear from the correspondence in Theorem 4.2 that the simple paths of
length r in A(p`, k + `) are in a one-to-one correspondence with tableaux T of the
following type:

(i) T is weakly increasing in rows and columns,
(ii) no integer appears in more than one row,
(iii) the entries of T are exactly [r],
(iv) the shape of T is confided in λ`,k.
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Recall that the tableaux satisfying (i) and (ii) above are the border-strip tableaux (or
rim-hook tableaux) of height zero. We call these tableaux segmented. Let a(`, k, r)
denote the number of segmented tableaux satisfying (iii) and (iv), so that:

(4.1) |[k + `]n(p`)| =

`k∑

r=0

`n−ra(`, k, r)

(
n

r

)
.

The function a(`, k, r) is actually a polynomial in k of degree r. To see this let us call
a segmented tableau inside [`] × [k] primitive if all columns are different, and let the
set of such tableaux of length i with r different entries be PR`,i,r. If we denote the
number of elements in PR`,i,r by pr(`, i, r) we have

a(`, k, r) =

r∑

i=r/`

pr(`, i, r)

(
k

i

)
,

since for any such primitive tableaux of length i we may insert a number α1 copies
of the first column before the first column, a number α2 copies of the second column
between the first and the second column, and so on. After the last column we may
insert a number αi+1 columns of all blanks, requiring that

α1 + α2 + · · ·+ αi+1 = k − i.

Thus there are
(

k
i

)
segmented tableaux arising from a given primitive one. The numbers

pr(`, i, r) are in general hard to count, but there are two special cases which are nice,
namely pr(`, r, r) and pr(2, i, r). We start by counting pr(`, r, r).

Theorem 4.4. With definitions as above:

pr(`, n, n) = |Sn(p`)|.

Proof. We will define a bijection between Sn and ∪`≥0PR`,n,n such that the height of the
tableau corresponds to the greatest increasing subsequence in the permutation. Recall
the definition of ri(v) in the proof of Lemma 4.1, and let r(v) = (r1(v), r2(v), . . . , r`(v)),
where ` is the length of the longest increasing subsequence in v. Let k be big enough
so that all increasing subsequences in permutations in Sn are considered extendible.

Now, if π = π1π2 · · ·πn is any permutation in Sn define T = T (π) as follows. Let the
first column of T be r(π) the second column be r(π1 · · ·πn−1) and so on. The image of
the permutation 351462 is:

T (351462) =
1 1 1 1 3 3
2 4 4 5 5
6 6

.

By Lemma 4.1 we have that T (π) ∈ PR`,n,n. Moreover from Lemma 4.1 we also get
that a tableau T is the image of some π ∈ Sn if and only if

(a) T has n columns and entries 1, 2, . . . , n,
(b) Let T i denote the ith column. If i < j then T i is smaller than T j in the product

order. (If T i and T j have different size fill the empty slots of T j with n + 1),
(c) Exactly one new entry appears every time you move from T i+1 to T i.
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Now, if T ∈ ∪`≥0PR`,n,n condition (a) and (b) are trivially satisfied. At least one new
entry appears every time we move from T i+1 to T i, since otherwise T i = T i+1 and T
fails to be primitive. On the other hand if there appear more than one new entry in
a transition then in a later transition there must appear no new entry, since T has n
columns and n entries. This verifies condition (c) and the theorem follows. �

A special case of Theorem 4.4 is that pr(2, n, n) = Cn, the nth Catalan number. This is
also a special case of the next theorem. Note, that Theorem 4.5 is what we need to have
combinatorial proof of a closed formula, see Theorem 4.7, for the numbers |[k]n(123)|.
Burstein [9] achieved a different, but of course equivalent, formula for |[k]n(123)|, but
not in a bijective manner.

Theorem 4.5. With definitions as above:

pr(2, i, r) =
1

i + 1

(
2i

i

)(
i

r − i

)
.

Before we give a proof of Theorem 4.5 we will need some definitions and a lemma.
Let PR+(2, s, r) be the tableaux in PR(2, s, r) that fill up the shape [2] × [r], and let
pr+(2, s, r) := |PR+(2, s, r)|. Then pr(2, s, r) = pr+(2, s, r) + pr+(2, s, r + 1) since we
get the tableaux that do not fill up the shape by deleting all entries r + 1. To prove
the theorem we will show that pr+(2, s, r) =

(
s−1
2s−r

)
Cs, where Cs is the sth Catalan

number.

We first define an operation + that takes tableaux with r different entries to tableaux
with r+1 different entries. Let T ∈ PR+(2, s, r). Suppose that j is an index such that
Tij = Ti(j+1) for some i = 1, 2. Write T as T = LR where L is the j first columns and
R is the s − j last columns. Let R′ be the array order equivalent with R with entries
the same as R, add r + 1, take away Ti(j+1) (two arrays A and B are said to be order
equivalent if Aij ≤ Ai′j′ if and only if Bij ≤ Bi′j′ for all i, j, i′, j ′). We define T + j to
be the tableaux T + j := LR′. In T there are exactly t = 2s− r indices j ∈ [s− 1] such
that Tij = Ti(j+1) for some i = 1, 2. Let S = {s1 < s2 < · · · < st} be these indices and

define a function Φ : PR+(2, s, r) →
(
[s−1]

t

)
×ST 2,s, where ST 2,s is the set of standard

tableaux of shape [2] × [s], by

Φ(T ) = (S, T + st + st−1 + · · ·+ s1).

The fact that Φ is a bijection will prove the theorem, since by the hook-length formula
we have |ST 2,s| = Cs. To find the inverse of Φ we need a kind of inverse operation to
+.

Let T ∈ PR+(2, s, r) and 1 ≤ b ≤ s − 1 be such that T1b < T1(b+1) and T2b < T2(b+1).
Define two arrays T |b and T |b as follows. Write T = LR where L are the b first columns
and R are the s − b last columns. Define T |b := L′R′, to be the array where L = L′

and R′ is the unique array order equivalent with R, with entries the same as R add T1b

take away r. Similarly, let T |b := L′R′, be the array with L = L′ and where R′ is the
unique array order equivalent with R, with entries the same as R, add T2b take away
r.
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1 2 4 4
3 5 6 7

∣∣∣∣
2

=
1 2 2 2
3 5 4 6

1 2 4 4
3 5 6 7

∣∣∣∣
2

=
1 2 4 4
3 5 5 6

Note that exactly one of T |2 and T |2 above is a primitive segmented tableaux. This is
no accident.

Lemma 4.6. Let T ∈ PR+(2, s, r) and 1 ≤ b ≤ s − 1 be such that T1b < T1(b+1) and
T2b < T2(b+1). Then

T |b ∈ PR+(2, s, r − 1) ⇔ T |b /∈ PR+(2, s, r − 1)

⇔ T2(b+1) = T2b + 1

Moreover, if B = T |b ∈ PR+(2, s, r − 1) then B1b = B1(b+1) and if A = T |b ∈
PR+(2, s, r − 1) then A1b = A1(b+1).

Proof. Consider A := T |b. All entries in T that are smaller than T2b will be mapped
on themselves and Aij = Tij − 1 for Aij > T2b. Therefore A ∈ PR+(2, s, r − 1) if and
only if T2(b+1) = T2b + 1 (since otherwise the entry T2b will appear in both the first and
the second row).

Consider B := T |b. Let yi, i = 1, 2, . . . , h be the entries in T satisfying T2b < yi ≤
T2(b+1) ordered by size. Then the entry y1 will be mapped to an element smaller than
T2b and yi will be mapped to yi−1 for i > 1. Thus B ∈ PR+(2, s, r − 1) if and only if
T2(b+1) > T2b + 1 as claimed.

The last statement is a direct consequence of the above proof. �

We are now ready to give a proof of Theorem 4.5.

Proof of Theorem 4.5. If T ∈ PR+(2, s, r) and 1 ≤ b ≤ s−1 are such that T1b < T1(b+1)

and T2b < T2(b+1) we define T − b to be the one of the arrays T |b and T |b which is in
PR+(2, s, r − 1). By Lemma 4.6 we have that

(T + j) − j = T if Tij = Ti(j+1) for some i = 1, 2,(4.2)

(T − j) + j = T if Tij < Ti(j+1) for both i = 1, 2.

Now, if S = {x1 < x2 < · · · < xt}, where t = 2s − r and P ∈ ST 2,s we let

Ψ(S, P ) := P − x1 − x2 − · · · − xt.

By (4.2) it follows that Ψ is the inverse to Φ and the theorem follows. �

We now have a combinatorial proof of the following theorem given in a different form
in [9]:

Theorem 4.7. For all n, k ≥ 0 we have

|[k + 2]n(123)| =
∑

r,i

2n−rCi

(
i

r − i

)(
n

r

)(
k

i

)
,



12 FINITE AUTOMATA AND PATTERN AVOIDANCE

where Ci is the ith Catalan number. The generating function

F (x, y) :=
∑

n,k

|[k + 2]n(123)|xkyn,

is given by

F (x, y) =
1

(1 − x)(1 − 2y)
C

(
xy(1 − y)

(1 − x)(1 − 2y)2

)
,

where C(z) is the generating function for the Catalan numbers. Equivalently, F (x, y)
is algebraic of degree two and satisfies the equation:

x(1 − x)y(1 − y)F 2 − (1 − x)(1 − 2y)F + 1 = 0.

To complete the picture for permutation patterns of length 3 it remains to enumerate
|[k]n(132)|. Simion and Schmidt [24] introduced a simple bijection between Sn(123)
and Sn(132) which fixes each element of Sn(123) ∪ Sn(132). West [29] generalized this
bijection to obtain a bijection between Sn(p) and Sn(q) where p(`) = q(` − 1) = `,
p(`− 1) = q(`) = `− 1, and p, q ∈ S`. Here we indicate how to generalize West’s result
to obtain a bijection between [k]n(p) and [k]n(q) where p and q are as above.

Theorem 4.8. Let p = p1p2 · · · p` be a pattern with greatest entry equal to d and
p`−1 = d − 1, p` = d. If d occurs exactly once in p then

|[k]n(p)| = |[k]n(p̃)|,

where p̃ = p1p2 · · · p`p`−1.

Proof. The proof is a straight forward generalization of West’s algorithm presented in
[29, Section 3.2].

�

For example, if p = 132 then p̃ = 123. Hence, by Theorem 4.8 we get that if p and
q are any permutation patterns of length 3 then |[k]n(p)| = |[k]n(q)| for all n, k ≥ 0
(see [9] for an analytical proof). If p = 1232 the p̃ = 1223. Hence, Theorem 4.8 gives
|[k]n(1232)| = |[k]n(1223)| for all n, k ≥ 0.

Since, Sn(p) ⊂ [n]n(p), the numbers |[n]n(p)| are interesting. A sequence f(n) is
polynomially recursive (P-recursive) if there is a finite number of polynomials Pi(n)
such that

N∑

i=0

Pi(n)f(n + i) = 0,

for all integers n ≥ 0. For the case when p is permutation pattern of length 3 we have
the following:

Theorem 4.9. Let p be a permutation pattern of length 3. Then the sequence f(n) :=
|[n]n(p)| is P -recursive and satisfies the three term recurrence:

p(n)f(n − 2) + q(n)f(n − 1) + r(n)f(n) = 0,
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where

p(n) = 3(n − 3)(n − 1)(3n − 5)(3n − 4)(5n − 4),

q(n) = 288 − 1440n + 2780n2 − 2435n3 + 976n4 − 145n5, and

r(n) = 2(n − 2)2n(n + 1)(5n − 9).

Proof. The fact that f(n) is P -recursive follows easily from the expansion of f(n) as a
double sum using Theorem 4.7 and the theory developed in [17]. The polynomials p, q
and r were found using the package MULTISUM (see [28]) developed by Wegschaider
and Riese. �

Corollary 4.10. The asymptotics of f(n) = |[n]n(123)| is given by

f(n) ∼ Cn−2

(
27

2

)n

,

where C > 0 is a constant.

Proof. This is a direct consequence of Theorem 4.9 and the theory of asymptotics for
P -recursive sequences, see [31]. �

A consequence of this is that the generating function of f(n) is transcendent, since the
exponent of n in the asymptotic expansion of a sequence with an algebraic generating
function is never a negative integer.

4.1. Generating function approach. In this section we will investigate the gener-
ating function that enumerates the number of segmented tableaux according to size
of rows and number of different entries. Let A`(x1, x2, . . . , x`, t) be the generating
function:

A` =
∑

T

x
λ1(T )
1 x

λ1(T )−λ2(T )
2 · · ·x

λ`−1(T )−λ`(T )
` tN(T ),

where λi(T ) denotes the size of row i in T , N(T ) denotes the number of different
entries in T and the sum is over all segmented tableaux with at most ` rows. For
i = 1, 2, . . . , ` let Ai

`(x1, . . . , x`, t) be the generating function for those tableaux which
have their maximal entry in row i. If F (x1, x2, . . . , xn) is a formal power-series in n
variables the divided difference of F with respect to the variable xi is

∆iF :=
F − F (xi = 0)

xi

,

where F (xi = 0) is short for F (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn).

Theorem 4.11. With definitions as above we have that A` satisfies the following system
of equations:

A` = 1 + A1
` + · · · + A`

`,

A1
` = x1x2tA` + x1x2A

1
` ,

A2
` = x3t∆2A` + x3∆2A

2
` ,

...

A`−1
` = x`t∆`−1A` + x`∆`−1A

`−1
` ,

A`
` = t∆`A` + ∆`A

`
`.
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Proof. The theorem follows by treating two separate cases. Let n be the greatest entry
in the tableau T . The case when there is one n in a row corresponds to the first
summand and the case when there are more than one n in a row corresponds to the
second summand. �

When ` = 2, A = A2, the system boils down to:

(4.3)

(
(1 − x−1

2 )(1 −
x1x2t

1 − x1x2
) − x−1

2 t

)
A = 1 − x−1

2 (1 + t)A(x2 = 0).

This equation can be solved using the so called kernel method as described in [5]. If
we let

x2 =
1 + x1(1 + 2t) −

√
(1 + x1(1 + 2t))2 − 4x1(1 + t)2

2x1(1 + t)
,

then the parenthesis infront of A in (4.3) cancels, and we get:

A(x2 = 0) =
1 + x1(1 + 2t) −

√
(1 + x1(1 + 2t))2 − 4x1(1 + t)2

2x1(1 + t)2
.

By the interpretation of a(`, k, r), we have that the bi-variate generating function for
a(2, k, r) is (1+x1)

−1A2(x1, 1, t). From this and (4.1) one may derive an analytic proof
of Theorem 4.7.

5. Further results and open problems

5.1. Further directions. Recall that the Stanley-Wilf Conjecture asserts that for
any permutation π the limit limn→∞ |Sn(π)|1/n exists and is finite. What about the
sequence |[n]n(π)|?

Problem 5.1. Let π be a permutation. Is there a constant 0 < C < ∞ such |[n]n(π)| ≤
Cn for all n ≥ 0?

Note that the answer to Problem 5.1 is no when π is not a permutation, since then
Sn(π) ⊆ [n]n(π). Again, Problem 5.1 is equivalent to the statement that

lim
n→∞

|[n]n(π)|1/n,

exists and is finite. This is because for all m, n ≥ 0 we have

|[n + m]n+m(π)| ≥ |[n]n(π)| · |[m]m(π)|,

so we may apply Fekete’s Lemma on sub-additive sequences. See [4, Theorem 1] for
details (the proof extends to words word for word). For permutations π ∈ S3 we have
by Corollary 4.10 that limn→∞ |[n]n(π)|1/n = 27/2 as opposed to limn→∞ |Sn(π)|1/n = 4.

For which permutations do we know that Problem 5.1 is true? It follows from the
work in [3] that Problem 5.1 is true for all permutations which can be written as an
increasing sequence followed by a decreasing. Also, with no great effort Bóna’s proof
[8] of the Stanley-Wilf conjecture for layered patterns may be extended to this setting.
Thus for all classes that the Stanley-Wilf conjecture is known to hold, the seemingly
stronger Problem 5.1 holds. The following conjecture therefore seems plausible:

Conjecture 5.2. For all permutations π we have:

∃C∀n(|[n]n(p)| ≤ Cn) ⇔ ∃D∀n(|Sn(p)| ≤ Dn).
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There are several problems concerning the automatons associated to a pattern that
has connections to the above problems. One problem is to give an estimate to the
number of simple paths in A(p, k), another is to estimate the number of equivalence
classes in A(p, k). Yet another problem is to give an estimate to the maximum size of
an equivalence class.

5.2. Formula for |[k]n(p)|. Our algorithm (see Theorem 3.1) for finding a formula for
|[k]n(p)| is implemented in C++ and Maple, see [18]. The first with input p and k
and output the automaton A(p, k) and the second with input the automaton A(p, k)
and output the exact formula for |[k]n(p)|. This algorithm allows us to get an explicit
formula for |[k]n(p)| where p ∈ Sk and k ≥ 1 are given. For example, an output for the
algorithm for p ∈ S4 and k = 3, 4, 5, 6 is given by Table 5.2, where we define,

[b0, b1, . . . , bd]x =

d∑

j=0

bj

(
n

j

)
xn−j.

Finally we remark that our method can be generalized as follows. Given a set of
patterns T we define an equivalence relation ∼T on [k]∗ by: v ∼T w if for all words
r ∈ [k]∗ we have

vr avoids T if and only if wr avoids T,

where a word u avoids T if u avoids all patterns in T . As in Section 2 we define an
automaton A(T, k) with the equivalence classes of ∼T as states. With minor changes in
the proof, Theorem 3.1 can be extended to avoidance of a set of patterns. For example,
if T = {1234, 2134} and k = 5, then by [18] we get that

|[4]n(T )| = 2 · 3n + 2
(

n
2

)
3n−2 − 2n,

|[5]n(T )| = 3 · 3n + 6
(

n
2

)
3n−2 + 6

(
n
3

)
3n−3 + 8

(
n
4

)
3n−4 − 2 · 2n,

|[6]n(T )| = 4 · 3n + 12
(

n
2

)
3n−2 + 24

(
n
3

)
3n−3

+54
(

n
4

)
3n−4 + 60

(
n
5

)
3n−5 + 40

(
n
6

)
3n−6 − 3 · 2n.
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