q-NARAYANA NUMBERS AND THE FLAG h-VECTOR OF $J(\mathbf{2} \times \mathbf{n})$

PETTER BRÄNDÉN

Abstract

The Narayana numbers are $N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k+1}$. There are several natural statistics on Dyck paths with a distribution given by $N(n, k)$. We show the equidistribution of Narayana statistics by computing the flag h-vector of $J(\mathbf{2} \times \mathbf{n})$ in different ways. In the process we discover new Narayana statistics and provide co-statistics for which the Narayana statistics in question have a distribution given by Fürlinger and Hofbauers q-Narayana numbers. We also interpret the h-vector in terms of semi-standard Young tableaux, which enables us to express the q-Narayana numbers in terms of Schur functions.

1. Introduction

The Narayana numbers,

$$
N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k+1},
$$

appear in many combinatorial problems. Some examples are the number of noncrossing partitions of $\{1,2, \ldots, n\}$ of rank k [3], the number of 132 avoiding permutations with k descents [8], and also several problems involving Dyck paths.

A Dyck path of length $2 n$ is a path in $\mathbb{N} \times \mathbb{N}$ from $(0,0)$ to (n, n) using steps $v=(0,1)$ and $h=(1,0)$, which never goes below the line $x=y$. The set of all Dyck paths of length $2 n$ is denoted \mathcal{D}_{n}. A statistic on \mathcal{D}_{n} having a distribution given by the Narayana numbers will in the sequel be referred to as a Narayana statistic. The first Narayana statistics to be discovered were $\operatorname{des}(w)$: the number of descents (valleys) (sequences $h v$) in $w,[7]$,
$\mathrm{ea}(w)$: the number of even ascents, i.e., the number of letters v in an even position in $w,[4]$,
$\operatorname{lnfs}(w)$: the number of long non-final sequences, more precisely the number of sequences $v v h$ and $h h v$ in $w,[5]$.
Recently, [1], a new Narayana statistic, hp, was discovered and it counts the number of high peaks, i.e., peaks not on the diagonal $x=y$. Also, in $[11,12]$ Sulanke found numerous new Narayana statistics with the help of a computer. For terminology on posets in what follows, we refer the reader to [9].

We will show that des, hp and lnfs arise when computing the flag h-vector of the lattice $J(\mathbf{2} \times \mathbf{n})$ of order ideals in the poset $\mathbf{2} \times \mathbf{n}$ in different ways.

[^0]In Section 2 we will show how the statistics descents and high peaks arise when considering different linear extensions of $\mathbf{2} \times \mathbf{n}$. This will give the equidistribution of the descent-set and the set of high-peaks. In Section 3 we consider a shelling of the order complex $\Delta(J(\mathbf{2} \times \mathbf{n}))$ to show that the set of long non-final sequences has the same distribution as the descent set over Dyck paths.

There is a q-analog of the Narayana numbers,

$$
N_{q}(n, k)=\frac{1}{[n]}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left[\begin{array}{c}
n \\
k+1
\end{array}\right] g^{k^{2}+k},
$$

introduced by Fürlinger and Hofbauer in [2]. To each statistic we treat we will associate a co-statistic together with which the Narayana statistic has a joint distribution given by the q-Narayana numbers.

2. Descents and High peaks

Let P be any finite graded poset with a smallest element $\hat{0}$ and a greatest element $\hat{1}$ and let ρ be the rank function of P with $\rho(P):=\rho(\hat{1})=n$. For $S \subseteq[n-1]$ let

$$
\alpha_{P}(S):=\mid\{c \text { is a chain of } P: \rho(c)=S\} \mid,
$$

and

$$
\beta_{P}(S):=\sum_{T \subseteq S}(-1)^{|S-T|} \alpha_{P}(T)
$$

The functions $\alpha_{P}, \beta_{P}: 2^{[n-1]} \rightarrow \mathbb{Z}$ are the flag f-vector and the flag h-vector of P respectively.

If P is a finite poset of cardinality p and $\omega: P \rightarrow[p]$ is a linear extension of P then the Jordan-Hölder set, $\mathcal{L}(P, \omega)$, of (P, ω) is the set of permutations $a_{1} a_{2} \cdots a_{p}$ such that $\omega^{-1}\left(a_{1}\right), \omega^{-1}\left(a_{2}\right), \ldots, \omega^{-1}\left(a_{p}\right)$ is a linear extension of P, in other words

$$
\mathcal{L}(P, \omega)=\left\{\omega \circ \sigma^{-1}: \sigma \text { is a linear extension of } P\right\} .
$$

We will need the following theorem (Theorem 3.12.1 of [9]):
Theorem 1. Let $L=J(P)$ be a distributive lattice of rank $p=|P|$, and let ω be a linear extension of P. Then for all $S \subseteq[p-1]$ we have that $\beta_{L}(S)$ is equal to the number of permutations $\pi \in \mathcal{L}(P, \omega)$ with descent set S.

It will be convenient to code a Dyck path w in the letters $\left\{v_{i}\right\}_{i=1}^{\infty} \cup\left\{h_{i}\right\}_{i=1}^{\infty}$ by letting v_{i} and h_{i} stand for the i th vertical step and the i th horizontal step in w, respectively. Thus vvhvhh is coded as $v_{1} v_{2} h_{1} v_{3} h_{2} h_{3}$. We may write the set of elements of $\mathbf{2} \times \mathbf{n}$ as the disjoint union $C_{1} \cup C_{2}$ where $C_{i}=\{(i, k)$: $k \in[n]\}$ for $i=1,2$. For any linear extension σ of $\mathbf{2} \times \mathbf{n}$ let $W(\sigma)$ be the Dyck path $w_{1} w_{2} \cdots w_{2 n}$ where

$$
w_{i}= \begin{cases}v_{j} & \text { if } \sigma^{-1}(i)=(1, j) \text { and } \\ h_{j} & \text { if } \sigma^{-1}(i)=(2, j)\end{cases}
$$

It is clear that W is a bijection between the set of linear extensions of $\mathbf{2} \times \mathbf{n}$ and the set of Dyck paths of length $2 n$.

Figure 1. The linear extension of $\mathbf{2} \times \mathbf{4}$ corresponding to the Dyck path $v_{1} v_{2} h_{1} v_{3} v_{4} h_{2} h_{3} h_{4}$.

Fix a Dyck path $W_{0} \in \mathcal{D}_{n}$ and let $\omega_{0}=W^{-1}\left(W_{0}\right)$. Now, if $\pi=\omega_{0} \circ \sigma^{-1} \in$ $\mathcal{L}\left(\mathbf{2} \times \mathbf{n}, \omega_{0}\right)$ let $W(\sigma)=w_{1} w_{2} \cdots w_{2 n}$. Then $\pi(i)>\pi(i+1)$ if and only if w_{i+1} comes before w_{i} in W_{0}. In light of this we define, given Dyck paths W_{0} and $w=w_{1} w_{2} \cdots w_{2 n}$, the descent set of w with respect to W_{0} as

$$
D_{W_{0}}(w)=\left\{i \in[2 n-1]: w_{i+1} \text { comes before } w_{i} \text { in } W_{0}\right\} .
$$

The descent set of $v_{1} h_{1} v_{2} v_{3} h_{2} h_{3}$ with respect to $v_{1} v_{2} h_{1} v_{3} h_{2} h_{3}$ is thus $\{2\}$. By Theorem 1 we now have:
Theorem 2. Let W be any Dyck path of length $2 n$ and let $S \subseteq[2 n-1]$ and let $\beta_{n}=\beta_{J(\mathbf{2 \times n})}$. Then

$$
\beta_{n}(S)=\left|\left\{w \in \mathcal{D}_{n}: D_{W}(w)=S\right\}\right| .
$$

For a given Dyck path W we define the statistics des_{W}, and MAJ_{W} by

$$
\begin{aligned}
\operatorname{des}_{W}(w) & =\left|D_{W}(w)\right|, \\
\operatorname{MAJ}_{W}(w) & =\sum_{i \in D_{W}(w)} i .
\end{aligned}
$$

Example 3. Two known Narayana statistics arise when fixing W in certain ways:
a) If $W=v_{1} v_{2} \cdots v_{n} h_{1} h_{2} \cdots h_{n}$ then $\operatorname{des}_{W}=$ des.
b) If $W=v_{1} h_{1} v_{2} h_{2} \cdots v_{n} h_{n}$ then $\operatorname{des}_{W}=\mathrm{hp}$. Thus as a consequence of Theorem 2 we have that the number of valleys and the number of high peaks have the same distribution over \mathcal{D}_{n}. This was first proved by Deutsch in [1].
c) If $W=v_{1} h_{1} v_{2} v_{3} \cdots v_{n} h_{2} h_{3} \cdots h_{n}$ then des_{W} counts valleys $h_{i} v_{j}$ where $i>1$ and high peaks of the form $v_{i} h_{1}$.
When $W=v_{1} v_{2} \cdots v_{n} h_{1} h_{2} \cdots h_{n}$ we drop the subscript and let des $=$ des_{W} and MAJ $=\mathrm{MAJ}_{W}$. In [2] Fürlinger and Hofbauer defined the q Narayana numbers, $N_{q}(n, k)$, by

$$
N_{q}(n, k):=\sum_{w \in \mathcal{D}_{n}, \operatorname{des}(w)=k} q^{\operatorname{MAJ}(w)} .
$$

We say that the bi-statistic (des, MAJ) has the q-Narayana distribution. We will later see that $N_{q}(n, k)$ can be written in an explicit form. By Theorem 2 we now have:

Figure 2. An example of a SSYT of shape ($6,5,4,4,2$).

1	2	2	3	5	5
2	3	4	4	6	
4	5	5	6		
5	6	6	8		
7	8				.

Corollary 4. For all $W \in \mathcal{D}_{n}$ the bi-statistic $\left(\operatorname{des}_{W}, \mathrm{MAJ}_{W}\right)$ has the q Narayana distribution.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ be a partition of positive integers. The index ℓ is called the length, $\ell(\lambda)$, of λ. A semistandard Young tableau (SSYT) of shape λ is an array $T=\left(T_{i j}\right)$ of positive integers, where $1 \leq i \leq \ell(\lambda)$ and $1 \leq j \leq \lambda_{i}$, that is weakly increasing in every row and strictly increasing in every column. For any SSYT of shape λ let

$$
x^{T}:=x_{1}^{\alpha_{1}(T)} x_{2}^{\alpha_{2}(T)} \cdots,
$$

where $\alpha_{i}(T)$ denotes the number of entries of T that are equal to i. The Schur function $s_{\lambda}(x)$ of shape λ is the formal power series

$$
s_{\lambda}(x)=\sum_{T} x^{T},
$$

where the sum is over all SSYTs T of shape λ. If T is any SSYT we let $\operatorname{row}(T)=\left(\gamma_{1}(T), \gamma_{2}(T), \ldots\right)$ where $\gamma_{i}(T)=\sum_{j} T_{i j}$. Let $\left\langle 2^{k}\right\rangle$ be the partition $(2,2, \ldots, 2)$ with $k 2$'s.
Theorem 5. For any $n>0$ and $S \subseteq[2 n-1],|S|=k$, we have that $\beta_{n}(S)$ counts the number of SSYTs T of shape $\left\langle 2^{k}\right\rangle$ with $\operatorname{row}(T)=S$ and with parts less than n.

Proof. Let T be a SSYT as in the statement of the theorem. We want to construct a Dyck path $w(T)$ with descent set S.

Let $w(T)=w_{1} w_{1}^{\prime} w_{2} w_{2}^{\prime} \cdots w_{k+1} w_{k+1}^{\prime}$ where

- w_{1} is the word consisting of T_{12} vertical steps and w_{1}^{\prime} is the word consisting of T_{11} horizontal steps,
- w_{i} is the word consisting of $T_{i 2}-T_{(i-1) 2}$ vertical steps and w_{i}^{\prime} is the word consisting of $T_{i 1}-T_{(i-1) 1}$ horizontal steps, when $2 \leq i \leq k$,
- w_{k+1} is the word consisting of $n-T_{k 2}$ vertical steps and w_{k+1}^{\prime} is the word consisting of $n-T_{k 1}$ horizontal steps.
It is clear that $w(T)$ is indeed a Dyck path with descent set S, and each such Dyck path is given by $w(T)$ for a unique SSYT T.

Theorem 6. For all $n, k \geq 0$ we have

$$
N_{q}(n, k)=s_{\left\langle 2^{k}\right\rangle}\left(q, q^{2}, \ldots, q^{n-1}\right) .
$$

Figure 3. An illustration of Theorem 5 for $n=7$.

Proof. By Theorem 5 we have that

$$
\begin{aligned}
\sum_{w \in \mathcal{D}_{n}, \operatorname{des}(w)=k} q^{\operatorname{MAJ}(w)} & =\sum_{|S|=k} \beta_{n}(S) q^{\sum_{s \in S} s} \\
& =\sum_{T} q^{\sum T_{i j}}
\end{aligned}
$$

where the last sum is over all $S S Y T \mathrm{~s} T$ of shape $\left\langle 2^{k}\right\rangle$ with parts less than n. By the combinatorial definition of the Schur function this is equal to $s_{\left\langle 2^{k}\right\rangle}\left(q, q^{2}, \ldots, q^{n-1}\right)$, and the theorem follows.

If we identify a partition λ with its diagram $\left\{(i, j): 1 \leq j \leq \lambda_{i}\right\}$ then the hook length, $h(u)$, at $u=(x, y) \in \lambda$ is defined by

$$
h(u)=|\{(x, j) \in \lambda: j \geq y\}|+|\{(i, y) \in \lambda: i \geq x\}|-1,
$$

and the content, $c(u)$, is defined by

$$
c(u)=y-x .
$$

We will use a result on Schur polynomials, commonly referred to as the hook-content formula, see [10, Theorem 7.21.2]. Let $[n]:=1+q+\cdots+q^{n-1}$, $[n]!:=[n][n-1] \cdots[1]$ and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[n-k]![k]!} .
$$

Theorem 7 (Hook-content formula). For any partition λ and $n>0$,

$$
s_{\lambda}\left(q, q^{2}, \ldots, q^{n}\right)=q^{\sum i \lambda_{i}} \prod_{u \in \lambda} \frac{[n+c(u)]}{[h(u)]}
$$

We now have an alternative proof of the following result which was proved in [2], and is a special case of a result of MacMahon, stated without proof in [6, p. 1429].
Corollary 8 (Fürlinger, Hofbauer, MacMahon). The q-Narayana numbers are given by:

$$
N_{q}(n, k)=\frac{1}{[n]}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left[\begin{array}{c}
n \\
k+1
\end{array}\right] q^{k^{2}+k}
$$

Proof. The Corollary follows from Theorem 6 after an elementary application of the hook-content formula, which is left to the reader.

3. Long Non-final Sequences

In [5] Kreweras and Moszkowski defined a new Narayana statistic, lnfs. Recall that a long non-final sequence in a Dyck path is a subsequence of type $v v h$ or $h h v$, and that the statistic lnfs is defined as the number of long non-final sequences in the Dyck path. We define the long non-final sequence set, $L S(w)$, of a Dyck path $w=a_{1} a_{2} \cdots a_{2 n}$ to be

$$
L S(w)=\left\{i \in[2 n-1]: a_{i-1} a_{i} a_{i+1}=v v h \text { or } a_{i-1} a_{i} a_{i+1}=h h v\right\} .
$$

We will show that

$$
\beta_{n}(S)=\left|\left\{w \in \mathcal{D}_{n}: L S(w)=S\right\}\right|
$$

To prove this we need some definitions.
An (abstract) simplicial complex Δ on a vertex set V is a collection of subsets F of V satisfying:
(i) if $x \in V$ then $\{x\} \in \Delta$,
(ii) if $F \in \Delta$ and $G \subseteq F$, then $G \in \Delta$.

The elements of Δ are called faces and a maximal face (with respect to inclusion) is called a facet. A simplicial complex is said to be pure if all its facets have the same cardinality. A linear partial order Ω on the set of facets of a pure simplicial complex Δ is a shelling if whenever $F<^{\Omega} G$ there is an $x \in G$ and $E<\Omega$ such that

$$
F \cap G \subseteq E \cap G=G \backslash\{x\}
$$

A simplicial complex which allows a shelling is said to be shellable. Instead of finding a particular shelling we will find a partial order on the set of facets with the property that every linear extension is a shelling. In our attempts to prove that our partial order had this property we found ourselves proving Theorem 9 and Corollary 10. We therefore take the opportunity to take a general approach and define what we call a pre-shelling. Though we have found examples of pre-shellings implicit in the literature we have not found explicit references, so we will provide proofs.

Let Ω be a partial order on the set of facets of a pure simplical complex Δ. The restriction, $r_{\Omega}(F)$, of a facet F is the set

$$
r_{\Omega}(F)=\left\{x \in F: \exists E \text { s.t } E<^{\Omega} F \text { and } E \cap F=F \backslash\{x\}\right\}
$$

We say that Ω is a pre-shelling if any of the equivalent conditions in Theorem 9 are satisfied.

Theorem 9. Let Ω be a partial order on the set of facets of a pure simplicial complex Δ. Then the following conditions on Ω are equivalent:
(i) For all facets F, G we have

$$
r_{\Omega}(F) \subseteq G \text { and } r_{\Omega}(G) \subseteq F \quad \Longrightarrow \quad F=G
$$

(ii) Δ is the disjoint union

$$
\Delta=\bigcup_{F}\left[r_{\Omega}(F), F\right]
$$

(iii) For all facets F, G

$$
r_{\Omega}(F) \subseteq G \Rightarrow F \leq^{\Omega} G
$$

(iv) For all facets F, G : if $F \not ¥^{\Omega} G$ then there is an $x \in G$ and $E<^{\Omega} G$ such that

$$
F \cap G \subseteq E \cap G=G \backslash\{x\}
$$

Proof. (i) \Rightarrow (ii): Let F and G be facets of Δ. If there is an $H \in\left[r_{\Omega}(F), F\right] \cap$ $\left[r_{\Omega}(G), G\right]$ then $r_{\Omega}(F) \subseteq G$ and $r_{\Omega}(G) \subseteq F$, so by (i) we have $F=G$. Hence the union is disjoint. Suppose that $H \in \Delta$, and let F_{0} be a minimal element, with respect to Ω, of the set

$$
\{F: F \text { is a facet and } H \subseteq F\}
$$

If $r_{\Omega}\left(F_{0}\right) \nsubseteq H$ then let $x \in r_{\Omega}\left(F_{0}\right) \backslash H$ and let $E<{ }^{\Omega} F_{0}$ be such that $F_{0} \cap E=F_{0} \backslash\{x\}$. Then $H \subseteq E$, contradicting the minimality of F_{0}. This means that $H \in\left[r\left(F_{0}\right), F_{0}\right]$.
(ii) \Rightarrow (i): If $r_{\Omega}(F) \subseteq G$ and $r_{\Omega}(G) \subseteq F$ we have that $F \cap G \in\left[r_{\Omega}(F), F\right] \cap$ $\left[r_{\Omega}(G), G\right]$, which by (ii) gives us $F=G$.
(i) \Rightarrow (iii): If $r_{\Omega}(F) \subseteq G$ then by (i) we have either $F=G$ or $r_{\Omega}(G) \nsubseteq F$. If $F=G$ we have nothing to prove, so we may assume that there is an $x \in r_{\Omega}(G) \backslash F$. Then, by assumption, there is a facet $E_{1}<^{\Omega} G$ such that

$$
r_{\Omega}(F) \subseteq G \cap E_{1}=G \backslash\{x\} \subset E_{1}
$$

If $E_{1}=F$ we are done. Otherwise we continue until we get

$$
F=E_{k}<^{\Omega} E_{k-1}<^{\Omega} \cdots<^{\Omega} E_{1}<^{\Omega} G
$$

and we are done.
(iii) \Leftrightarrow (iv): It is easy to see that (iv) is just the contrapositive of (iii)
(iii) \Rightarrow (i): Immediate.

The set of all partial orders on the same set is partially ordered by inclusion, i.e $\Omega \subseteq \Lambda$ if $x<^{\Omega} y$ implies $x<^{\Lambda} y$.
Corollary 10. Let Δ be a pure simplicial complex. Then
(i) all shellings of Δ are pre-shellings,
(ii) if Ω is a pre-shelling of Δ and Λ is a partial order such that $\Omega \subseteq \Lambda$, then Λ is a pre-shelling of Δ with $r_{\Lambda}(F)=r_{\Omega}(F)$ for all facets F. In particular, the set of all pre-shellings of Δ is an upper ideal of the poset of all partial orders on the set of facets of Δ,
(iii) all linear extensions of a pre-shelling are shellings, with the same restriction function.

Proof. (i): Follows immediately from Theorem 9(iv).
(ii): That Λ is a pre-shelling follows from Theorem $9(\mathrm{iv})$. If F is a facet then by definition $r_{\Omega}(F) \subseteq r_{\Lambda}(F)$, and if $r_{\Omega}(F) \subset r_{\Lambda}(F)$ for some facet F we would have a contradiction by Theorem 9(ii).
(iii): Is implied by (ii).

Let P be a finite graded poset with a smallest element $\hat{0}$ and a greatest element $\hat{1}$. The order complex, $\Delta(P)$, of P is the simplicial complex of all chains of P. A simplicial complex Δ is partitionable if it can be written as

$$
\begin{equation*}
\Delta=\left[r\left(F_{1}\right), F_{1}\right] \uplus\left[r\left(F_{2}\right), F_{2}\right] \uplus \cdots \uplus\left[r\left(F_{n}\right), F_{n}\right] \tag{1}
\end{equation*}
$$

where each F_{i} is a facet of Δ and r is any function on the set of facets such that $r(F) \subseteq F$ for all facets F. The right hand side of (1) is a partitioning of Δ. By Theorem 9 (iii) we see that shellable complexes are partitionable. We need the following well known fact about partitionable order complexes. Let $\mathfrak{M}(P)$ be the set of maximal chains of P.
Lemma 11. Let $\Delta(P)$ be partitionable and let

$$
\begin{equation*}
\Delta(P)=\bigcup_{c}[r(c), c] \tag{2}
\end{equation*}
$$

be a partitioning of $\Delta(P)$. Then the flag h-vector is given by

$$
\beta_{P}(S)=|\{c \in \mathfrak{M}(P): \rho(r(c))=S\}|
$$

Proof. Let $\gamma_{P}(S)=|\{c \in \mathfrak{M}(P): \rho(r(c))=S\}|$. Note that if c is a maximal chain then $\rho(c)=[0, \rho(\hat{1})]$. By (2) we have

$$
\begin{aligned}
\alpha_{P}(S) & =|\{c \in \Delta(P): \rho(c)=S\}| \\
& =|\{c \in \mathfrak{M}(P): \rho(r(c)) \subseteq S\}| \\
& =\sum_{T \subseteq S} \gamma_{P}(T)
\end{aligned}
$$

which, by inclusion-exclusion, gives $\gamma_{P}(S)=\beta_{P}(S)$.
We will identify the set of facets of $\Delta(J(\mathbf{2} \times \mathbf{n}))$ with \mathcal{D}_{n}, the set of Dyck paths of length $2 n$. We therefore seek a partial order on \mathcal{D}_{n} which is a pre-shelling. Let $S=S\left(\mathcal{D}_{n}\right)$ be the set of mappings with elements

$$
s_{i}(w)= \begin{cases}a_{1} \cdots a_{i-1} v h v a_{i+3} \cdots a_{2 n} & \text { if } a_{i} a_{i+1} a_{i+2}=v v h \\ a_{1} \cdots a_{i-1} h v h a_{i+3} \cdots a_{2 n} & \text { if } a_{i} a_{i+1} a_{i+2}=h h v \\ w & \text { otherwise }\end{cases}
$$

for $1 \leq i \leq 2 n-2$. Define a relation Ω_{n}, by $u<^{\Omega} w$ whenever $u \neq w$ and $u=\sigma_{1} \sigma_{2} \cdots \sigma_{k}(w)$ for some mappings $\sigma_{i} \in S$ (see Figure 4).
Lemma 12. The relation Ω_{n} on \mathcal{D}_{n} is a partial order.
Proof. We need to prove that Ω_{n} is anti-symmetric. To do this we define a mapping $\sigma: \mathcal{D}_{n} \rightarrow \mathbb{N} \times \mathbb{N}$, where $\mathbb{N} \times \mathbb{N}$ is ordered lexicographically, with the property

$$
u<^{\Omega} w \Rightarrow \sigma(u)<\sigma(w)
$$

Define $\sigma(w)=(\mathrm{da}(w), \operatorname{MAJ}(w))$, where $\mathrm{da}(w)$ is the number of double ascents (sequences $v v$) in w. Now, suppose that $s_{i} \in S$ and $s_{i}(w) \neq$ $w=a_{1} a_{2} \cdots a_{2 n}$. Then $\mathrm{da}\left(s_{i}(w)\right) \leq \mathrm{da}(w)$, and if we have equality we must have $a_{i-1} a_{i} a_{i+1} a_{i+2}=v v h v$ or $a_{i-1} a_{i} a_{i+1} a_{i+2}=h h v h$ which implies $\operatorname{MAJ}\left(s_{i}(w)\right)<\operatorname{MAJ}(w)$, so σ has the desired properties.

Figure 4. The partial order Ω_{4} on \mathcal{D}_{4}, with long non-final sequences marked with bars.

Figure 5.

If v and w intersect maximally then it is plain to see that either $v=s(w)$ or $s(v)=w$ for some $s \in S$. It follows that if $w=a_{1} a_{2} \cdots a_{2 n}$ then

$$
r_{\Omega_{n}}(w)=\left\{a_{1}+a_{2}+\cdots+a_{i}: i \in L S(w)\right\},
$$

so $\rho\left(r_{\Omega_{n}}(w)\right)=L S(w)$. It remains to prove that Ω_{n} is a pre-shelling.
Theorem 13. For all $n \geq 1$ the partial order Ω_{n} is a pre-shelling of \mathcal{D}_{n}.
Proof. We prove that Ω_{n} satisfies the contrapositive of condition (i) of Theorem 9. Suppose that $u=a_{1} a_{2} \cdots a_{2 n} \neq w=b_{1} b_{2} \cdots b_{2 n}$ and let k be the coordinate such that $a_{i}=b_{i}$ for $i<k$ and $a_{k} \neq b_{k}$. By symmetry we may assume that $a_{k}=h$. Now, if $a_{k-1}=h$ then the valley of u which is determined by the first v (at, say, coordinate $\ell+1$) after k will correspond to an element

$$
x=a_{1}+\cdots+a_{\ell} \in r_{\Omega_{n}}(u) \backslash w
$$

(see Figure 5).

If $a_{k-1}=v=b_{k-1}$, then if $\ell+1$ is the coordinate for the first h after k we have that

$$
x=b_{1}+\cdots+b_{\ell} \in r_{\Omega_{n}}(w) \backslash u,
$$

so Ω_{n} is a pre-shelling.

If we define $\operatorname{MAJ}_{\ell}: \mathcal{D}_{n} \rightarrow \mathbb{N}$ by

$$
\operatorname{MAJ}_{\ell}(w)=\sum_{i \in L S(w)} i
$$

we now have:
Corollary 14. For all $n \geq 1$ we have

$$
\beta_{n}(S)=\left|\left\{w \in \mathcal{D}_{n}: L S(w)=S\right\}\right|,
$$

In particular the bi-statistic (lnfs, MAJ_{ℓ}) has the q-Narayana distribution.
The Narayana statistic ea cannot in a natural way be associated to a shelling of $\Delta(J(\mathbf{2} \times \mathbf{n}))$. However, it would be interesting to find a co-statistic s for ea such that the bi-statistic (ea, s) has the q-Narayana distribution.

References

[1] E. Deutsch, A bijection on Dyck paths and its consequences, Discrete Math. 179 (1998) 253-256.
[2] J. Fürlinger and J. Hofbauer q-Catalan Numbers, J. Combin. Theory Ser. A 40 (1985), no. 2, 248-264.
[3] G. Kreweras, Sur les partitions noncroisées d'un cycle, Discrete Math. 1 (1972) 333350.
[4] G. Kreweras, Joint distributions of three descriptive parameters of bridges, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), 177-191, Lecture Notes in Math., 1234, Springer, Berlin, 1986.
[5] G. Kreweras and P. Moszkowski, A new enumerative property of the Narayana numbers, J. Statist. Plann. Inference 14 (1986) 63-67.
[6] P. A. MacMahon, Collected Papers: Combinatorics, Vol.I, MIT Press, Cambridge, Mass., 1978.
[7] T. V. Narayana, Sur les treilles formes par les partitions d'un entier, C.R. Acad. Sci. (Paris) 240-1 (1955), 1188-9.
[8] R. Simion, Combinatorial statistics on non-crossing partitions, J. Combin. Theory Ser. A 66 (1994), 270-301.
[9] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.
[10] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.
[11] R. Sulanke, Catalan path statistics having the Narayana distribution, Discrete Math. 180 (1998), 369-389.
[12] R. Sulanke, Constraint-sensitive Catalan path statistics having the Narayana distribution, Discrete Math. 204 (1999), 397-414.

Matematik, Chalmers tekniska högskola och Göteborgs universitet, S-412 96 Göteborg, Sweden

E-mail address: branden@math.chalmers.se

[^0]: Date: 20th November 2002.
 Key words and phrases. Narayana numbers, flag h-vector, Schur Function, shelling.

