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Abstract. Recently, Babson and Steingŕımsson have introduced generalised per-

mutation patterns that allow the requirement that two adjacent letters in a pattern

must be adjacent in the permutation. We will consider pattern avoidance for such
patterns, and give a complete solution for the number of permutations avoiding any

single pattern of length three with exactly one adjacent pair of letters. For eight of
these twelve patterns the answer is given by the Bell numbers. For the remaining

four the answer is given by the Catalan numbers. We also give some results for

the number of permutations avoiding two different patterns. These results relate
the permutations in question to Motzkin paths, involutions and non-overlapping

partitions. Furthermore, we define a new class of set partitions, called monotone
partitions, and show that these partitions are in one-to-one correspondence with

non-overlapping partitions.

1. Introduction

In the last decade a wealth of articles has been written on the subject of pattern
avoidance, also known as the study of “restricted permutations” and “permutations
with forbidden subsequences”. Classically, a pattern is a permutation σ ∈ Sk, and a
permutation π ∈ Sn avoids σ if there is no subsequence in π whose letters are in the
same relative order as the letters of σ. For example, π ∈ Sn avoids 132 if there is no
1 ≤ i < j < k ≤ n such that π(i) < π(k) < π(j). In [4] Knuth established that for all
σ ∈ S3, the number of permutations in Sn avoiding σ equals the nth Catalan number,
Cn = 1

1+n

(
2n
n

)
. One may also consider permutations that are required to avoid several

patterns. In [5] Simion and Schmidt gave a complete solution for permutations avoiding
any set of patterns of length three. Even patterns of length greater than three have
been considered. For instance, West showed in [8] that permutations avoiding both
3142 and 2413 are enumerated by the Schröder numbers, Sn =

∑n
i=0

(
2n−i
i

)
Cn−i.

In [1] Babson and Steingŕımsson introduced generalised permutation patterns that
allow the requirement that two adjacent letters in a pattern must be adjacent in the per-
mutation. The motivation for Babson and Steingŕımsson in introducing these patterns
was the study of Mahonian statistics, and they showed that essentially all Mahonian
permutation statistics in the literature can be written as linear combinations of such
patterns. An example of a generalised pattern is (a cb). An (a cb)-subword of a per-
mutation π = a1a2 · · · an is a subword aiajaj+1, (i < j), such that ai < aj+1 < aj .
More generally, a pattern p is a word over the alphabet a < b < c < d · · · where two
adjacent letters may or may not be separated by a dash. The absence of a dash between
two adjacent letters in a p indicates that the corresponding letters in a p-subword of
a permutation must be adjacent. Also, the ordering of the letters in the p-subword
must match the ordering of the letters in the pattern. This definition, as well as any
other definition in the introduction, will be stated rigorously in Section 2. All classical
patterns are generalised patterns where each pair of adjacent letters is separated by a
dash. For example, the generalised pattern equivalent to 132 is (a c b).
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We extend the notion of pattern avoidance by defining that a permutation avoids
a (generalised) pattern p if it does not contain any p-subwords. We show that this
is a fruitful extension, by establishing connections to other well known combinatorial
structures, not previously shown to be related to pattern avoidance. The main results
are given below.

P |Sn(P )| Description
a bc Bn Partitions of [n]
a cb Bn Partitions of [n]
b ac Cn Dyck paths of length 2n
a bc, ab c B∗n Non-overlapping partitions of [n]
a bc, a cb In Involutions in Sn
a bc, ac b Mn Motzkin paths of length n

Here Sn(P ) = {π ∈ Sn : π avoids p for all p ∈ P}, and [n] = {1, 2, . . . , n}. When
proving that |Sn(a bc, ab c)| = B∗n (the nth Bessel number), we first prove that there
is a one-to-one correspondence between {a bc, ab c}-avoiding permutations and mono-
tone partitions. A partition is monotone if its non-singleton blocks can be written
in increasing order of their least element and increasing order of their greatest ele-
ment, simultaneously. This new class of partitions is then shown to be in one-to-one
correspondence with non-overlapping partitions.

2. Preliminaries

By an alphabet X we mean a non-empty set. An element of X is called a letter. A
word over X is a finite sequence of letters from X. We consider also the empty word,
that is, the word with no letters; it is denoted by ε. Let x = x1x2 · · ·xn be a word over
X. We call |x| := n the length of x. A subword of x is a word v = xi1xi2 · · ·xik , where
1 ≤ i1 < i2 < · · · < ik ≤ n. A segment of x is a word v = xixi+1 · · ·xi+k. If X and Y
are two linearly ordered alphabets, then two words x = x1x2 · · ·xn and y = y1y2 · · · yn
over X and Y , respectively, are said to be order equivalent if xi < xj precisely when
yi < yj .

Let X = A ∪ { } where A is a linearly ordered alphabet. For each word x let x̄
be the word obtained from x by deleting all dashes in x. A word p over X is called
a pattern if it contains no two consecutive dashes and p̄ has no repeated letters. By
slight abuse of terminology we refer to the length of a pattern p as the length of p̄. If
the ith letter in p is a dash precisely when the ith letter in q is a dash, and p and q are
order equivalent, then p and q are equivalent. In what follows all patterns will be over
the alphabet {a, b, c, d, . . .} ∪ { } where a < b < c < d < · · · .

Let [n] := {1, 2, . . . , n} (so [0] = ∅). A permutation of [n] is bijection from [n] to
[n]. Let Sn be the set of permutations of [n]. We shall usually think of a permutation
π as the word π(1)π(2) · · ·π(n) over the alphabet [n]. In particular, S0 = {ε}, since
there is only one bijection from ∅ to ∅, the empty map. We say that a subword σ of
π is a p-subword if by replacing (possibly empty) segments of π with dashes we can
obtain a pattern q equivalent to p such that q̄ = σ. However, all patterns that we
will consider will have a dash at the beginning and one at the end. For convenience,
we therefore leave them out. For example, (a bc) is a pattern, and the permutation
491273865 contains three (a bc)-subwords, namely 127, 138, and 238. A permutation
is said to be p-avoiding if it does not contain any p-subwords. Define Sn(p) to be the
set of p-avoiding permutations in Sn and, more generally, Sn(A) =

⋂
p∈A Sn(p).

We may think of a pattern p as a permutation statistic, that is, define p π as the
number of p-subwords in π, thus regarding p as a function from Sn to N. For example,
(a bc) 491273865 = 3. In particular, π is p-avoiding if and only if p π = 0. We say that
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two permutation statistics stat and stat′ are equidistributed over A ⊆ Sn, if∑
π∈A

xstatπ =
∑
π∈A

xstat′ π.

In particular, this definition applies to patterns.
Let π = a1a2 · · · an ∈ Sn. An i such that ai > ai+1 is called a descent in π. We

denote by desπ the number of descents in π. Observe that des can be defined as the
pattern (ba), that is, desπ = (ba)π. A left-to-right minimum of π is an element ai
such that ai < aj for every j < i. The number of left-to-right minima is a permutation
statistic. Analogously we also define left-to-right maximum, right-to-left minimum, and
right-to-left maximum.

In this paper we will relate permutations avoiding a given set of patterns to other
better known combinatorial structures. Here follows a brief description of these struc-
tures. Two excellent references on combinatorial structures are [7] and [6].

Set partitions. A partition of a set S is a family, π = {A1, A2, . . . , Ak}, of pairwise
disjoint non-empty subsets of S such that S = ∪iAi. We call Ai a block of π. The total
number of partitions of [n] is called a Bell number and is denoted Bn. For reference,
the first few Bell numbers are

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597.

Let S(n, k) be the number of partitions of [n] into k blocks; these numbers are called
the Stirling numbers of the second kind.

Non-overlapping partitions. Two blocks A and B of a partition π overlap if

minA < minB < maxA < maxB.

A partition is non-overlapping if no pairs of blocks overlap. Thus

π = {{1, 2, 5, 13}, {3, 8}, {4, 6, 7}, {9}, {10, 11, 12}}

is non-overlapping. A pictorial representation of π is

π =
◦−−−−−◦−−◦

◦−−−−−−−−−−−−−−◦ ◦ ◦−−◦−−◦
◦−−◦−−−−−−−−◦−−−−−−−−−−−−−−−−−−−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

.

Let B∗n be the number of non-overlapping partitions of [n]; this number is called the
nth Bessel number [3, p. 423]. The first few Bessel numbers are

1, 1, 2, 5, 14, 43, 143, 509, 1922, 7651, 31965, 139685, 636712.

We denote by S∗(n, k) the number of non-overlapping partitions of [n] into k blocks.

Involutions. An involution is a permutation which is its own inverse. We denote by
In the number of involutions in Sn. The sequence {In}∞0 starts with

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152.

Dyck paths. A Dyck path of length 2n is a lattice path from (0, 0) to (2n, 0) with
steps (1, 1) and (1,−1) that never goes below the x-axis. Letting u and d represent the
steps (1, 1) and (1,−1) respectively, we code such a path with a word over {u, d}. For
example, the path
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is coded by uuduuddd. A return step in a Dyck path δ is a d such that δ = αuβdγ,
for some Dyck paths α, β, and γ. A useful observation is that every non-empty Dyck
path δ can be uniquely decomposed as δ = uαdβ, where α and β are Dyck paths. This
is the so-called first return decomposition of δ.

The nth Catalan number Cn = 1
n+1

(
2n
n

)
counts the number of Dyck paths of length

2n. The sequence of Catalan numbers starts with

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012.

Motzkin paths. A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) with
steps (1, 0), (1, 1), and (1,−1) that never goes below the x-axis. Letting `, u, and d
represent the steps (1, 0), (1, 1), and (1,−1) respectively, we code such a path with a
word over {`, u, d}. For example, the path

is coded by u``ud`d`. If δ is a non-empty Motzkin path, then δ can be decomposed as
δ = `γ or δ = uαdβ, where α, β and γ are Motzkin paths.

The nth Motzkin number Mn is the number of Motzkin paths of length n. The first
few of the Motzkin numbers are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511.

3. Three classes of patterns

Let π = a1a2 · · · an ∈ Sn. Define the reverse of π as πr := an · · · a2a1, and define
the complement of π by πc(i) = n+ 1− π(i), where i ∈ [n].
Proposition 1. With respect to being equidistributed, the twelve pattern statistics of
length three with one dash fall into the following three classes.

(i) a bc, c ba, ab c, cb a.
(ii) a cb, c ab, ba c, bc a.
(iii) b ac, b ca, ac b, ca b.

Proof. The bijections π 7→ πr, π 7→ πc, and π 7→ (πr)c give the equidistribution part of
the result. Calculations show that these three distributions differ pairwise on S4. �

4. Permutations avoiding a pattern of class one or two

Proposition 2. Partitions of [n] are in one-to-one correspondence with (a bc)-avoiding
permutations in Sn. Hence |Sn(a bc)| = Bn.

First proof. Recall that the Bell numbers satisfy B0 = 1, and

Bn+1 =
n∑
k=0

(
n

k

)
Bk.

We show that |Sn(a bc)| satisfy the same recursion. Clearly, S0(a bc) = {ε}. For
n > 0, let M = {2, 3, . . . , n + 1}, and let S be a k element subset of M . For each
(a bc)-avoiding permutation σ of S we construct a unique (a bc)-avoiding permutation
π of [n+ 1]. Let τ be the word obtained by writing the elements of M \S in decreasing
order. Define π := σ1τ .

Conversely, if π = σ1τ is a given (a bc)-avoiding permutation of [n + 1], where
|σ| = k, then the letters of τ are in decreasing order, and σ is an (a bc)-avoiding
permutation of the k element set {2, 3, . . . , n+ 1} \ {i : i is a letter in τ}. �
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Second proof. Given a partition π of [n], we introduce a standard representation of π
by requiring that:

(a) Each block is written with its least element first, and the rest of the elements
of that block are written in decreasing order.

(b) The blocks are written in decreasing order of their least element, and with
dashes separating the blocks.

Define π̂ to be the permutation we obtain from π by writing it in standard form and
erasing the dashes. We now argue that π̂ := a1a2 · · · an avoids (a bc). If ai < ai+1, then
ai and ai+1 are the first and the second element of some block. By the construction of
π̂, ai is a left-to-right minimum, hence there is no j ∈ [i− 1] such that aj < ai.

Conversely, π can be recovered uniquely from π̂ by inserting a dash in π̂ preceding
each left-to-right minimum, apart from the first letter in π̂. Indeed, it easy to see that
the partition, π, in this way obtained is written in standard form. Thus π 7→ π̂ gives
the desired bijection. �

Example. As an illustration of the map defined in the above proof, let

π = {{1, 3, 5}, {2, 6, 9}, {4, 7}, {8}}.
Its standard form is 8 47 296 153. Thus π̂ = 847296153.
Proposition 3. Let L(π) be the number of left-to-right minima of π. Then∑

π∈Sn(a bc)

xL(π) =
∑
k≥0

S(n, k)xk.

Proof. This result follows readily from the second proof of Proposition 2. We here give
a different proof, which is based on the fact that the Stirling numbers of the second
kind satisfy

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).
Let T (n, k) be the number of permutations in Sn(a bc) with k left-to-right minima.

We show that the T (n, k) satisfy the same recursion as the S(n, k).
Let π be an (a bc)-avoiding permutation of [n − 1]. To insert n in π, preserving

(a bc)-avoidance, we can put n in front of π or we can insert n immediately after each
left-to-right minimum. Putting n in front of π creates a new left-to-right minimum,
while inserting n immediately after a left-to-right minimum does not. �

Proposition 4. Partitions of [n] are in one-to-one correspondence with (a cb)-avoiding
permutations in Sn. Hence |Sn(a cb)| = Bn.

Proof. Let π be a partition of [n]. We introduce a standard representation of π by
requiring that:

(a) The elements of a block are written in increasing order.
(b) The blocks are written in decreasing order of their least element, and with

dashes separating the blocks.
(Note that this standard representation is different from the one given in the second
proof of Proposition 2.) Define π̂ to be the permutation we obtain from π by writing it in
standard form and erasing the dashes. It easy to see that π̂ avoids (a cb). Conversely,
π can be recovered uniquely from π̂ by inserting a dash in between each descent in
π̂. �

Example. As an illustration of the map defined in the above proof, let

π = {{1, 3, 5}, {2, 6, 9}, {4, 7}, {8}}.
Its standard form is 8 47 269 135. Thus π̂ = 847269135.
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Proposition 5. ∑
π∈Sn(a cb)

x1+desπ =
∑
k≥0

S(n, k)xk.

Proof. From the proof of Proposition 4 we see that π has k + 1 blocks precisely when
π̂ has k descents. �

Proposition 6. Involutions in Sn are in one-to-one correspondence with permutations
in Sn that avoid (a bc) and (a cb). Hence

|Sn(a bc, a cb)| = In.

Proof. We give a combinatorial proof using a bijection that is essentially identical to
the one given in the second proof of Proposition 2.

Let π ∈ Sn be an involution. Recall that π is an involution if and only if each cycle
of π is of length one or two. We now introduce a standard form for writing π in cycle
notation by requiring that:

(a) Each cycle is written with its least element first.
(b) The cycles are written in decreasing order of their least element.

Define π̂ to be the permutation obtained from π by writing it in standard form and
erasing the parentheses separating the cycles.

Observe that π̂ avoids (a bc): Assume that ai < ai+1, that is (ai ai+1) is a cycle in
π, then ai is a left-to-right minimum in π. This is guaranteed by the construction of
π̂. Thus there is no j < i such that aj < ai.

The permutation π̂ also avoids (a cb): Assume that ai > ai+1, then ai+1 must be
the smallest element of some cycle. Whence ai+1 is a left-to-right minimum in π̂.

Conversely, if π̂ := a1 . . . an is an {a bc, a cb}-avoiding permutation then the invo-
lution π is given by: (ai ai+1) is a cycle in π if and only if ai < ai+1. �

Example. The involution π = 826543719 written in standard form is

(9)(7)(4 5)(3 6)(2)(1 8),

and hence π̂ = 974536218.
Proposition 7. The number of permutations in Sn(a bc, a cb) with n−k−1 descents
equals the number of involutions in Sn with n− 2k fixed points.

Proof. Under the bijection π 7→ π̂ in the proof of Proposition 6, a cycle of length two
in π corresponds to an occurrence of (ab) in π̂. Hence, if π has n − 2k fixed points,
then π̂ has n− k − 1 descents. �

Corollary 8. ∑
π∈Sn(a bc,a cb)

x1+des π =
n∑
k=0

(
n

k

)(
n− k
k

)
k!
2k
xn−k.

Proof. Let Ikn denote the number of involutions in Sn with k fixed points. Then Propo-
sition 7 is equivalently stated as∑

π∈Sn(a bc,a cb)

x1+des π =
∑
k≥0

In−2k
n xn−k. (1)

The result now follows from the well-known and easily to derived formula

Ikn =
(
n

k

)(
n− k
r

)
r!
2r
, where r =

n− k
2

,

for n− k even, with Ikn = 0 for n− k odd. �
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Definition 9. Let π be an arbitrary partition whose non-singleton blocks {A1, . . . , Ak}
are ordered so that for all i ∈ [k− 1], minAi > minAi+1. If maxAi > maxAi+1 for all
i ∈ [k − 1], then we call π a monotone partition. The set of monotone partitions of [n]
is denoted by Mn.
Example. The partition

π =

◦ ◦−−◦−−−−−◦
◦−−−−−◦−−−−−−−−−−−−−−−−−◦

◦−−−−−−−−−−−−−−◦
◦−−◦−−−−−−−−◦−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

is monotone.
Proposition 10. Monotone partitions of [n] are in one-to-one correspondence with
permutations in Sn that avoid (a bc) and (ab c). Hence

|Sn(a bc, ab c)| = |Mn|.

Proof. Given π in Mn, let A1 A2 · · · Ak be the result of writing π in the standard
form given in the second proof of Proposition 2, and let π̂ = A1A2 · · ·Ak. By the con-
struction of π̂ the first letter in each Ai is a left-to-right minimum. Furthermore, since
π is monotone the second letter in each non-singleton Ai is a right-to-left maximum.
Therefore, if xy is an (ab)-subword of π̂, then x is left-to-right minimum and y is a
right-to-left maximum. Thus π̂ avoids both (a bc) and (ab c).

Conversely, given π̂ in Sn(a bc, ab c), let A1 A2 · · · Ak be the result of inserting
a dash in π̂ preceding each left-to-right minimum, apart from the first letter in π̂.
Since π̂ is (ab c)-avoiding, the second letter in each non-singleton Ai is a right-to-left
maximum. The second letter in Ai is the maximal element of Ai when Ai is viewed as
a set. Thus π = {A1, A2, . . . , Ak} is monotone. �

We now show that there is a one-to-one correspondence between monotone partitions
and non-overlapping partitions. The proof we give is strongly influenced by the paper
[3], in which Flajolet and Schot showed that the ordinary generating function of the
Bessel numbers admits a nice continued fraction expansion∑

n≥0

B∗nx
n =

1

1− 1 · x−
x2

1− 2 · x−
x2

1− 3 · x−
x2

. . .

,

and using that as a starting point they derived the asymptotic formula

B∗n ∼
∑
k≥0

kn+2

(k!)2
.

Proposition 11. Monotone partitions of [n] are in one-to-one correspondence with
non-overlapping partitions of [n]. Hence |Mn| = B∗n.

Proof. Let π be a non-overlapping partition of [n]. From π we will create a new
partition by successively inserting 1, 2, . . . , n, in this order, into this new partition.
During this process a block is labelled as either open or closed. More formally, in each
step k = 1, 2, . . . , n in this process we will have a partition σ of [k] together with a
function from σ to the set of labels {open, closed}. Before we start we also need a
labelling of the blocks of π. Actually we need n such labellings, one for each k ∈ [n]:
At step k a block B of π is labelled open if maxB > k and closed otherwise. For ease
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of language, we say that a block is open if it is labelled open, and closed if it is labelled
closed.

(a) If k is the minimal element of a non-singleton block of π, then create a new
block {k} and label it open.

(b) If k is the maximal element of a non-singleton block of π, then insert k into
the open block with the smallest minimal element, and label it closed.

(c) If k belongs to a non-singleton block B of π and is not the minimal or the
maximal element of B, and B has the ith largest minimal element of the open
blocks of π, then insert k into the open block with the ith largest minimal
element.

(d) If {k} is a block of π then create a new block {k} and label it closed.

Define Φ(π) as the partition obtained from π by applying the above process. Observe
that Φ(π) is monotone. Indeed, the two crucial observations are (i) in (b) we label the
open block with the smallest minimum closed, and (ii) a block labelled closed has
received all its elements.

Conversely, we give a map Ψ that to each monotone partition π of [n] gives a unique
non-overlapping partition Ψ(π) of [n]. Define Ψ the same way as Φ is defined, except for
case (c), where we instead of inserting k into the block labelled open with the smallest
minimal element, insert k into the block labelled open with the largest minimal element.
It is easy to see that Φ and Ψ are each others inverses and hence they are bijections. �

Corollary 12. The non-overlapping partitions of [n] are in one-to-one correspondence
with permutations in Sn that avoid (a bc) and (ab c). Hence

|Sn(a bc, ab c)| = B∗n.

Proof. Follows immediately from Proposition 10 together with Proposition 11. �

Example. By the proof of Proposition 11, the non-overlapping partition

π =
◦−−−−−◦−−◦

◦−−−−−−−−−−−−−−◦ ◦ ◦−−◦−−◦
◦−−◦−−−−−−−−◦−−−−−−−−−−−−−−−−−−−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

corresponds to the monotone partition

Φ(π) =

◦ ◦−−◦−−−−−◦
◦−−−−−◦−−−−−−−−−−−−−−−−−◦

◦−−−−−−−−−−−−−−◦
◦−−◦−−−−−−−−◦−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

that according to the proof of Proposition 10 corresponds to the {a bc, ab c}-avoiding
permutation

̂Φ(π) = 10 13 11 9 4 12 6 3 8 1 7 5 2.

Proposition 13. Let L(π) be the number of left-to-right minima of π. Then∑
π∈Sn(a bc,ab c)

xL(π) =
∑
k≥0

S∗(n, k)xk.

Proof. Under the bijection π 7→ π̂ in the proof of Proposition 10, the number of blocks
in π determines the number of left-to-right minima of π̂, and vice versa. The number
of blocks is not changed by the bijection Ψ in the proof of Proposition 11. �
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5. Permutations avoiding a pattern of class three

In [4] Knuth observed that there is a one-to-one correspondence between (b a c)-
avoiding permutations and Dyck paths. For completeness and future reference we give
this result as a lemma, and prove it using a bijection which rests on the first return
decomposition of Dyck paths. First we need a definition. For each word x = x1x2 · · ·xn
without repeated letters, we define the projection of x onto Sn, which we denote proj(x),
by

proj(x) = a1a2 · · · an , where ai = |{j ∈ [n] : xj ≤ xi}|.
Equivalently, proj(x) is the permutation in Sn which is order equivalent to x. For
example, proj(265) = 132.
Lemma 1. |Sn(b a c)| = Cn.

Proof. Let π = a1a2 · · · an be a permutation of [n] such that ak = 1. Then π is
(b a c)-avoiding if and only if π = σ1τ , where σ := a1 · · · ak−1 is a (b a c)-avoiding
permutation of {n, n − 1, . . . , n − k + 1}, and τ := ak+1 · · · an is a (b a c)-avoiding
permutation of {2, 3, . . . , k}.

We define recursively a mapping Φ from Sn(b a c) onto the set of Dyck paths of
length 2n. If π is the empty word, then so is the Dyck path determined by π, that is,
Φ(ε) = ε. If π 6= ε, then we can use the factorisation π = σ1τ from above, and define
Φ(π) = u (Φ ◦ proj)(σ) d (Φ ◦ proj)(τ). It is easy to see that Φ may be inverted, and
hence is a bijection. �

Lemma 2. A permutation avoids (b ac) if and only if it avoids (b a c).

Proof. The sufficiency part of the proposition is trivial. The necessity part is not
difficult either. Assume that π contains a (b a c)-subword. Then there is a segment
Bm1 · · ·mr of π, where, for some j < r, mj < B and mr > B. Now choose the largest
i such that mi < B, then mi+1 > B. �

Proposition 14. Dyck paths of length 2n are in one-to-one correspondence with (b ac)-
avoiding permutations in Sn. Hence

|Sn(b ac)| = 1
n+ 1

(
2n
n

)
.

Proof. Follows immediately from Lemmas 1 and 2. �

Proposition 15. Let L(π) be the number of left-to-right minima of π. Then∑
π∈Sn(b ac)

xL(π) =
∑
k≥0

k

2n− k

(
2n− k
n

)
xk.

Proof. Let R(δ) denote the number of return steps in the Dyck path δ. It is well known
(see [2]) that the distribution of R over all Dyck paths of length 2n is the distribution
we claim that L has over Sn(b ac). .

Let γ be a Dyck path of length 2n, and let γ = uαdβ be its first return decomposition.
Then R(γ) = 1 + R(β). Let π ∈ Sn(b ac), and let π = σ1τ be the decomposition
given in the proof of Lemma 1. Then L(π) = 1 + L(σ). The result now follows by
induction. �

In addition, it is easy to deduce that left-to-right minima, left-to-right maxima,
right-to-left minima, and right-to-left maxima all share the same distribution over
Sn(b ac).
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Proposition 16. Motzkin paths of length n are in one-to-one correspondence with
permutations in Sn that avoid (a bc) and (ac b). Hence

|Sn(a bc, ac b)| = Mn.

Proof. We mimic the proof of Lemma 1. Let π ∈ Sn(a bc, ac b). Since π avoids (ac b)
it also avoids (a c b) by Lemma 2 via π 7→ (πc)r. Thus we may write π = σnτ , where
π(k) = n, σ is an {a bc, ac b}-avoiding permutation of {n − 1, n − 2, . . . , n − k + 1},
and τ is an {a bc, ac b}-avoiding permutation of [n− k]. If σ 6= ε then σ = σ′r where
r = n − k + 1, or else an (a bc)-subword would be formed with n as the ’c’ in (a bc).
Define a map Φ from Sn(a bc, ac b) to the set of Motzkin paths by Φ(ε) = ε and

Φ(π) =

{
` (Φ ◦ proj)(σ) if π = nσ,

u (Φ ◦ proj)(σ) dΦ(τ) if π = σrnτ and r = n− k + 1.

It is routine to find the inverse of Φ. �

Example. Let us find the Motzkin path associated with the {a bc, ac b}-avoiding
permutation 76453281.

Φ(76453281) = uΦ(54231)dΦ(1)
= u`Φ(4231)d`
= u``Φ(231)d`
= u``udΦ(1)d`
= u``ud`d`
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