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Abstract. Let Rn be the set of all permutations of length n which avoid 132.
In this paper we study the statistics last descent (“ldes”), first descent (“fdes”),
last rise (“lris”), and first rise (“fris”) on the set Rn. In particular, we prove that
the bistatistic (“fris”,“lris”) on the set of all permutations Rn\{n . . . 21} and the
bistatistic (“n− ldes”,“n− fdes”) on the set of all permutations of Rn\{12 . . . n} are
equidistributed. Furthermore, we consider the case of sign balance for these statistics
on the set of all permutations Rn, and we give a combinatorial interpretation for some
of these statistics.

1. Introduction

Let Sn denote the set of permutations of {1, . . . , n}, written in one-line notation,
and suppose that π ∈ Sn and σ ∈ Sk. We say that a subsequence of π has type σ
whenever it has the same pairwise comparisons as σ. For example, the subsequence
24869 of the permutation 214538769 has type 12435. We say that π avoids σ (or
π is σ-avoiding) whenever π contains no subsequence of type σ. For example, the
permutation 214538769 avoids 4321 and 2413, but it has 2589 as a subsequence, so it
does not avoid 1234. We denote the set of σ-avoiding permutations in Sn by Sn(σ).
We define Rn = Sn(132). For π ∈ Rn, we define the following statistics:

(1) ldes(π) = last descent of π = max{1 ≤ i ≤ n − 1|πi > πi+1} where
ldes(12 . . . n) = 0,

(2) fdes(π) = first descent of π = min{1 ≤ i ≤ n − 1|πi > πi+1} where
fdes(12 . . . n) = 0,

(3) lris(π) = last rise of π = max{1 ≤ i ≤ n− 1|πi < πi+1} where lris(n . . . 21) = 0,
(4) fris(π) = first rise of π = min{1 ≤ i ≤ n− 1|πi < πi+1} where fris(n . . . 21) = 0,
(5) lind(π) = π−1(n) = the index of the letter “n” in π,
(6) find(π) = π−1(1) = the index of the letter “1” in π.

Key words and phrases. 132-avoiding permutations, Dyck paths, equidistribution of statistics, sign-
balance.
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Foata and Schützenberger [FS, Theorem 1] proved that the major index and the
inversion number are equidistributed on Sn whose inverse has a prescribed descent set.
Recently, Adin and Roichman [AR, Theorem 1.1] gave an analogue for this result for
Sn(321). They proved that the statistics “ldes” and “lind − 1” are equidistributed on
the set Sn(321). Note that these statistics are identical on the set Rn. (To prove that,
let s = π−1

1 . We may assume that s > 1, otherwise π equals the identity of Sn, which
has no descents. Clearly, πs−1 > πs. Furthermore, we have 1 = πs < πs+1 < · · · < πn

since π avoids 132. Therefore, s− 1 is exactly the last descent of π.)

The Catalan sequence is the sequence (Cn)n≥0 = (1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . ),
where Cn = 1

n+1

(
2n
n

)
is called the nth Catalan number. The generating function for

the Catalan numbers is denoted by C(t) = 1−
√

1−4t
2t

. The Catalan numbers provide
a complete answer to the problem of counting certain properties of more than 100
different combinatorial structures (see [S, page 219 and Exercise 6.19]). The structures
that are useful for us in the present paper are Dyck paths (see [S]) and 132-avoiding
permutations (see [Kn]).

A Dyck path is a path in the plane integer lattice Z2 consisting of up-steps U = (1, 1)
and down-steps D = (1,−1) which never passes below the x-axis. We denote the set
of Dyck paths of length 2n by Pn. A point on the Dyck path is called a peak if it is
immediately preceded by an up-step and immediately followed by a down-step. For
p ∈ Pn, we define

lpeak(p) = the height (the y-coordinate) of the last peak of p.

Recently, Adin and Roichman [AR, Theorem 1.2] proved that the statistics “ldes” on
the set Sn(321), “ldes” on the set Pn, and “lind− 1” are equidistributed on the set Pn.
In this paper we prove the following analogue of this result.

Theorem 1.1. For all n ≥ 1, we have∑
p∈Pn

qn−lpeak(p) =
∑
π∈Rn

qldes(π).

In addition, we study the sign-and-“find” and sign-and-“lind” enumerators for Rn

(see [AR, Theorem 1.3] for Sn(321)), and we prove the following result.

Theorem 1.2. For all n ≥ 1,∑
π∈R2n

sign(π)qldes(π) = (1− q)
∑

π∈R2n+1

sign(π)qfind(π)−1,

and ∑
π∈R2n−1

sign(π)qldes(π) =
∑

π∈Rn−1

q2(find(π)−1).

The paper is organized as follows. In Section 2, we study the statistics “ldes”,
“fdes”, “lris”, and “fris” on the set Rn. In particular, we prove that the bistatistic
(“fris”,“lris”) on the set Rn\{n . . . 21} and the bistatistic (“n − ldes”,“n − fdes”) on
the set Rn\{12 . . . n} are equidistributed. In Section 3, we consider the case of sign
balance of some statistics on the set Rn. Finally, in Section 4, we give a combinatorial
interpretation (using Dyck paths) for some of these statistics.
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2. Equidistribution of statistics

In this section, we study the statistics “ldes”, “fdes”, “lris”, and “fris” on the set
Rn by using the block decomposition approach of 132-avoiding permutations in Sn

(see [MV]).

First of all, let us describe the block decomposition of a permutation π ∈ Rn. Let
n ≥ 1 and π = (π′, n, π′′) ∈ Rn such that πj = n. π avoids 132 if and only if π′ is a
permutation of the numbers n− j + 1, n− j + 2, . . . , n− 1, π′′ is a permutation of the
numbers 1, 2, . . . , n − j, and both π′ and π′′ avoid 132. This representation is called
the block decomposition of π.

Theorem 2.1. The statistic “fris” on the set Rn\{n . . . 21} and the statistic “n− ldes”
on the set Rn\{12 . . . n} are equidistributed, that is, for n ≥ 1, we have∑

π∈Rn\{n...21}

qfris(π) =
∑

π∈Rn\{12...n}

qn−ldes(π).

Moreover, ∑
n≥0

∑
π∈Rn

qfris(π)xn =
1

1− x
− 1

1− qx
+

1

1− qxC(x)

and ∑
n≥0

∑
π∈Rn

qldes(π) =
1

1− xC(qx)
.

Proof. Let Fn(q) =
∑

π∈Rn
qldes(π) for n ≥ 0. Using the block decomposition of π ∈

Rn, we may derive a recurrence for Fn(q). Namely, by making use of the fact that
|Sm(132)| = Cm = 1

m+1

(
2m
m

)
(see [Kn]), we get for n ≥ 1,

(2.1) Fn(q) = Fn−1(q) + q
n−2∑
j=0

qjCjFn−1−j(q).

Multiplying both sides by xn, summing over all n ≥ 1, and finally using F0(q) = 1, we
obtain that

F (x; q) = 1 +
∑
n≥1

∑
π∈Rn

qldes(π)xn =
1

1− xC(xq)
.

Let now Hn(q) =
∑

π∈Rn
qfris(π) for n ≥ 0. Again, using the block decomposition

of π, we may derive a recurrence for Hn(q). First of all, the contribution of the
permutations π with π1 = n gives 1 + q(Hn−1(q) − 1). Secondly, the contribution
of the permutations π with π2 = n gives Cn−2q. Finally, for πj = n with j ≥ 3, we
get as contribution (Hj−1(q) − 1)Cn−j whenever π′ 6= (n − 1) . . . (n + 1 − j) in the
decomposition π = (π′, n, π′′), and qj−1Cn−j for π′ = (n− 1) . . . (n + 1− j). Hence, for
n ≥ 1, we have

Hn(q) = 1 + q(Hn−1(q)− 1) + Cn−2q +
n−1∑
j=2

Cn−1−j(Hj(q)− 1) +
n−1∑
j=2

qjCn−1−j,
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or, equivalently,

(2.2) Hn(q) = 1 + q(Hn−1(q)− 1) +
n−1∑
j=2

Cn−1−j(Hj(q)− 1) +
n−1∑
j=1

qjCn−1−j.

If we write Kn(q) for qn(Hn(q−1)− 1) + 1, then it is easy to see that

Kn(q) = Kn−1(q) + q
n−2∑
j=0

qjCjKn−1−j(q).

Since K0(q) = K1(q) = 1, an induction on n together with Equation (2.1) gives for
n ≥ 0,

qn(Hn(1/q)− 1) + 1 = Fn(q).

The rest follows now easily. �

Theorem 2.2. The statistic “lris” on the set Rn\{n . . . 21} and the statistic “n− fdes”
on the set Rn\{12 . . . n} are equidistributed, that is, for n ≥ 1, we have∑

π∈Rn\{n...21}

qlris(π) =
∑

π∈Rn\{12...n}

qn−fdes(π).

Moreover, ∑
n≥0

∑
π∈Rn

qfdes(π)xn =
1− q + q(1− x)2C(x)

(1− x)(1− xq)

and ∑
n≥0

∑
π∈Rn

qlris(π)xn =
1 + x(C(xq)− 1)C(xq)

1− x
.

Proof. Let Ln(q) =
∑

π∈Rn
qfdes(π) for n ≥ 0. Let π = (π′, n, π′′) ∈ Rn such that πj = n.

Using this block decomposition of π, we may derive a recurrence for Ln(q). Namely,
the contribution of the permutations with j = 1 gives Cn−1q, the contribution for j = 2
gives Cn−2q

2, the contribution for n ≥ j ≥ 3 and π′ 6= (n + 1 − j) . . . (n − 1) gives
Cn−j(Lj−1(q) − 1), the contribution for n − 1 ≥ j ≥ 3 and π′ = (n + 1 − j) . . . (n − 1)
gives qjCn−j, and the contribution for j = n and π′ = (n + 1 − j) . . . (n − 1)n gives 1.
Hence, for n ≥ 1, we have

Ln(q) = Cn−1q + Cn−2q
2 +

n∑
j=3

Cn−j(Lj−1(q)− 1) +
n−1∑
j=3

qjCn−j + 1,

or, equivalently,

(2.3) Ln(q) = 1 + q

n−2∑
j=0

qjCn−1−j +
n−1∑
j=0

Cn−1−j(Lj(q)− 1).

Multiplying by xn, summing over n ≥ 1, and finally using L0(q) = L1(q) = 1, we obtain
that ∑

n≥0

Ln(q)xn =
1− q + q(1− x)2C(x)

(1− x)(1− xq)
.
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Now, let Pn(q) =
∑

π∈Rn
qlris(π) for n ≥ 0. Again, we may derive a recurrence for

Pn(q) by using the above block decomposition of π. Namely, the contribution for j = n
gives Cn−1q

n−1, the contribution for j = n − 1 gives Cn−2q
n−2, the contribution for

1 ≤ j ≤ n− 2 and π′′ 6= (n− j) . . . 21 gives Cj−1q
j(Pn−j(q) − 1), and the contribution

for n− 2 ≥ j ≥ 1 and π′′ = (n− j) . . . 21 gives qj−1Cj−1. Hence, for n ≥ 1, we have

Pn(q) = Cn−1q
n−1 + Cn−2q

n−2 +
n−2∑
j=1

Cj−1q
j(Pn−j(q)− 1) +

n−2∑
j=1

qj−1Cj−1,

or, equivalently,

(2.4) Pn(q) =
n−1∑
j=0

qjCj + q
n−1∑
j=0

Cjq
j(Pn−1−j(q)− 1).

Multiplying by xn, summing over n ≥ 1, and using finally P0(q) = P1(q) = 1, we obtain
that ∑

n≥0

Pn(q)xn =
1 + x(C(xq)− 1)C(xq)

1− x
.

Using Equations (2.3) and (2.4) together with an induction on n, we conclude that
qn(Pn(q−1)− 1) + 1 = Ln(q), and this completes the proof. �

More generally, we prove that the bistatistics (“fris”,“lris”) on the set Rn\{n . . . 21}
and (“n− ldes”,“n− fdes”) on the set Rn\{12 . . . n} are equidistributed.

Theorem 2.3. The bistatistic (“fris”,“lris”) on the set Rn\{n . . . 21} and the bistatistic
(“n− ldes”,“n− fdes”) on the set Rn\{12 . . . n} are equidistributed, that is, for n ≥ 1,
we have ∑

π∈Rn\{12...n}

pn−ldes(π)qn−fdes(π) =
∑

π∈Rn\{n...21}

pfris(π)qlris(π).

Moreover,∑
n≥0

∑
π∈Rn

pfris(π)qlris(π)xn = 1 +
x(1− p + p(1− 2qx + pq2x2)C(qx))

(1− x)(1− pqx)(1− pqxC(qx))
.

Proof. Let An(p, q) =
∑

π∈Rn
pfris(π)qlris(π) for n ≥ 1 and A0(p, q) = 1. Using the block

decomposition π = (π′, n, π′′) ∈ Rn where πj = n once more, we derive a recurrence
for An(p, q) if n ≥ 1. Namely, the contribution of the permutations with π′ = (n −
1) . . . (n + 1 − j) and π′′ = (n − j) . . . 1 gives

∑n−1
j=0 (pq)j. The contribution of the

permutations where π′ = (n− 1) . . . (n + 1− j) and π′′ 6= (n− j) . . . 1 gives

pq(An−1(p, q)− 1) +
n∑

j=2

qjpj−1(Pn−j(q)− 1).

(Pn(q) is the polynomial appearing in the proof of Theorem 2.2.) The contribution
of the permutations where π′ 6= (n − 1) . . . (n + 1 − j) and π′′ = (n − j) . . . 1 gives∑n

j=1 qj−1(Hj−1(p) − 1). (Hn(p) is the polynomial appearing in the proof of Theo-

rem 2.1). Finally, the contribution of the permutations where π′ 6= (n−1) . . . (n+1−j)
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and π′′ 6= (n− j) . . . 1 equals
∑n

j=1 qj(Hj−1(p)− 1)(Pn−j(q)− 1). Hence, for n ≥ 1, we
have

An(p, q) = pq(An−1(p, q)− 1) +
n−1∑
j=0

(pq)j + q

n−1∑
j=1

(pq)j(Pn−1−j(q)− 1)

+
n−1∑
j=0

qj(Hj(p)− 1) + q

n−1∑
j=0

qj(Hj(p)− 1)(Pn−1−j(q)− 1).

Let A(x; p, q), P (x; q), and H(x; p) be the generating functions for the sequences
An(p, q), Pn(q), and Hn(p), respectively, that is,

A(x; p, q) =
∑
n≥0

An(p, q)xn, P (x; q) =
∑
n≥0

Pn(q)xn, and H(x; p) =
∑
n≥0

Hn(p)xn.

Multiplying the above recurrence by xn, summing over n ≥ 1, and finally using
A0(p, q) = H0(p) = P0(q) = 1, we obtain that

(1− pqx)A(x; p, q) = 1 +
x

(1− x)(1− pqx)
+

x

1− x

(
H(qx; p)− 1

1− qx

)
+

qx

1− pqx

(
P (x; q)− 1

1− x

)
− qx

(
P (x; q)− 1

1− x

)
− pqx

1− x
+ xq

(
H(qx; p)− 1

1− qx

) (
P (x; q)− 1

1− x

)
.

From Theorem 2.1 we have

H(x; q) =
1

1− qxC(x)
+

1

1− x
− 1

1− qx
,

while Theorem 2.2 yields

P (x; q) =
1

1− x
(1 + x(C(qx)− 1)C(qx)).

Hence,

A(x; p, q) = 1 +
x(1− p + p(1− 2qx + pq2x2)C(qx))

(1− x)(1− pqx)(1− pqxC(qx))
.

We now turn to the computation of the generating function

B(x; p, q) =
∑
n≥0

∑
π∈Rn

pn−ldes(π)qn−fdes(π)xn.

Using the arguments in the proof of the formula for A(x; p, q), we get that

B(x; p, q) = A(x; p, q)− 1

1− x
+

1

1− pqx
.
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Hence, ∑
n≥0

∑
π∈Rn\{12...n}

pn−ldes(π)qn−fdes(π)xn = B(x; p, q)− 1

1− pqx

= A(x; p, q)− 1

1− x

=
∑
n≥0

∑
π∈Rn\{n...21}

pfris(π)qlris(π)xn,

as requested. �

3. Sign Balance on Rn

We denote the set of all even (respectively odd) permutations π ∈ Rn by R+
n (respec-

tively R−
n ). We define en = |R+

n |, on = |R−
n |, and mn = en − on for all n ≥ 0. (Simion

and Schmidt [SimSch] proved that mn = C(n−1)/2 if n is odd and mn = 0 otherwise.)
In this section we study the sign-balance of Rn with respect to certain statistics.

Theorem 3.1. We have∑
n≥0

Mn(q)xn =
∑
n≥0

∑
π∈Rn

sign(π)qldes (π) =
1 + x− x2qC(x2q2)

1− x2C(x2q2)
.

Proof. Let F±
n (q) =

∑
π∈R±n

qldes(π), and let π = (π′, n, π′′) ∈ Rn such that πj+1 = n,
0 ≤ j ≤ n− 1. Then, for this block decomposition of π, we have

sign(π) = (−1)(j+1)(n−j−1) sign(π′) sign(π′′) = (−1)(j+1)(n−1) sign(π′) sign(π′′),

or, equivalently,

sign(π) =

{
sign(π′) · sign(π′′), if n is odd,
(−1)j+1 · sign(π′) · sign(π′′), if n is even.

Therefore, for n ≥ 1, we obtain

F±
2n+1(q) = F±

2n(q) +
2n−1∑
j=0

qj+1(ejF
±
2n−j(q) + ojF

∓
2n−j(q))

F±
2n(q) = F±

2n−1(q) +
∑

j=0,2,4,...,2n−2

qj+1(ejF
∓
2n−1−j(q) + ojF

±
2n−1−j(q))

+
∑

j=1,3,...,2n−3

qj+1(ejF
±
2n−1−j(q) + ojF

∓
2n−1−j(q).

Hence, for all n ≥ 1, we have

M2n+1(q) = M2n(q) +
2n−1∑
j=0

qj+1mjM2n−j(q),

M2n(q) = M2n−1(q)−
∑

j=0,2,4,...,2n−2

qj+1mjM2n−1−j(q)

+
∑

j=1,3,...,2n−3

qj+1mjM2n−1−j(q).
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Let M(x; q) =
∑

n≥0 Mn(q)xn and m(x) =
∑

n≥0 mnx
n. Using [M2, Lemma 2.3], we

get that

(1− x− xqm(xq))M(x; q)− (1 + x + xqm(−xq))M(−x; q)

= −xq(m(xq) + m(−xq)),

and

(1− x + xqm(−xq))M(x; q) + (1 + x− xqm(xq))M(−x; q)

= 2− xq(m(xq)−m(−xq)).

Hence, solving the above two equations for the variables M(x; q) and M(−x; q), and
using the fact that m(x) = 1+xC(x2) (see [SimSch]), we obtain the desired result. �

As a corollary of the above theorem, we have the following result concerning the
sign-and-“ldes” statistic on Rn.

Corollary 3.2. For all n ≥ 1, we have∑
π∈R2n

sign(π)(−1)ldes(π) = 2Cn and
∑

π∈R2n−1

sign(π)(−1)ldes(π) = Cn−1.

Moreover,

1 +
∑
n≥1

∑
π∈Rn

sign(π)(−1)ldes(π)xn = (1 + x + x2C(x2))C(x2).

More generally, Theorem 3.1 yields the following result.

Corollary 3.3. For all n ≥ 1, we have∑
π∈R2n

sign(π)qldes(π) = (1− q)
∑

π∈R2n+1

sign(π)qldes(π),

and ∑
π∈R2n−1

sign(π)qldes(π) =
∑

π∈Rn−1

q2(ldes(π)).

Theorem 3.4. We have∑
n≥0

Nn(q)xn =
∑
n≥0

∑
π∈Rn

sign(π)qfdes(π)

= 1 + x
(1− q)(1− xq + 2q)− q(1− x2)(1 + xq − 2q)C(x2)

(1− x)(1− x2q2)
.

Proof. Let L±
n (q) =

∑
π∈R±n

qfdes(π), and let π = (π′, n, π′′) ∈ Rn such that πj+1 = n,
0 ≤ j ≤ n− 1. Then, for this block decomposition of π, we have

sign(π) = (−1)(j+1)(n−j−1) sign(π′) sign(π′′) = (−1)(j+1)(n−1) sign(π′) sign(π′′),

or, equivalently,

sign(π) =

{
sign(π′) · sign(π′′), if n is odd,
(−1)j+1 · sign(π′) · sign(π′′), if n is even.
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Therefore, for n ≥ 1, we obtain

L±
2n+1(q) =

2n−1∑
j=0

qj+1L±
2n−j + (L±

j (q)− ε±)e2n−j + (L∓
j (q)− ε∓)o2n−j

L±
2n(q) =

∑
j=0,2,4,...,2n−2

qj+1L∓
2n−1−j(q) + (L∓

j (q)− ε∓)e2n−1−j + (Lpm
j (q)− ε±)o2n−1−j

+
∑

j=1,3,...,2n−3

qj+1L±
2n−1−j

+
∑

j=1,3,...,2n−3

(L±
j − ε±)e2n−1−j + (L∓

j − ε∓)o2n−1−j,

where ε+ = 1 and ε− = 0. Hence, for all n ≥ 1, we have

N2n+1(q) = 1 +
2n−1∑
j=0

qj+1m2n−j +
2n∑

j=0

(Nj(q)− 1)m2n−j,

M2n(q) = 1−
∑

j=0,2,...,2n−2

qj+1m2n−1−j +
∑

j=1,3,...,2n−3

qj+1m2n−1−j

−
∑

j=0,2,...,2n−2

(Nj(q)− 1)m2n−1−j +
∑

j=1,3,...,2n−1

(Nj(q)− 1)m2n−1−j.

Let N(x; q) =
∑

n≥0 Nn(q)xn and m(x) =
∑

n≥0 mnx
n. Using [M2, Lemma 2.3], we get

that

1

2
(N(x; q)−N(−x; q)) =

x

1− x2
+

xq

2

(
m(x)

1− xq
+

m(−x)

1 + xq
− 2

1− x2q2

)
+

x

2

[(
N(x; q)− 1

1− x

)
m(x) +

(
N(−x, q)− 1

1 + x

)
m(−x)

]
,

and
1

2
(N(x; q) + N(−x, q)) =

1

1− x2
− xq

2(1− x2q2)
(m(x)−m(−x))

+
x2q2

2(1− x2q2)
(m(x) + m(−x)− 2)

− x

4

(
N(x; q) + N(−x; q)− 2

1− x2

)
(m(x)−m(−x))

+
x

4

(
N(x; q)−N(−x; q)− 2x

1− x2

)
(m(x) + m(−x)).

Hence, solving the above two equations for the variables N(x; q) and N(−x; q), and
using the fact that m(x) = 1 + xC(x2) (see [SimSch]), we get the desired result. �

4. Dyck paths

Following [Kr], we define a bijection Φ between permutations in Sn(132) and Dyck
paths from the origin to the point (2n, 0). Let π = π1 . . . πn be a 132-avoiding permu-
tation. We read the permutation π from left to right and successively generate a Dyck
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path. When πj is read, then in the path we adjoin as many up-steps as necessary,
followed by a down-step from height hj + 1 to height hj (measured from the x-axis),
where hj is the number of elements in πj+1, πj+2, . . . , πn which are larger than πj. For
example, if π = 534261 ∈ S6, then the corresponding Dyck path is the one shown in
Figure 1.

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

�
�

�
�@

@�
�

�
�@

@
@

@�
�@

@
@

@�
�@

@

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

x

y

Figure 1. The Dyck path Φ(534261).

Namely, the first element to be read is 5. There is one element in 34261 which is
larger than 5, therefore the path starts with two up-steps followed by a down-step,
thus reaching height 1. Next 3 is read. There are 2 elements in 4261 which are larger
than 3, therefore the path continues with two up-steps followed by a down-step, thus
reaching height 2. Etc. Conversely, given a Dyck path starting at the origin and
returning to the x-axis, the obvious inverse of the bijection Φ produces a 132-avoiding
permutation.

Theorem 4.1. For all n ≥ 0, we have∑
p∈Pn

qn−lpeak(p) =
∑
π∈Rn

qldes(π).

Proof. We prove that n + 1 − lpeak(Φ(π)) = fdes(π) for any π ∈ Rn. Let π =
(π′, 1, π′′) ∈ Rn such that π1 = j. Since π avoids 132, the letters of π′′ are increasing
(i.e., π′′a < π′′b for all a < b). Therefore, by definition of Φ, the Dyck path p = Φ(π)
satisfies the equation lpeak(p) = |π′′| + 1 = n + 1 − j, where |π′′| is the number of
letters in π′′. �

Remark 4.2. The relation n + 1 − peak(Φ(π)) = fdes(π) for π ∈ Rn can be read off
immediately from the permutation diagram, see [R].

Acknowledgment. The author thanks the anonymous referee, whose suggestions
improved both the content and exposition of this paper. The final version of this paper
was written during the author’s stay at the University of Haifa, Israel, and he would
like to express his gratitude to the University of Haifa for the support.

References

[AR] Ron M. Adin and Yuval Roichman, Equidistribution and sign-balance on 321-avoiding
permutations, preprint, 2003, <http://arXiv.org/abs/math.CO/0304429>.



EQUIDISTRIBUTION AND SIGN-BALANCE ON 132-AVOIDING PERMUTATIONS 11

[FS] D. Foata and M.-P. Schützenberger, Major index and inversion number of permutations,
Math. Nachr. 83 (1978), 143–159.

[Kn] D. Knuth, The Art of Computer Programming, vol. 1, Addison Wesley, Reading, MA, 1968.
[Kr] C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. Appl. Math. 27

(2001), 510–530.
[M1] T. Mansour, Counting peaks at height k in a Dyck path, Journal Integer of Sequences 5 (2002),

Article 02.1.1.
[M2] T. Mansour, Restricted 132-alternating permutations and Chebyshev polynomials, Annals of

Combinatorics 7:2 (2003), 201–227.
[MV] T. Mansour and A. Vainshtein, Restricted permutations and Chebyshev polynomials,
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