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Abstract

We study generating functions for the number of even (odd) permutations on n letters avoiding 132
and an arbitrary permutation τ on k letters, or containing τ exactly once. In several interesting cases
the generating function depends only on k and is expressed via Chebyshev polynomials of the second
kind.
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1. Introduction

The main goal of this paper is to give analogues of enumerative results on certain classes of per-
mutations characterized by pattern-avoidance in the symmetric group Sn. In the set of even (odd)
permutations we identify classes of restricted even (odd) permutations with enumerative properties
analogous to results on permutations. More precisely, we study generating functions for the number
of even (odd) permutations avoiding 132 and avoiding an arbitrary permutation τ ∈ Sk, or containing
τ exactly once. In the remainder of this section, we present a brief account of earlier works which mo-
tivated our investigation, we give the basic definitions used throughout the paper, and we summarize
our main results.

Let [p] = {1, . . . , p} denote a totally ordered alphabet on p letters, and let α = (α1, . . . , αm) ∈ [p1]
m,

β = (β1, . . . , βm) ∈ [p2]
m. We say that α is order-isomorphic to β if for all 1 ≤ i < j ≤ m one has

αi < αj if and only if βi < βj . For two permutations π ∈ Sn and τ ∈ Sk, an occurrence of τ in
π is a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that (πi1 , . . . , πik) is order-isomorphic to τ ; in
such a context τ is usually called the pattern. We say that π avoids τ , or is τ -avoiding , if there is no
occurrence of τ in π.

While the case of permutations avoiding a single pattern has attracted much attention, the case of
multiple pattern avoidance remains less investigated. In particular, it is natural, as the next step,
to consider permutations avoiding pairs of patterns τ1, τ2. This problem was solved completely for
τ1, τ2 ∈ S3 (see [SS]), for τ1 ∈ S3 and τ2 ∈ S4 (see [W]), and for τ1, τ2 ∈ S4 (see [Bo, Km] and
references therein). Several recent papers [CW, MV1, Kr, MV2, MV3, MV4, BCS] deal with the case
τ1 ∈ S3, τ2 ∈ Sk for various pairs τ1, τ2. Another natural question is to study permutations avoiding
τ1 and containing τ2 exactly t times. Such a problem for certain τ1, τ2 ∈ S3 and t = 1 was investigated
in [R], and for certain τ1 ∈ S3, τ2 ∈ Sk in [RWZ, MV1, Kr, MV2, MV3, MV4]. For example, several
authors [RWZ, MV1, Kr, BCS] have shown that generating functions for the number 132-avoiding
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permutations in Sn with respect to number of occurrences of the pattern 12 . . . k can be expressed as
either continued fractions or Chebyshev polynomials of the second kind.

Chebyshev polynomials of the second kind (in what follows just Chebyshev polynomials) are defined

by Ur(cos θ) = sin(r+1)θ
sin θ

for r ≥ 0. Evidently, Ur(x) is a polynomial of degree r in x with integer
coefficients. Chebyshev polynomials were invented for the needs of approximation theory, but are also
widely used in various other branches of mathematics, including algebra, combinatorics, and number
theory. For k ≥ 1 we define Rk(x) by

(1.1) Rk(x) =
Uk−1

(

1
2
√
x

)

√
xUk

(

1
2
√
x

) .

It is easy to see that Rk(x) is rational in x and satisfies

(1.2) Rk(x) =
1

1− xRk−1(x)

for all k ≥ 1 (see [MV2]).

Let π ∈ Sn. The number of inversions of π is given by |{(i, j) : πi > πj , 1 ≤ i < j ≤ n}|, and the
sign of π, sign(π), is given by the number of inversions of π modulo 2, that is, the sign of π equals
1 if the number inversions of π is given by even number, otherwise equals -1. We say π is an even
permutation [respectively; odd permutation] if sign(π) = 1 [respectively; sign(π) = −1]. We say π is
an involution if π = π−1. The set of all even [respectively; odd] permutations in Sn we denote by En

[respectively; On].

As a generalization of [SS] we have several recent papers [GM1, GM2] deal with the case subsets of
Sn avoiding τ1 = 132 (or containing exactly once) and avoiding τ2 ∈ Sk (or containing exactly once).
For example, the paper [GM1] deal with the case of the generating function for number of involutions
in Sn avoiding τ1 (or containing exactly once) and avoiding τ2 (or containing exactly once), and the
paper [GM2] deal with the case of the generating function for number of even (odd) involutions in Sn

avoiding τ1 (or containing exactly once) and avoiding τ2 (or containing exactly once).

Theorem 1.1. (see [CW, GM1, GM2]) For all k ≥ 0,

(i) The generating function for the number of permutations in Sn avoiding both 132 and 12 . . . k is
given by

Rk(x).

(ii) The generating function for the number of involutions in Sn avoiding both 132 and 12 . . . k is
given by

Ik(x) :=
1

xUk

(

1
2x

)

k−1
∑

j=0

Uj

(

1

2x

)

.

(iii) The generating function for the number of even involutions in Sn avoiding both 132 and 12 . . . k
is given by

k−1
∑

j=0



xj

(

1 +
x2

2
(Rk−1−j(x

2) +Rk−1−j(−x2))Ik−j(x)

) k
∏

i=k−j

Ri(−x2)



 .
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The above theorem invites the following question: Find explicitly the generating function for the
number even (odd) permutations avoiding both 132 and 12 . . . k in terms of Chebyshev polynomials?
In this paper we give a complete answer for this question (see Subsection 2.2).

As a consequence of [MV2, MV4], we present a general approach to the study of even (odd) permuta-
tions avoiding 132 and avoiding an arbitrary pattern τ of length k, or containing τ exactly once. We
derive all the previously known results for this kind of problems, as well as many new results.

The paper is organized as follows. The case of even (odd) permutations avoiding both 132 and τ

is treated in Section 2. We derive a simple recursion for the corresponding generating functions for
general τ . This recursion can be solved explicitly for several interesting cases, including 12 . . . k,
(d + 1)(d + 2) . . . k12 . . . d, and even-wedge patterns defined below. In particularly, we prove the
generating function for the number of even (odd) permutations avoiding both 132 and τ ∈ Sk(132)
is a rational function for every nonempty pattern τ . Observe that if τ itself contains 132, then any
132-avoiding permutation avoids τ as well, so in what follows we always assume that τ ∈ Sk(132). The
case of permutations avoiding 132 and containing τ exactly once is treated in Section 3. Here again
we start from a general recursion, and then solve it for several particular cases. Finally, in Section 4
we describe several directions to extend and to generalize the results of the pervious sections.

Most of the explicit solutions obtained in the next sections involve Chebyshev polynomials of the
second kind.

2. Avoiding an arbitrary pattern

Consider an arbitrary pattern τ = (τ1, . . . , τk) ∈ Sk(132). Recall that τi is said to be a right-to-left
maximum if τi > τj for any j > i. Let m0 = k,m1, . . . ,mr be the right-to-left maxima of τ written
from left to right. Then τ can be represented as

τ = (τ0,m0, τ
1,m1, . . . , τ

r,mr),

where each of τ i may be possibly empty, and all the entries of τ i are greater than mi+1 and all the
entries of τ i+1. This representation is called the canonical decomposition of τ . Given the canonical
decomposition, we define the ith prefix of τ by πi = (τ0,m0, . . . , τ

i,mi) for 1 ≤ i ≤ r and π0 = τ0,
π−1 = ∅. Besides, the ith suffix of τ is defined by σi = (τ i,mi, . . . , τ

r,mr) for 0 ≤ i ≤ r and
σr+1 = ∅. Strictly speaking, prefixes and suffices themselves are not patterns, since they are not
permutations (except for πr = σ0 = τ). However, any prefix or suffix is order-isomorphic to a
unique permutation, and in what follows we do not distinguish between a prefix (or suffix) and the
corresponding permutation.

The set of all T -avoiding even [respectively; odd] permutations in Sn we denote by En(T ) [respec-
tively; On(T )]. Let eτ (n) [respectively; oτ (n)] be the cardinality of the set En(132, τ) [respectively;
On(132, τ)]. The corresponding generating function let us denote by Eτ (x) [respectively; Oτ (x)], that
is,

Eτ (x) =
∑

n≥0

eτ (n)x
n



respectively; Oτ (x) =
∑

n≥0

oτ (n)x
n



 .

The generating function for the number of permutations avoiding both 132 and τ we denote by Fτ (x).
Clearly,

(2.1) Fτ (x) = Eτ (x) + Oτ (x).

The following proposition which is the base of all the results in this section.
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Proposition 2.1. Let k ≥ 1 and n ≥ 1, then

eτ (2n+ 1) =
r
∑

d=0

2n
∑

j=0

(eπd(j)− eπd−1(j))eσd(2n− j) +
r
∑

d=0

2n
∑

j=0

(oπd(j)− oπd−1(j))oσd(2n− j),

eτ (2n) =
r
∑

d=0

∑

j=0,2,4,...,2n−2

(eπd(j)− eπd−1(j))oσd(2n− j − 1) + (oπd(j)− oπd−1(j))eσd(2n− j − 1)

+
r
∑

d=0

∑

j=1,3,5,...,2n−1

(eπd(j)− eπd−1(j))eσd(2n− j − 1) + (oπd(j)− oπd−1(j))oσd(2n− j − 1).

Proof. We use induction. Clearly, the result holds for n = 1. Now let π ∈ Sn(132) such that πj+1 = n,
0 ≤ j ≤ n−1. Then β = (π1, . . . , πj) is a 132-avoiding permutation on the letters n−1, n−2, . . . , n−j

and γ = (πj+1, . . . , πn) is a 132-avoiding permutation on the letters n− j − 1, n− j − 2, . . . , 1. If we
assume that β avoids πd and contains πd−1, then γ avoids σd, where d = 0, 1, 2 . . . , r. Besides,

sign(α) = (−1)(j+1)(n−j−1)sign(α1)sign(α2) = (−1)(j+1)(n−1)sign(α1)sign(α2),

equivalently,

sign(π) =

{

sign(β) · sign(γ), ifn odd
(−1)j+1 · sign(β) · sign(γ), ifn even

Hence, if summing over all d = 0, 1, . . . , r and j = 0, 1, 2 . . . , n together with use of the fact that the
number of even [respectively; odd] permutations in En [respectively; On] avoiding β and containing γ

is given by eβ(n)− eβ,γ(n) [respectively; oβ(n)− oβ,γ(n)] we get the desired result. ¤

Similarly as Proposition 2.1 we have

Proposition 2.2. Let k ≥ 1 and n ≥ 1, then

oτ (2n+ 1) =
r
∑

d=0

2n
∑

j=0

(eπd(j)− eπd−1(j))oσd(2n− j) +
r
∑

d=0

2n
∑

j=0

(oπd(j)− oπd−1(j))eσd(2n− j),

oτ (2n) =
r
∑

d=0

∑

j=0,2,4,...,2n−2

(eπd(j)− eπd−1(j))eσd(2n− j − 1) + (oπd(j)− oπd−1(j))oσd(2n− j − 1)

+
r
∑

d=0

∑

j=1,3,5,...,2n−1

(eπd(j)− eπd−1(j))oσd(2n− j − 1) + (oπd(j)− oπd−1(j))eσd(2n− j − 1).

Our present aim is to find the generating functions Eτ (x) and Oτ (x); thus we need the following
lemma which holds immediately by definitions.

Lemma 2.3. let {an}n≥0 and {bn}n≥0 be two sequences, and the corresponding generating functions
are a(x) and b(x); respectively. Then

(1)
∑

n≥0

a2nx
2n = 1

2 (a(x) + a(−x));

(2)
∑

n≥1

a2n−1x
2n−1 = 1

2 (a(x)− a(−x));

(3)
∑

n≥1

∑

j=0,2,4,...,2n−2

ajb2n−1−jx
2n−1 = 1

4 (a(x) + a(−x))(b(x)− b(−x));

(4)
∑

n≥1

∑

j=1,3,5,...,2n−1

ajb2n−1−jx
2n−1 = 1

4 (a(x)− a(−x))(b(x) + b(−x)).
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Theorem 2.4. For any nonempty pattern τ ∈ Sk(132), the generating functions Eτ (x) and Oτ (x)
are a rational functions in x satisfying the relations

(2.2)

Eτ (x)− Eτ (−x) = x
r
∑

d=0

(Eπd(x)− Eπd−1(x))Eσd(x) + (Eπd(−x)− Eπd−1(−x))Eσd(−x)+

+x
r
∑

d=0

(Oπd(x)−Oπd−1(x))Oσd(x) + (Oπd(−x)−Oπd−1(−x))Oσd(−x)),

(2.3)

Oτ (x)−Oτ (−x) = x
r
∑

d=0

(Eπd(x)− Eπd−1(x))Oσd(x) + (Eπd(−x)− Eπd−1(−x))Oσd(−x)+

+x
r
∑

d=0

(Oπd(x)−Oπd−1(x))Eσd(x) + (Oπd(−x)−Oπd−1(−x))Eσd(−x)),

(2.4)

Eτ (x) + Eτ (−x)− 2 =

=
x

2

r
∑

d=0

(Eπd(x) + Eπd(−x)− Eπd−1(x)− Eπd−1(−x))(Oσd(x)−Oσd(−x))+

+
x

2

r
∑

d=0

(Oπd(x) + Oπd(−x)−Oπd−1(x)−Oπd−1(−x))(Eσd(x)− Eσd(−x))+

+
x

2

r
∑

d=0

(Eπd(x)− Eπd(−x)− Eπd−1(x) + Eπd−1(−x))(Eσd(x) + Eσd(−x))+

+
x

2

r
∑

d=0

(Oπd(x)−Oπd(−x)−Oπd−1(x) + Oπd−1(−x))(Oσd(x) + Oσd(−x)),

and

(2.5)

Oτ (x) + Oτ (−x) =

=
x

2

r
∑

d=0

(Eπd(x) + Eπd(−x)− Eπd−1(x)− Eπd−1(−x))(Eσd(x)− Eσd(−x))+

+
x

2

r
∑

d=0

(Oπd(x) + Oπd(−x)−Oπd−1(x)−Oπd−1(−x))(Oσd(x)−Oσd(−x))+

+
x

2

r
∑

d=0

(Eπd(x)− Eπd(−x)− Eπd−1(x) + Eπd−1(−x))(Oσd(x) + Oσd(−x))+

+
x

2

r
∑

d=0

(Oπd(x)−Oπd(−x)−Oπd−1(x) + Oπd−1(−x))(Eσd(x) + Eσd(−x)).

Proof. Using Propositions 2.1 and 2.2 together with Lemma 2.3 we get Equations 2.2-2.5. Rationalities
of Eτ (x) and Oτ (x) for τ 6= ∅ follows easily by induction. ¤

As a remark, the above theorem holds for the empty pattern without rationalities of Eτ (x) and Oτ (x).
Using Theorem 2.4 we get the main result of [MV2, Theorem 2.1].

Corollary 2.5. (see Mansour and Vainshtein [MV2, Theorem 2.1]) For any nonempty pattern τ ∈
Sk(132), the generating function Fτ (x) is a rational function in x satisfying the relation

Fτ (x) = 1 + x

r
∑

d=0

(Fπd(x)−Fπd−1(x))Fσd(x).
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Proof. If adding Equations 2.2 and 2.3 we have

(2.6) Fτ (x)−Fτ (−x) = x

r
∑

d=0

(Fπd(x)−Fπd−1(x))Fσd(x) + (Fπd(−x)−Fπd−1(−x))Fσd(−x).

If adding Equations 2.4 and 2.5 we have

Fτ (x) + Fτ (−x)− 2 =

=
x

2

r
∑

d=0

(Fπd(x) + Fπd(−x)−Fπd−1(x)−Fπd−1(−x))(Fσd(x)−Fσd(−x))+

+
x

2

r
∑

d=0

(Fπd(x)−Fπd(−x)−Fπd−1(x) + Fπd−1(−x))(Fσd(x) + Fσd(−x)).

equivalently,

(2.7) Fτ (x) + Fτ (−x)− 2 = x

r
∑

d=0

(Fπd(x)−Fπd−1(x))Fσd(x)− (Fπd(−x)−Fπd−1(−x))Fσd(−x).

Hence, if adding Equations 2.6 and 2.7 we get

Fτ (x) = 1 + x

r
∑

d=0

(Fπd(x)−Fπd−1(x))Fσd(x).

Rationality of Fτ (x) for τ 6= ∅ follows easily by rationalities of Oτ (x) and Eτ (x) (see Theorem 2.4
and Equation 2.1). ¤

Our present aim is to find explicitly the generating functions Eτ (x) and Oτ (x) for several cases of τ ;
thus we need the following notation. We denote the generating function Eτ (x)−Oτ (x) by Mτ (x) for
any pattern τ .

Theorem 2.6. For any τ ∈ Sk(132),

(2.8) Mτ (x)−Mτ (−x) = x

r
∑

d=0

(Mπd(x)−Mπd−1(x))Mσd(x) + (Mπd(−x)−Mπd−1(−x))Mσd(−x),

and

(2.9) Mτ (x)+Mτ (−x)−2 = x

r
∑

d=0

(Mπd(x)−Mπd−1(x))Mσd(−x)−(Mπd(−x)−Mπd−1(−x))Mσd(x).

Proof. If subtracting Equation 2.3 from Equation 2.2 then we get Equation 2.8, and if subtracting
Equation 2.5 from Equation 2.4 then we get Equation 2.9. ¤

Corollary 2.7. Let τ = (β, k) ∈ Sk(132). Then

Mτ (x) =
2(1 + xMβ(−x))

(1− xMβ(x))2 + (1 + xMβ(−x))2
.

Proof. Equation 2.8 for τ = (β, k) yields

(1− xMβ(x))Mτ (x)− (1 + xMβ(−x))Mτ (−x) = 0,

and Equation 2.9 for τ = (β, k) yields

(1 + xMβ(−x))Mτ (x) + (1− xMβ(x))Mτ (−x) = 2.

Hence, by the above two equations we get the desired result. ¤
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Example 2.8. Let τ = 12 and β = 1. Since Eβ(x) = 1 and Oβ(x) = 0 we get that Mβ(x) = 1.
Corollary 2.7 for τ = 12 yields

M12(x) = E12(x)−O12(x) =
2(1 + x)

(1− x)2 + (1 + x)2
=

1 + x

1 + x2
.

On the other hand, Corollary 2.5 together with Equation 2.1 we have

F12(x) = E12(x) + O12(x) =
1

1− x
.

Hence,

E12(x) =
1 + x

1− x4
and O12(x) =

x2(1 + x)

1− x4
.

2.1. Pattern τ = ∅. Let us consider the case τ = ∅ as the first case which examined by Simion and
Schmidt [SS].

Theorem 2.9. We have

E(x) =
1

2
(C(x) + 1) +

x

2
C(x2) and O(x) =

1

2
(C(x)− 1)− x

2
C(x2).

In other words, for all n ≥ 1,

(1) |E2n−2(132)| = 1
2C2n−2;

(2) |O2n−2(132)| = 1
2C2n−2;

(3) |E2n−1(132)| = 1
2 (C2n−1 + Cn−1);

(4) |O2n−1(132)| = 1
2 (C2n−1 − Cn−1).

Proof. First of all, let us define M(x) = M∅(x), F(x) = F∅(x), E(x) = E∅(x), and O(x) = O∅(x).
Using the argument proof of Corollary 2.7 we get

{

(1− xM(x))M(x)− (1 + xM(−x))M(−x) = 0,
(1 + xM(−x))M(x) + (1− xM(x))M(−x) = 2,

therefore,
M(x) = E(x)−O(x) = 1 + xC(x2).

On the other hand, Corollary 2.5 for τ = ∅ yields F(x) = 1 + xF(x)2, so by Equation 2.1 we have

F(x) = E(x) + O(x) = C(x).

The rest is easy to check. ¤

2.2. Pattern τ = 12 . . . k. Let us start be the following example.

Example 2.10. (see Simion and Schmidt [SS, Proposition 7]) Corollary 2.7 together with Example 2.8
yield

M123(x) = 1 + x.

On the other hand, using the fact that F123(x) = E123(x) + O123(x) =
1−x
1−2x (see [SS]) we get

E123(x) = 1 + x+
x2

1− 2x
and O123(x) =

x2

1− 2x
.

The case of varying k is more interesting. As an extension of Example 2.10, let us consider the case
τ = [k] := 12 . . . k.
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Theorem 2.11. For all k ≥ 1,

(i) E[2k−1](x) =
1

2
(R2k−1(x) + xRk−1(x

2) + 1) and E[2k](x) =
1

2

(

R2k(x) +
(1 + xRk(x

2))Rk(x
2)

1 + x2R2
k(x

2)

)

,

(ii) O[2k−1](x) =
1

2
(R2k−1(x)− xRk−1(x

2)− 1) and O[2k](x) =
1

2

(

R2k(x)−
(1 + xRk(x

2))Rk(x
2)

1 + x2R2
k(x

2)

)

.

Proof. We use induction on k. By use of Example 2.8 the result holds for k = 1. Let us fix k and
assume that

M[2k−1](x) = 1 + xRk−1(x
2) and M[2k](x) =

(1 + xRk(x
2))Rk(x

2)

1 + x2R2
k(x

2)
.

Therefore, Corollary 2.7 yields

M[2k+1] =
2
(

1 + x(1−xRk(x
2))Rk(x

2)
1+x2R2

k
(x2)

)

(

1− x(1+xRk(x2))Rk(x2)
1+x2R2

k
(x2)

)2

+
(

1 + x(1−xRk(x2))Rk(x2)
1+x2R2

k
(x2)

)2

=

2(1+xRk(x
2))

1+x2R2
k
(x2)

(1−xRk(x2))2

(1+x2R2
k
(x2))2

+ (1+xRk(x2))2

(1+x2R2
k
(x2))2

= 1 + xRk(x
2),

then by use of Corollary 2.7 and Identity 1.2 we have

M[2k+2] =
2(1 + x(1− xRk(x

2)))

(1− x(1 + xRk(x2)))
2
+ (1 + x(1− xRk(x2)))

2

=
2
(

x+ 1
Rk+1(x2)

)

(

1
Rk+1(x2) − x

)2

+
(

1
Rk+1(x2) + x

)2

=
2(1 + xRk+1(x

2))Rk+1(x
2)

(1− xRk+1(x2))2 + (1 + xRk+1(x2))2
=

(1 + xRk+1(x
2))Rk+1(x

2)

1 + x2R2
k+1(x

2)
.

Hence, for all k ≥ 1,

M[2k−1](x) = 1 + xRk−1(x
2) and M[2k](x) =

(1 + xRk(x
2))Rk(x

2)

1 + x2R2
k(x

2)
.

On the other hand, in [CW, MV1, Kr, MV2]) proved

F[m](x) = E[m](x) + O[m](x) = Rm(x),

for all m ≥ 1. Hence, by the above two equations we get the desired result. ¤

Example 2.12. Theorem 2.11 for k = 3, 4, 5 yields

e[5](n)− o[5](n) =
1
2

(

1 + (−1)n+1
)

;

e[7](n)− o[7](n) =
√
2
n−5 (

1 + (−1)n+1
)

;

e[9](n)− o[9](n) =
Fn−3

2

(

1 + (−1)n+1
)

;

where Fn−3 is the (n− 3)th Fibonacci number.
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2.3. Pattern τ = 213 . . . k. Let us start by the following example.

Example 2.13. (see Simion and Schmidt [SS, Proposition 7]) Corollary 2.7 for τ = 213 together with
the fact that M21(x) = E21(x) =

1
1−x

and O21(x) = 0 yield

E213(x) =
(1− x)(1− 4x2 + 4x4)

(1− 2x)(1− 3x2 + 4x4)
, O213(x) =

(1− x)x2

(1− 2x)(1− 3x2 + 4x4)
.

The case of varying k is more interesting. As an extension of Example 2.13, by using Corollary 2.7,
and induction on k (Similarly as Theorem 2.11) we get

Theorem 2.14. For all k ≥ 1,

M2134...(2k)(x) =
(1 + 2x)

(

U2k−1

(

1
2x

)

− U2k

(

1
2x

)

+ x2+2x−1
1−3x2

)

U2k

(

1
2x

)

− 2xU2k+1

(

1
2x

)

+ 4x4

1−3x2

,

M2134...(2k−1)(x) =
(1 + 2x)

(

U2k−2

(

1
2x

)

− U2k−1

(

1
2x

)

+ x2+2x−1
1−3x2

)

U2k−1

(

1
2x

)

− 2xU2k

(

1
2x

)

− 2x(1−5x2)
1−3x2

.

By Theorem 2.14 together with use of the fact that F2134...k(x) = Rk(x) (see [MV2, Theorem 2.6])
we get

Corollary 2.15. For all k ≥ 1,

(i) E2134...(2k)(x) =
1
2

[

U2k−1

(

1
2
√
x

)

√
xU2k

(

1
2
√
x

) +
(1+2x)

(

U2k−1( 1
2x )−U2k( 1

2x )+
x2+2x−1

1−3x2

)

U2k( 1
2x )−2xU2k+1( 1

2x )+
4x4

1−3x2

]

;

(ii) O2134...(2k)(x) =
1
2

[

U2k−1

(

1
2
√
x

)

√
xU2k

(

1
2
√
x

) − (1+2x)
(

U2k−1( 1
2x )−U2k( 1

2x )+
x2+2x−1

1−3x2

)

U2k( 1
2x )−2xU2k+1( 1

2x )+
4x4

1−3x2

]

;

(iii) E2134...(2k−1)(x) =
1
2

[

U2k−2

(

1
2
√
x

)

√
xU2k−1

(

1
2
√
x

) +
(1+2x)

(

U2k−2( 1
2x )−U2k−1( 1

2x )+
x2+2x−1

1−3x2

)

U2k−1( 1
2x )−2xU2k( 1

2x )−
2x(1−5x2)

1−3x2

]

;

(iv) O2134...(2k−1)(x) =
1
2

[

U2k−2

(

1
2
√
x

)

√
xU2k−1

(

1
2
√
x

) − (1+2x)
(

U2k−2( 1
2x )−U2k−1( 1

2x )+
x2+2x−1

1−3x2

)

U2k−1( 1
2x )−2xU2k( 1

2x )−
2x(1−5x2)

1−3x2

]

.

2.4. Pattern (d + 1)(d + 2) . . . k12 . . . d. In this subsection we consider the case τ = [k, d] where
[k, d] = (d + 1)(d + 2) . . . k12 . . . d. Following to Theorem 2.11, our present aim is to find explicitly
the generating functions Eτ (x) and Oτ (x) where τ = [k, d]; thus we need to consider four cases either
k even or odd, and either d even or odd. First of all, using Theorem 2.6 for τ = [k, d] we state the
following fact.

Lemma 2.16. Let k ≥ 2, 1 ≤ d ≤ k − 1, and τ = [k, d]. Then






















(1 + xM[k−d−1](−x)− xM[d](−x))Mτ (x) + (1− xM[k−d−1](x) + xM[d](x))Mτ (−x)
= 2 + xM[k−d−1](−x)M[d](x)− xM[k−d−1](x)M[d](−x),

(1− xM[k−d−1](x)− xM[d](x))Mτ (x)− (1 + xM[k−d−1](−x) + xM[d](−x))Mτ (−x)
= −xM[k−d−1](x)M[d](x)− xM[k−d−1](−x)M[d](−x).
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2.4.1. k and d are odd numbers. Now, we ready to consider the first case k and d are odd numbers.

Theorem 2.17. Let 0 ≤ d ≤ k. Then

M[2k+1,2d+1](x) = 1 + xRk(x
2).

Proof. Theorem 2.11 yields M2k−2d−1(x) = 1+xRk−d−1(x
2) and M2d+1(x) = 1+xRd(x

2). Therefore,
by use of Lemma 2.16 for τ = [2k + 1, 2d+ 1] we get














M[k,d](x) + M[k,d](−x) = 2,

(1− 2x− x2Rd(x
2)− x2Rk−d−1(x

2))Mτ (x)− (1 + 2x− x2Rd(x
2)− x2Rk−d−1(x

2))Mτ (−x)
= −2x− 2x3Rd(x

2)Rk−d−1(x
2),

so,

Mτ (x) = 1 +
x(1− x2Rd(x

2)Rk−d−1(x
2))

1− x2(Rd(x2) +Rk−d−1(x2))
.

By using the following identities (see [MV2])

(2.10) 1− x2Rp(x
2)Rq(x

2) =
Up+q

(

1
2x

)

Up

(

1
2x

)

Uq

(

1
2x

) and 1− x2(Rp(x
2) +Rq(x

2)) =
xUp+q+1

(

1
2x

)

Up

(

1
2x

)

Uq

(

1
2x

) ,

we have

Mτ (x) = 1 +
Uk−1

(

1
2x

)

Uk

(

1
2x

) ,

and by Identity 1.1 we get the desired result. ¤

By Theorem 2.17 together with use of the equation F[k,d](x) = Rk(x) (see [MV2, Theorem 2.4]) we
get

Corollary 2.18. For all 0 ≤ d ≤ k,

E[2k+1,2d+1](x) =
1

2
(R2k+1(x) + xRk(x

2) + 1) and O[2k+1,2d+1](x) =
1

2
(R2k+1(x)− xRk(x

2)− 1).

A comparison of Corollary 2.18 for values of d suggests that there should exist a bijection between the
sets En(132, 2 . . . (2k+1)1) and En(132, (2d+2)(2d+3) . . . (2k+1)12 . . . (2d+1)) for any d. However,
we failed to produce such a bijection, and finding it remains a challenging open question.

2.4.2. k odd number and d even number. Now, let us consider the case where k odd number and d

even number.

Theorem 2.19. Let 1 ≤ d ≤ k. Then

M[2k+1,2d](x) = 1 + xRk(x
2).

Proof. Let m = k − d; solving the system equations in Lemma 2.16 for τ = [2k + 1, 2d] together with
use of Theorem 2.11 we get

M[2k+1,2d](x) = 1 +
x(Rm(x2) +Rd(x

2)−Rm(x2)Rd(x
2))

1− x2Rm(x2)Rd(x2)
.

Using Identities 2.10 we get the desired result. ¤
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By Theorem 2.19 together with use of the equation F[k,d](x) = Rk(x) (see [MV2, Theorem 2.4]) we
get

Corollary 2.20. For all 1 ≤ d ≤ k,

E[2k+1,2d](x) =
1

2
(R2k+1 + 1 + xRk(x

2)) and O[2k+1,2d](x) =
1

2
(R2k+1 − 1− xRk(x

2).

A comparison of Corollary 2.18 with Corollary 2.20 suggests that there should exist a bijection between
the sets En(132, 12 . . . (2k+1)) and En(132, [2k+1, d]) for any d. However, we failed to produce such
a bijection, and finding it remains a challenging open question.

2.4.3. k even number and d odd number. Similarly as above subsections, we can consider the case
where k even number and d odd number.

Theorem 2.21. Let 0 ≤ d ≤ k − 1 and m = k − d − 1. Then the generating function M[2k,2d+1](x)
is given by

(

1− x2(Rm(x2) +Rd(x
2)) + x(1− x2Rm(x2)Rd(x

2))
)

(1 + x2Rm(x2)Rd(x
2))

1− x2(1 +R2
m(x2))(1 + x2R2

m(x2))
.

By Theorem 2.21 together with use of the equation F[k,d](x) = Rk(x) (see [MV2, Theorem 2.4]) we
get

Corollary 2.22. Let 0 ≤ d ≤ k − 1 and m = k − d− 1.

(i) The generating function E[2k,2d+1](x) is given by

1

2

(

R2k(x) +

(

1− x2(Rm(x2) +Rd(x
2)) + x(1− x2Rm(x2)Rd(x

2))
)

(1 + x2Rm(x2)Rd(x
2))

1− x2(1 +R2
m(x2))(1 + x2R2

m(x2))

)

.

(ii) The generating function O[2k,2d+1](x) is given by

1

2

(

R2k(x)−
(

1− x2(Rm(x2) +Rd(x
2)) + x(1− x2Rm(x2)Rd(x

2))
)

(1 + x2Rm(x2)Rd(x
2))

1− x2(1 +R2
m(x2))(1 + x2R2

m(x2))

)

.

2.4.4. k and d even numbers. Similarly as above subsections, we can consider the case where k and d

even numbers.

Theorem 2.23. Let 1 ≤ d ≤ k − 1 and m = k − d − 1. Then the generating function M[2k,2d](x) is
given by

1

x
−
(

1− x2(Rm(x2)−Rd(x
2))
)(

1− x2(Rd(x
2) +Rm(x2))− x(1− x2Rd(x

2)Rm(x2))
)

x+ x3(1 + x2R2
d(x

2))(1− 2Rm(x2) + x2R2
m(x2))

.

By Theorem 2.23 together with use of the equation F[k,d](x) = Rk(x) (see [MV2, Theorem 2.4]) we
get

Corollary 2.24. Let 1 ≤ d ≤ k − 1 and m = k − d− 1.

(i) The generating function E[2k,2d+1](x) is given by

1

2

(

R2k(x) +
1

x
−
(

1− x2(Rm(x2)−Rd(x
2))
)(

1− x2(Rd(x
2) +Rm(x2))− x(1− x2Rd(x

2)Rm(x2))
)

x+ x3(1 + x2R2
d(x

2))(1− 2Rm(x2) + x2R2
m(x2))

.
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(ii) The generating function O[2k,2d+1](x) is given by

1

2

(

R2k(x)−
1

x
+

(

1− x2(Rm(x2)−Rd(x
2))
)(

1− x2(Rd(x
2) +Rm(x2))− x(1− x2Rd(x

2)Rm(x2))
)

x+ x3(1 + x2R2
d(x

2))(1− 2Rm(x2) + x2R2
m(x2))

)

.

2.5. Wedge patterns. For a further generalization of the results in the pervious subsections, consider
the following definition. We say that τ ∈ Sk is a wedge pattern if it can be represented as τ =
(τ1, ρ1, . . . , τ r, ρr) so that each of τ i is nonempty, (ρ1, ρ2, . . . , ρr) is a layered permutation of 1, . . . , s
for some s, and (τ 1, τ2, . . . , τ r) = (s + 1, s + 2, . . . , k). For example, 645783912 and 456378129 are
wedge patterns. Evidently, [k, d] is a wedge pattern for any d. We say that τ ∈ Sk is an odd-wedge
pattern if it a wedge pattern such that the length of (τ 1, ρ1, . . . , τp, ρp) is given by odd number for
all p = 1, 2, . . . , r. For example, 23145 and 34251 are odd-wedge patterns. Evidently, [2k + 1, d] is an
odd-wedge pattern for any d.

Theorem 2.25. Mτ (x) = 1 + xRk(x
2) for any odd-wedge pattern τ ∈ S2k+1(132).

Proof. We proceed by induction on r. If r = 1 then τ = [2k + 1, d] for some d, and the result is true
by Theorems 2.17 and 2.19. For an arbitrary r > 1, τ looks like either

τ = (τ ′, 2p+ 2d+ 2, 2p+ 2d+ 3, . . . , 2k + 1, 1, 2, . . . , 2d),

or
τ = (τ ′, 2p+ 2d+ 3, 2p+ 2d+ 4, . . . , 2k + 1, 1, 2, . . . , 2d+ 1),

for some d and p, where τ ′ = (τ1, ρ1, . . . , τ r−1, ρr−1).

The first case; τ ′ contains 2p+ 1 elements and it is an odd-wedge pattern, so by induction Mτ ′(x) =
1 + xRp(x

2), so Corollary 2.7 gives

M(τ ′,2p+2d+2)(x) =
(1 + xRp+1(x

2))Rp+1(x
2)

1 + x2R2
p+1(x

2)
,

and then
M(τ ′,2p+2d+2,2p+2d+3)(x) = 1 + xRp+1(x

2).

Therefore, by induction we have

M(τ ′,2p+2d+2,2p+2d+3,...,2k)(x) =
(1 + xRk−d(x

2))Rk−d(x
2)

1 + x2R2
k−d(x

2)
.

Hence, Theorem 2.6 for τ = (τ ′, 2p + 2d + 2, 2p + 2d + 3, . . . , 2k + 1, 1, 2, . . . , 2d) yields (similarly as
Theorem 2.19)

Mτ (x) = 1 +
x(Rk−d(x

2) +Rd(x
2)−Rk−d(x

2)Rd(x
2))

1− x2Rk−d(x2)Rd(x2)
,

and using Identities 2.10 we have that Mτ (x) = 1 + xRk(x
2).

The second case; similarly as the first case we have that

M(τ ′,2p+2d+3,2p+2d+4,...,2k)(x) = 1 + xRk−d−1(x
2).

Hence, Theorem 2.6 for τ = (τ ′, 2p+ 2d+ 3, 2p+ 2d+ 4, . . . , 2k + 1, 1, 2, . . . , 2d+ 1) yields (similarly
as Theorem 2.17)

Mτ (x) = 1 +
x(1− x2Rd(x

2)Rk−d−1(x
2))

1− x2(Rd(x2) +Rk−d−1(x2))
,

and using Identities 2.10 we have that Mτ (x) = 1 + xRk(x
2). ¤
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A comparison of Theorem 2.11 with Theorem 2.25 suggests that there should exist a bijection between
the sets En(132, 12 . . . (2k + 1)) [respectively; On(132, 12 . . . (2k + 1))] and En(132, τ) [respectively;
On(132, τ)] for any odd-wedge pattern τ . However, we failed to produce such a bijection, and finding
it remains a challenging open question.

Corollary 2.26. For any odd-wedge pattern τ ∈ S2k+1(132),

Eτ (x) =
1

2
(R2k+1(x) + xRk(x

2) + 1) and Oτ (x) =
1

2
(R2k+1(x)− xRk(x

2)− 1).

3. Containing a pattern exactly once

Let eτ ;r(n) [respectively; oτ ;r(n)] denote the number of even [respectively; odd] permutations in
Sn(132) that contain τ ∈ Sk(132) exactly r times, and e

ρ
τ ;1(n) [respectively; oρτ ;r(n)] denote the

number of even [respectively; odd] permutations in En(132, ρ) that contain τ ∈ Sk(132) exactly
r times. We denote by Eτ ;r(x) and Eρ

τ ;r(x) [respectively; Oτ ;r(x) and Oρ
τ ;r(x)] the corresponding

ordinary generating functions. Using the argument proof of Theorem 2.4 we get as follows.

Theorem 3.1. For any τ = (τ 0,m0, . . . , τ
r,mr) be the canonical decomposition of nonempty τ ∈

Sk(132), then

(3.1)

Eτ ;1(x)− Eτ ;1(−x) = x
r+1
∑

d=0

Eπd

πd−1;1(x)E
σd−1

σd;1 (x) + Eπd

πd−1;1(−x)Eσd−1

σd;1 (−x)+

+x
r+1
∑

d=0

Oπd

πd−1;1(x)O
σd−1

σd;1 (x) + Oπd

πd−1;1(−x)Oσd−1

σd;1 (−x),

(3.2)

Oτ ;1(x)−Oτ ;1(−x) = x
r+1
∑

d=0

Eπd

πd−1;1(x)O
σd−1

σd;1 (x) + Eπd

πd−1;1(−x)Oσd−1

σd;1 (−x)+

+x
r+1
∑

d=0

Oπd

πd−1;1(x)E
σd−1

σd;1 (x) + Oπd

πd−1;1(−x)Eσd−1

σd;1 (−x),

(3.3)

Eτ ;1(x) + Eτ ;1(−x) =
x

2

r+1
∑

d=0

(Eπd

πd−1;1(x) + Eπd

πd−1;1(−x))(Oσd−1

σd;1 (x)−Oσd−1

σd;1 (−x))+

+
x

2

r+1
∑

d=0

(Oπd

πd−1;1(x) + Oπd

πd−1;1(−x))(Eσd−1

σd;1 (x)− Eσd−1

σd;1 (−x))+

+
x

2

r+1
∑

d=0

(Eπd

πd−1;1(x)− Eπd

πd−1;1(−x))(Eσd−1

σd;1 (x) + Eσd−1

σd;1 (−x))+

+
x

2

r+1
∑

d=0

(Oπd

πd−1;1(x)−Oπd

πd−1;1(−x))(Oσd−1

σd;1 (x) + Oσd−1

σd;1 (−x)),

and

(3.4)

Oτ ;1(x) + Oτ ;1(−x) =
x

2

r+1
∑

d=0

(Eπd

πd−1;1(x) + Eπd

πd−1;1(−x))(Eσd−1

σd;1 (x)− Eσd−1

σd;1 (−x))+

+
x

2

r+1
∑

d=0

(Oπd

πd−1;1(x) + Oπd

πd−1;1(−x))(Oσd−1

σd;1 (x)−Oσd−1

σd;1 (−x))+

+
x

2

r+1
∑

d=0

(Eπd

πd−1;1(x)− Eπd

πd−1;1(−x))(Oσd−1

σd;1 (x) + Oσd−1

σd;1 (−x))+

+
x

2

r+1
∑

d=0

(Oπd

πd−1;1(x)−Oπd

πd−1;1(−x))(Eσd−1

σd;1 (x) + Eσd−1

σd;1 (−x)),
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Remark 3.2. Strictly speaking, Theorem 3.1, unlike Theorem 2.4, is not a recursion for Eτ ;1(x) or
Oτ ;1(x), since it involves functions of type E

ρ
τ ;1(x) and O

ρ
τ ;1(x) (unless r = 0; see the next subsection).

However, for these functions one can write further recursions involving similar objects. For example,

E
pij

πj−1;1(x)− Eπj

πj−1;1(−x) = x
j
∑

i=0

Eπi

πi−1;1(x)E
σi−1
j−1

σij−1;1
(x) + Eπi

πi−1;1(−x)E
σi−1
j−1

σij−1;1
(−x)+

+x
j
∑

i=0

Oπi

πi−1;1(x)O
σi−1
j−1

σij−1;1
(x) + Oπi

πi−1;1(−x)O
σi−1
j−1

σij−1;1
(−x),

and

O
pij

πj−1;1(x)−Oπj

πj−1;1(−x) = x
j
∑

i=0

Eπi

πi−1;1(x)O
σi−1
j−1

σij−1;1
(x) + Eπi

πi−1;1(−x)O
σi−1
j−1

σij−1;1
(−x)+

+x
j
∑

i=0

Oπi

πi−1;1(x)E
σi−1
j−1

σij−1;1
(x) + Oπi

πi−1;1(−x)E
σi−1
j−1

σij−1;1
(−x),

where σi
j−1 is the ith suffix of πj−1. Though we have not succeeded to write down a complete set

of equations in the general case (for Eρ
τ (x) and Oρ

τ (x)), it is possible to do this in certain particular
cases.

As a corollary of Theorem 3.1 we obtain the main result of [MV2, Theorem 3.1].

Corollary 3.3. (see Mansour and Vainshtein [MV2, Theorem 3.1]) Let τ = (τ 0,m0, . . . , τ
r,mr) be

the canonical decomposition of τ ∈ Sk(132), then for all r ≥ 0,

Gτ (x) = x

r+1
∑

j=0

Gπj

πj−1(x)Gσj−1

σj (x),

where Gτ (x) is the generating function for the number of permutations in Sn(132) containing τ exactly
once, and Gρ

τ (x) is the generating function for the number of permutations in Sn(132, ρ) containing
τ exactly once.

Proof. If adding Equations 3.1 and 3.2 together with use of the fact that Gρ
τ (x) = Eρ

τ (x) + Oρ
τ (x) for

any τ and ρ, we get

(3.5) Gτ (x)−Gτ (−x) = x

r+1
∑

d=0

Gπd

πd−1(x)G
σd−1

σd (x) +Gπd

πd−1(−x)Gσd−1

σd (−x),

and if adding Equations 3.3 and 3.4 we have

(3.6) Gτ (x) +Gτ (−x) = x

r+1
∑

d=0

Gπd

πd−1(x)G
σd−1

σd (x)−Gπd

πd−1(−x)Gσd−1

σd (−x).

Hence, by adding the Equations 3.5 and 3.6 we get the desired result. ¤

Our present aim is to find explicitly the generating functions Eτ ;1(x) and Oτ ;1(x) for several patterns
τ , thus we the following notations. We define Mτ ;r(x) = Eτ ;r(x)−Oτ ;r(x) and Mρ

τ ;r(x) = Eρ
τ ;r(x)−

Oρ
τ ;r(x) for any τ and ρ, and M

ρ
∅;r(x) = Mρ(x) for any ρ.
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Theorem 3.4. For any τ = (τ 0,m0, . . . , τ
r,mr) be the canonical decomposition of nonempty τ ∈

Sk(132), then

(3.7) Mτ ;1(x)−Mτ ;1(−x) = x

r+1
∑

d=0

Mπd

πd−1;1(x)M
σd−1

σd;1 (x) + Mπd

πd−1;1(−x)Mσd−1

σd;1 (−x),

and

(3.8) Mτ ;1(x) + Mτ ;1(−x) = x

r+1
∑

d=0

Mπd

πd−1;1(x)M
σd−1

σd;1 (−x)−Mπd

πd−1;1(−x)Mσd−1

σd;1 (x).

Proof. If subtracting Equation 3.2 from Equation 3.1 then we get Equation 3.7, and if subtracting
Equation 3.4 from Equation 3.3 then we get Equation 3.8. ¤

3.1. Pattern τ = [k]. One can try to obtain results similar to Theorems 2.11, 2.14, and 2.17-2.23, but
expressions involved become extremely cumbersome. So we just consider a simplest wedge pattern,
which is the pattern [k].

Theorem 3.5. For all m ≥ 0,

(i) M[2m+1];1(x) =
x

U2
m

(

1
2x

) ,

(ii) M[2m+2];1(x) =
x2R2

m+1(x
2)

(1 + x2R2
m+1(x

2))2U2
m

(

1
2x

)

(

1 + 2xRm+1(x
2)− x2R2

m+1(x
2)

)

.

Proof. Let τ = [k], then r = 0, and it follows from Theorem 3.4 that

(3.9)

M[k];1(x)−M[k];1(−x) = xM[k−1](x)M[k];1(x) + xM[k−1](−x)M[k];1(−x)
+xM[k−1];1(x)M[k](x) + xM[k−1];1(−x)M[k](−x),

M[k];1(x) + M[k];1(−x) = xM[k−1](x)M[k];1(−x)− xM[k−1](−x)M[k];1(x)
+xM[k−1];1(x)M[k](−x)− xM[k−1];1(−x)M[k](x).

Now, let us consider two cases either k = 2m or k = 2m+ 1 as follows. (i) Let k = 2m, Equation 3.9
for k = 2m and Theorem 2.11 together with Identity 1.2 we get

(1− xRm(x2))M[2m];1(x)− (1 + xRm(x2))M[2m];1(−x) =

=
x(1 + xRm(x2))R2

m(x2)

1 + x2R2
m(x2)

M[2m−1];1(x) +
x(1− xRm(x2))R2

m(x2)

1 + x2R2
m(x2)

M[2m−1];1(−x)

(1 + xRm(x2))M[2m];1(x) + (1− xRm(x2))M[2m];1(−x) =

=
x(1− xRm(x2))R2

m(x2)

1 + x2R2
m(x2)

M[2m−1];1(x)−
x(1 + xRm(x2))R2

m(x2)

1 + x2R2
m(x2)

M[2m−1];1(−x).

If solving the above system of Equations, then using Identity 1.2 we have

(3.10) M[2m];1(x) =
xR2

m(x2)

(1 + x2R2
m(x2))2

(

(1− x2R2
m(x2))M[2m−1];1(x)− 2xRm(x2)M[2m−1];1(−x)

)

.

(ii) Let k = 2m+ 1, similarly as first case (i) we get

(3.11) M[2m+1];1(x) = x

(

(1− x2R2
m(x2))M[2m];1(x)− 2xRm(x2)M[2m];1(−x)

)

.
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If using Equations 3.10 and 3.11, then we have that for m ≥ 1,

M[2m+1];1(x) = x2R2
m(x2)M[2m−1];1(x).

Besides, by definitions we have that M[1];1(x) = x, hence M[2m+1];1(x) =
x

U2
m( 1

2x )
. Using Equation 3.10

together with the property U 2
p (t) = U2

p (−t) for all p, we get the desired result. ¤

Theorem 3.5 together with the fact that the generating function for the number permutations in
Sn(132) containing [k] exactly once is given by 1

U2
k

(

1
2
√
x

) we have

Corollary 3.6. For all m ≥ 0,

(i) E[2m+1];1(x) =
1
2

(

1

U2
2m+1

(

1
2
√
x

) + x

U2
m( 1

2x )

)

,

(ii) O[2m+1];1(x) =
1
2

(

1

U2
2m+1

(

1
2
√
x

) − x

U2
m( 1

2x )

)

,

(iii) E[2m+2];1(x) =
1
2

(

1

U2
2m+2

(

1
2
√
x

) +
x2R2

m+1(x
2)

(1+x2R2
m+1(x

2))2U2
m( 1

2x )

(

1 + 2xRm+1(x
2)− x2R2

m+1(x
2)
)

)

,

(iv) O[2m+2];1(x) =
1
2

(

1

U2
2m+2

(

1
2
√
x

) − x2R2
m+1(x

2)

(1+x2R2
m+1(x

2))2U2
m( 1

2x )

(

1 + 2xRm+1(x
2)− x2R2

m+1(x
2)
)

)

.

4. Furthermore results

In this section, we present several directions to generalize and to extend the results of the previous
sections.

4.1. Statistics on the set En(132) and on the set On(132). The first of these direction is to
consider statistics on the set En(132) (or on the set On(132)). First of all, let us define

F(x1, x2, . . .) =
∑

n≥0

∑

π∈Sn(132)

∏

j≥1 x
12...j(π)
j ,

E(x1, x2, . . .) =
∑

n≥0

∑

π∈En(132)

∏

j≥1 x
12...j(π)
j ,

O(x1, x2, . . .) =
∑

n≥0

∑

π∈On(132)

∏

j≥1 x
12...j(π)
j ,

where 12 . . . j(π) is the number occurrences of the pattern 12 . . . j in π. We denote the function
E(x1, x2, . . .) − O(x1, x2, . . .) by M(x1, x2, . . .). Using the argument proof of Corollary 2.7 together
with the main result of [BCS] we get as follows.

Theorem 4.1. We have

M(x1, x2, . . .) =
2(1 + x1M(−x1x2, x2x3, . . .))

(1− x1M(x1x2, x2x3, . . .))2 + (1 + x1M(−x1x2, x2x3, . . .))2
,

and

F(x1, x2, . . .) = E(x1, x2, . . .) + O(x1, x2, . . .) =
1

1− x1F(x1x2, x2x3, . . .)
.

An application for Theorem 4.1 we get the distribution of the number right to left maxima on the set
En(132) or on the set On(132). Let π ∈ Sn; we say πj is right to left maxima of π if πj > πi for all
j < i. The number of right to left maxima of π we denote by rlmπ.
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Corollary 4.2. We have

(i)
∑

n≥0

∑

π∈En(132)

xnyrlmπ =
1

2

(

1

1− xyC(x)
+

1 + xy − x2yC(x2)

1− 2x2yC(x2) + x2y2C(x2)

)

,

(ii)
∑

n≥0

∑

π∈On(132)

xnyrlmπ =
1

2

(

1

1− xyC(x)
− 1 + xy − x2yC(x2)

1− 2x2yC(x2) + x2y2C(x2)

)

.

Proof. Using Theorem 2.9 together with definitions we have M(x, 1, 1, . . .) = 1 + xC(x2). So, Theo-
rem 4.1 yields

M(xy, y−1, y, y−1, . . .) = E(xy, y−1, y, y−1, . . .)−O(xy, y−1, y, y−1, . . .) =
1 + xy − x2yC(x2)

1− 2x2yC(x2) + x2y2C(x2)
,

and

F(xy, y−1, y, y−1, . . .) = E(xy, y−1, y, y−1, . . .) + O(xy, y−1, y, y−1, . . .) =
1

1− xyC(x)
.

On the other hand, using [BCS, Proposition 5] we get
∑

n≥0

∑

π∈Sn(132)

xnyrlmπ = F(xy, y−1, y, y−1, . . .),

∑

n≥0

∑

π∈En(132)

xnyrlmπ = E(xy, y−1, y, y−1, . . .),

∑

n≥0

∑

π∈On(132)

xnyrlmπ = O(xy, y−1, y, y−1, . . .).

By combining all these equations we get the desired result. ¤

The second application for Theorem 4.1 we get an explicit expressions for the generating function
∑

n≥0

∑

π∈En(132) x
ny12...k(π) for given k and r := 12 . . . k(π). The following result is true by using

Theorem 4.1.

Theorem 4.3. Let k ≥ 1; we have

(i) M[2k+1];0(x) = 1 + xRk(x
2) =

Uk( 1
2x )+Uk−1( 1

2x )
Uk( 1

2x )
;

(ii) M[2k+1];1(x) =
x

U2
k(

1
2x )
;

(iii) M[2k+1];2(x) =
x2

U2
k(

1
2x )

(xRk(x
2)− 1) =

x2(Uk−1( 1
2x )−Uk( 1

2x ))
U3
k(

1
2x )

.

Therefore, by [MV1, Theorem 4.1] together with the above theorem we get the number of even (or
odd) permutations avoiding 132 and containing [2k+1] exactly r = 0, 1, 2. For example, for r = 2 we
get (for r = 1 see Corollary 3.6)

Corollary 4.4. Let k ≥ 1. Then

(i) the generating function for the number 132-avoiding even permutations containing 12 . . . (2k + 1)
exactly twice is given by

1

2





√
xUk−1

(

1
2
√
x

)

U3
k

(

1
2
√
x

) +
x2(Uk−1

(

1
2x

)

− Uk

(

1
2x

)

)

U3
k

(

1
2x

)



 ,
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(ii) the generating function for the number 132-avoiding odd permutations containing 12 . . . (2k + 1)
exactly twice is given by

1

2





√
xUk−1

(

1
2
√
x

)

U3
k

(

1
2
√
x

) − x2(Uk−1

(

1
2x

)

− Uk

(

1
2x

)

)

U3
k

(

1
2x

)



 ,

4.2. Two restrictions. The second of these directions is to consider more than one additional re-
striction. For example, the following results is true. Let Bτ1,τ2(x) be the generating function for the
number of even permutations in En(132, τ

1, τ2). Assume τ1 = 12 . . . k and τ2 = 2134 . . . k, then we
get as follows.

Theorem 4.5. Let Vm(x) = (1− xWm(x))Wm+1(x) such that

Wm(x) =
(1− x2Rm−2(x)Rm−3(x))Rm−1(x)

1− x2Rm−1(x)Rm−2(x)
.

Then, for all k ≥ 2,

(1) The generating function E12...2k,2134...2k(x) is given by

1

2

(

W2k(x) + 1 + xRk(x
2)
)

.

(2) The generating function O12...2k,2134...2k(x) is given by

1

2

(

W2k(x)− 1− xRk(x
2)
)

.

(3) The generating function E12...(2k+1),2134...(2k+1)(x) is given by

1

2

(

2(1 + xRk+1(x
2))− V2k(x)− xRk+1(x

2)V2k(−x)

1 + x2R2
k+1(x

2)
·Rk+1(x

2) +W2k+1(x)

)

.

(4) The generating function O12...(2k+1),2134...(2k+1)(x) is given by

−1
2

(

2(1 + xRk+1(x
2))− V2k(x)− xRk+1(x

2)V2k(−x)

1 + x2R2
k+1(x

2)
·Rk+1(x

2)−W2k+1(x)

)

.

Another example to consider the case of avoiding τ 1 and counting occurrences of τ 2. For example,

the following result is true. Let Eτ2

τ1(x, y) [respectively; Oτ2

τ1(x, y)] be the generating function for the
number of even [respectively; odd] permutations in Sn(132, τ

2) containing τ1 exactly r times.

Theorem 4.6. Let Gk(x, y) = E
[k+1]
[k] (x, y)−O

[k+1]
[k] (x, y). For all k ≥ 1,

Gk(x, y) = 1 + x
Dk−1(x)− xk +Bk(x)(1− y) + x2(Dk−3(x)− xk−2)(1− y)2

Dk(x) +Ek(x)(1− y) + x2Dk−2(x)(1− y)2
,

where Em(x) = (−1)m − 1)xm+1; B2m(x)− x2m−1 and B2m+1 = −x2m + 2x2m+1; and

D2m(x) = x2m+1

1−4x2 (U2m+1

(

1
2x

)

− 2xU2m

(

1
2x

)

− 2x),

D2m+1(x) =
x2m+3

1−4x2 (U2m+3

(

1
2x

)

− U2m+1

(

1
2x

)

− 4x),

for all m ≥ 0.
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