CHALMERS | GOTEBORG UNIVERSITY

MASTER’S THESIS

Lagrangian Heuristics for Strictly Convex
Quadratic Minimum Cost Network
Flow Problems

Caroline Olsson

Department of M athematics

CHALMERS UNIVERSITY OF TECHNOLOGY
GOTEBORG UNIVERSITY

Goteborg Sweden 2005

Thesis for the Degree of Master of Science

Lagrangian Heuristics for Strictly Convex
Quadratic Minimum Cost Network Flow
Problems

Caroline Olsson

CHALMERS | GOTEBORG UNIVERSITY

Department of Mathematics
Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg, Sweden
Goteborg, October 2005

Matematiskt centrum
Goteborg 2005

Abstract-

This thesis presents a study of five different Lagrangian heuristics applied to
the strictly convex quadratic minimum cost network flow problem. Tests are con-
ducted on randomly generated transportation networks with different degrees of
sparsity and nonlinearity according to a system devised by Ohuchi and Kaji [18].
The different heuristics performance in time and quality are compared. The un-
constrained dual version of the problem is first solved to near-optimality using the
conjugate gradient method with an exact line search. Then a Lagrangian heuris-
tic is applied to obtain (near-optimal) primal solutions to the original problem. In
the computational study, we show results for two modifications of the Lagrangian
heuristic Flowroute, FlowrouteBS and FlowrouteD, and one modification of the
Lagrangian heuristic Shortest Path, Shortest PathL. FlowrouteBS, FlowrouteD and
Shortest PathL. are novel Lagrangian heuristics, but Flowroute and Shortest Path
are constructed according to Marklund [15]. The results demonstrate that although
FlowrouteBS has the drawback of being significantly slower than Flowroute and
FlowrouteD, it produces results of almost as good quality as Shortest Path and
Shortest PathL, and is therefore the most promising Lagrangian heuristic.

KEYWORDS: duality, Lagrangian heuristics, strictly convex quadratic minimum
cost network flow problem

Sammanfattning

Detta examensarbete presenterar en studie av fem olika Lagrangeheuristiker
applicerade pa minkostnadsproblemet for nidtverk med strikt konvex, kvadratisk
kostnad. Tester har genomforts pa slumpmassigt genererade nédtverk med olika
grader av gleshet och ickelinjédritet enligt ett system givet av Ohuchi and Kaji [18].
De olika heruristikernas prestanda jimfors med avseende pa tid och kvalitet. Den
obegrinsade duala versionen av problemet 16ses forst till ndroptimalitet med en
konjugatgradient metod i kombination med en exakt linjesdkning. Sedan appliceras
en Lagrageheuristik for att uppna (naroptimla) primala 16sningar till det ursprung-
liga problemet. Vi presenterar resultat for tva modifieringar av Lagrangeheuris-
tiken Flowroute, FlowrouteBS och FlowrouteD, samt en modifiering av Lagrange-
heuristiken Shortest Path, Shortest PathL. FlowrouteBS, FlowrouteD samt Short-
est PathL &r tidigare okédnda Lagrangeheuristiker, men Flowroute och Shortest
Path &r presenterade av Marklund [15]. Resultaten visar att FlowrouteBS pro-
ducerar resultat av nistan lika god kvalitet som Shortest Path och Shortest PathLL
och dr ddrmed den mest lovande Lagrangeheuristiken, trots att den har nackdelen
att vara signifikant lJdngsammare &n Flowroute och FlowrouteD.

NYCKELORD: dualitet, Lagrangeheuristiker, minkostnadsproblemet for nidtverk
med strikt konvex, kvadratisk kostnad

Acknowledgments

This thesis completes my studies in Mathematics and Computing Science
at the University of Gothenburg. I wish to express my sincere gratitude to
my supervisor Professor Michael Patriksson at the Department of Mathe-
matics, and to Ph. D. student Tapani Utrainen at the Department of Com-
puting Science. The former for taking me on board, giving me guidance
when I got stuck, and patience with the endless delays; the latter for helpful
hints when I struggled with C.

Behind every woman who achieves success stands a man, a daughter and
the IRS (or whatever the saying is), and even if there at times can be doubts
about the first statement in my case, there is no doubt about the second
and third. I consider myself very lucky to have had support from my family
throughout the years in school. I could not have made it without you, and
I am happy to say that payback time is finally coming in every way. Love
always!

Goteborg, 28th September 2005
CAROLINE OLSSON

Contents
1 Introduction

2 Terminology and notation
2.1 Graphs,networks,andflows

3 Lagrangian duality
3.1 Duality theorems and properties of the dual function

4 Gradient methods for solving the dual problem
4.1 Solving the Lagrangian dual subproblem
4.2 Selecting the ascent direction.
42.1 Steepestascentmethod.
422 Conjugate gradientmethod
4.3 Selecting thestepsize
43.1 Inexactlinesearch
432 Exactlinesearch
44 Coordinate ascentmethod

5 Lagrangian heuristics
5.1 A projection-like property L.
5.2 Minimum Deviation
53 Flowroute
54 FlowrouteD
55 FlowrouteBS
5.6 ShortestPath
57 ShortestPathL
5.8 Curet e

6 Network modeling and generation
6.1 Networkmodeling.
6.2 Network generation by Ohuchiand Kaji

7 Results
7.1 Transportation problems
7.2 Computationalresults
7.2.1 Dense transportation networks
7.2.2 Sparse transportation networks

8 Discussion

13
13
14
15
15
16
16
16
18

20
20
22
23
24
25
27
28
30

32
32
33

36
36
37
38
43

48

9 Conclusion 51

A Computer code 55
A.l Mainprogram e 55
A1l OK.cc e 55

A.2 Algorithmicrelatedcode 57
A2.1 Algorithms.c. 57
A22 Alphac. 71
A23 Constantsh 73
A.2.4 Heuristics.c 74

A.3 Datastructure relatedcode, 77
A31 Arcc 77
A32 Network.c 83
A.33 NetworkUtile 91
A34 QuadFun.c. 98
A3S5 VerteX.C 100

A4 Miscellaneouscode 106
A4l Stack.c 106
Ad42 Queuec e e 108

A.5 Testproblem generator 110
AS5.1 TestGraphsc. oo 110

1 Introduction

The problem under consideration in this thesis is the minimum cost network
flow problem with a strictly convex quadratic cost function. In the minimum
cost network flow problem we aim to find the least cost of transporting a
commodity through a network in order to satisfy demands at certain ver-
tices from available supplies at other vertices. The arcs of the network have
a cost associated to them, as well as limits of how much flow that can be
transported through them. There are several applications within engineer-
ing, economics, and statistics when the cost of the arcs varies quadratically
with the amount of flow. Such situations occur for instance in resistive elec-
trical networks, equilibrium import-export trade problems, quadratic data-
fitting problems, and in urban traffic flows (Ventura [22]) . These problems
have in common that they are large-scale in structure, with many thousands
of variables and constraints. Thus, they are very complex to solve. More-
over, they tend to grow larger and more complex with time, and the algo-
rithms commonly used to solve them are approaching the limit of what is
feasible in terms of CPU time (for instance Ventura [22] gives a summary of
such algorithms).

In this thesis, an approach involving five Lagrangian heuristics is used
to solve the minimum cost network flow problem with a strictly convex
quadratic cost function. The unconstrained dual version of the problem
is first solved to near-optimality using the conjugate gradient method with
an exact line search, followed by the application of a Lagrangian heuristic
to obtain (near-optimal) primal feasible solutions to the original problem.
When the conjugate gradient method is stopped at a high level of accuracy,
we expect that the quality in solution for the Lagrangian heuristics will im-
prove compared to when it is stopped at a low level of accuracy. We base this
assumption on Marklund [15], Theorem 9, and on the experimental conver-
gence studies also presented by Marklund [15]. Randomly generated trans-
portation networks of different degrees of sparsity and nonlinearity will be
generated according to a system by Ohuchi and Kaji [18]. We expect that
the running times for the Lagrangian heuristics will be shorter when ap-
plied to smaller networks, and likewise to more dense networks. The first
assumption is based on the fact that solving problems for larger networks in-
volve more computations, and this inevitable leads to longer solution times.
The second assumption is based on the fact that solving problems for more
dense networks is easier, i.e. the running time becomes shorter, since there
are many options to reroute flow in the network. These assumptions have
also been verified by the experimental studies of the Lagrangian heuristics
Flowroute and Shortest Path by Marklund [15]. In this thesis, we suggest

5

two new modifications of Flowroute, FlowrouteD and FlowrouteBS, and
one new modification of Shortest Path, Shortest PathLL. Due to the modifi-
cations made to Flowroute and Shortest Path, we expect that FlowrouteD
and FlowrouteBS will produce results of similar quality, but faster than
Flowroute, and that Shortest PathL will produce results in similar running
time as, but with better quality than Shortest Path.

The contents and outline of this thesis is the following: first several terms
that are commonly used when dealing with network problems are intro-
duced. This is followed by a discussion on Lagrangian duality, and meth-
ods of how to solve the Lagrangian dual problem. Hereafter, the different
Lagrangian heuristics are presented, followed by a description of the data
structure used to model the problem, and the network generator used to
generate large-scale transportation networks. Eventually the computational
results of using the different Lagrangian heuristics on large-scale networks
are presented. The thesis ends with a discussion of the findings, and the
conclusions drawn when comparing the different Lagrangian heuristic per-
formance in time and quality.

2 Terminology and notation

This section presents many of the terms that will be encountered through-
out the thesis. The contents rests on the facts presented in the text books by
Ahuja [1], Biggs [S], Cormen [6], Evans [9], and Migdalas&Gothe-Lundgren
[16].

2.1 Graphs, networks, and flows

A graph, GG, consists of two finite sets; vertices, V', and edges, E. The vertices
are the connection points of the graph. Two vertices are joined by an edge.
A bipartite graph has the set of vertices partitioned in two subsets V; and
V5 so that for each edge {i,j} € F eitheri € V; and j € V, or j € V] and
i € V. A vertex is usually identified by a label or coordinate and an edge by
a weight or cost. The degree of a vertex is the number of edges connected
to it. An edge can be directed or undirected depending on whether it is
traversed in a given direction only or in both. A directed edge is called an
arc and is identified by its origin (tail), and its destination (head). The set
of arcs is usually denoted A. An arc between a specific vertex 7 € V' and
an adjacent vertex j € V/, is either forward (outgoing) if it connects (i, j) or
backward (incoming) if it connects (j,7). A graph that does not contain any
undirected edges is called a digraph.

A walk in a graph is a sequence of vertices 1,2, ...,k such thati,i+ 1 are
adjacent for 7, 1 < ¢ < k — 1. Vertex 1 is called the origin and vertex £ is
called the destination of the walk. If all the vertices are distinct, the walk
is called a path. A path that starts and ends at the same vertex is called a
cycle. The length of a walk, path or cycle is the number of edges on the
walk, path or cycle respectively. A graph that contains no directed cycles is
called acyclic.

An acyclic layered digraph, ALD, has the set V' divided into [> 2 differ-
ent subsets, so called levels, L(k), for some k € Z*,0 < k < [— 1. Each
vertex is encountered exactly once at a certain level. For an arc (i, j) in an
ALD, if the vertex 7 is found at L(k), then vertex j is found at L(k + 1).

A network, N, is a digraph where all arcs have a weight associated to
them. A flow network is a network where all the arcs have, in addition
to a weight, a nonnegative capacity, c(i, j) associated with them. The flow
networks we will study in this thesis, transport one commodity only. There
are two specific types of vertices in a flow network called a source, s, and a
sink, ¢. The source is the origin of the flow which provides a supply, and the
sink is the destination of the flow that possesses a demand. A pure source
(sink) has outgoing (incoming) arcs only. A vertex that has neither supply

7

nor demand is called a pure transshipment. A minimum cost flow network
can consist of several sources and sinks, but it can be reduced to a regular
flow network by the introduction of a super-source and a super-sink.

A flow in a network is a real-valued function f : A — $ that assigns a
nonnegative value to each arc of the network and satisfies the following two
properties:

(i) Capacity constraint: f(i,j) < c(i,), V(i,j) € A,
(ii)Flow conservation: Zf(k, i) = Zf(i,j), Vie V\{s,t}.
kev JEV

The value of a flow is defined as the total flow out of the source or, equiv-
alently, the total flow into the sink. An augmenting path with respect to a
given flow f is a directed path from the source to the sink along which more
flow can be transported.

3 Lagrangian duality

The problem under consideration is the separable minimum cost network
flow problem with a strictly convex quadratic cost function for the network
N = (V, A). Itis formulated as follows:

minimize Y | () = Y by}, +ayvi, V@i, j) € A, (1)
(i1)€A (i)€A

subject to Z Vij — Z v = d;, VieV, (2)
jilif)eA jii)eA
lij < vij < g, V(i,j) € A (3)

We want to solve the problem indirectly by using its dual formulation:

. . . . 2
maximize — Z mid; + minmum Z bijui; + (ai +m — mj)vij
eV - (i,7)€A
(4)
subject to w € RV ()

In the following sections, several theorems will be presented that explain
why solving the dual version of the problem is easier than solving the orig-
inal problem. The theory for this section is taken from the text books by
Andréasson et al. [2], Bazaraa et al. [3], and Bertsekas [4].

3.1 Duality theorems and properties of the dual function

Consider the general nonlinear network flow problem for the network N =
(V, A):

minimize ¢(v), (6)
subject to Ev = d, (7)
I <v<u, (8)

where ® : R4 — R is a nonlinear, continuous function; I € R4/, u € R4,
and d € RV are constant vectors; E € R!V/*I1l is the node-arc incidence
matrix of N; v € Rl is the vector of decision variables that represent the
flows on the arcs. It is assumed that —oo < ®* < oo, l;; < wy;,V(4,j) € A,
and that >°,_, d; = 0. The set {v € RI4:1 < v < u} will be denoted X; the
set {v € R4:Ev = d;1 < v < u} will be denoted F. The statements (6)—
(8) will together be denoted the primal problem. For the vector of Lagrange

9

multipliers, 7 € RVI of the relaxed constraint (7), we define the Lagrange
function, L(v,), as:

L(v,m)=®(v) +n" (Ev — d).

The Lagrangian dual function, whose evaluation also is known as the La-
grangian dual subproblem, is defined as:

n(m) = miln<inlum L(v,), meRY)

Consider then the Lagrangian dual formulation of the general network flow
problem which will be denoted the dual problem:

maXiTIK_nize n(m) (10)
subject to w € RV, (11)

Any feasible solution to the dual problem will always constitute a lower
bound to any feasible solution of the primal problem. This relation is com-
monly known as weak duality, and is stated in Theorem 1.

Theorem 1 Let v* be an optimal solution to the primal problem, and let 7*
be an optimal solution to the dual problem. Then,

n(m*) < &(v').

Al

Proof Take any dual feasible = € R'“'\. By definition,

n(mw) = milngi?%l’lltm {®(v)+ 7" (Bv—d)}.

It follows that for any primal feasible v € R!V
n(m) < B(v) + 7" (Bv — d),
Moreover, for such a primal feasible v, Ev — d = 0. Hence,
n(w) < ®(v) + 7' (Bv — d) < d(v).
In particular,
n(m) <n(n?) < @(v7) < @(v). 1

Now we know that there is an association between the primal problem
and the dual problem, and more importantly, that it seems as that they can
have the same solution. Could it be that the dual problem has properties
that makes it easier to solve than the primal problem, and that the primal
solution somehow can be obtained from the dual solution? To be able to
answer those questions, we begin with the matter of what the Lagrangian
dual function looks like. Theorem 2 states that the dual function is concave.

10

Theorem 2 The Lagrangian dual function, n, is a concave function of .

Proof Take any v, 7; and 7, and « € [0, 1]. We have that
L(v, (am + (1 — a)my)) = al(v,m) + (1 — a)L(v, 7).

If we take the minimum over v on both sides for I < v < wu, the relation
becomes:

minimum L(v, (a7 +(1 — a)my)) = minignum {aL(v,m)+(1 — a)L(v,ms)}

v

> minimum «L(v,)
v

+ minimum L(v, (1 — a)my),
v

since taking the minimum over the two functions of the RHS gives us a
freedom of choice for ». It is therefore possible to obtain lower values in
the RHS than in the single function of the LHS. |}

The concavity of the Lagrangian dual function means that a local maximum
of n also is a global maximum of n. Hence, solving the dual problem is
equivalent to maximizing a concave function over R/“/. Provided that the
dual problem is differentiable, solving the dual problem is an easier task
than solving the primal problem.

Next, we are especially interested in situations when existence of opti-
mal solutions in both the dual and the primal problem are guaranteed, and
when the optimal values of the two problems are equal, i.e., when a duality
gap is absent. These situations occur if we impose stronger conditions on
the objective function in the primal problem. Firstly, we address the rela-
tion n(w*) = ®(v*), commonly known as strong duality, which is stated in
Theorem 3.

Theorem 3 Let ® : RVl — R be a convex function of v such that —oco <
®* < oo. Then there exists a feasible v € X such that Ev = d, and

* there exists at least one optimal solution, *, to the dual problem;

* if there exists an optimal solution, v*, to the primal problem, then:

(1) v* € arg minimum , L(v,7*)

2)v* e X

(3) Ev* = d;

* there is no duality gap.

Proof Andréasson et al. [2], Theorem 6.10. |}

11

The objective function of our problem is convex, and satisfies —oc <
®* < oo, so we are guaranteed that there exist at least one optimal solution
to the dual problem. However, strong duality holds for our problem only
if there exist an optimal solution to the primal problem. Our primal ob-
jective function is not only convex, it is strictly convex and continuous, and
minimized over the set X which is non-empty and closed. By Weierstrass’
Theorem (Andréasson et al. [2], Theorem 4.7), we are therefore assured
that there exists a primal optimal solution. Knowing that strong duality
holds for our problem, the optimal primal vector »* is obtained by solving
the Lagrangian dual subproblem for the vector 7w*. Moreover, our primal
objective function is quadratic, and the expression for v* is thus available in
closed form:

v'=-2B '(a+ E"n"), (12)

where B € R4*1l is the diagonal matrix of strictly positive coefficients,
and a € Rl is the constant vector of linear coefficients.

What remains to determine is if our dual problem really is differentiable.
Theorem 4 presents the conditions that must be satisfied for this to be true:

Theorem 4 Let ®(v) : RV — R be a strictly convex function on a convex
set X. Then the Lagrangian subproblem has a unique solution, v () for all
m ¢ RIVI, and

vi(m) = Ev(rw) — d.

Proof Andréasson et al. [2], Proposition 6.20. |}

Theorem 4 is applicable to our problem, since our primal objective func-
tion is strictly convex, and the set X is convex. It follows that our La-
grangian dual subproblem has a unique solution, and we can conclude that
our dual problem is differentiable.

12

4 Gradient methods for solving the dual problem

Our Lagrangian dual problem is concave, and differentiable. Therefore,
it can be solved by any gradient method that provides dual ascent. The
essence of such an algorithm is to find a direction p”, and a step size o” > 0
in every iteration 7 such that the objective function value improves. The
direction p” is chosen such that the dual directional derivative in the di-
rection p”, n'(w7;p7) = yn(w")"p” > 0, and the step size o” such that
n(m" +a’p”) > n(w"). However, to obtain a solution for =7, we also need a
solution v(7™) to the Lagrangian dual subproblem. The generic algorithm
for a gradient method that provides dual ascent for our problem is shown
below:

Gradient method(n), 7°)

1. determine v (w") by solving the Lagrangian dual subproblem
2. if Hvﬁg‘r‘rm = HE”(‘@TH)*dH < € (e > 0 is a small tolerance)

3. then goto 9.

4. else determine p” such that yn(7w") p™ > 0

5. determine o > 0 such that n(w”™ + a"p”) > n(xw")

6. ,n.T-l-l =7+ anT

7. T=7+1

8. goto 1.

9. return 7’

We will present two different methods for selecting the direction of as-
cent, and two methods for selecting the step size. The steepest ascent method
with the Armijo step size rule is a dual scheme that is guaranteed to gener-
ate a sequence {7"} that converge to the optimal solution {7*} (Theorem
11.4, Andréasson et al. [2]). The conjugate gradient method with the Hel-
gason step size rule also gives a convergence guarantee (Proposition 1:2:1,
Bertsekas [4]). We will also present one periodic basis ascent method, the
coordinate ascent method. The theory for this section is presented accord-
ing to the findings of Ventura [22] and Helgason [11], and according to the
facts in the textbooks by Andréasson et al. [2], Bertsekas [4], Heath [10],
and Nash&Shofer [17].

4.1 Solving the Lagrangian dual subproblem

To make the Lagrangian dual subproblem easy to solve, we impose another
condition on the objective function of the primal problem. We let the primal
objective function of our problem be separable. Thus, the Lagrange function
for our problem is formulated:

13

Z b”v” + a;vij + Zm Z Vij — Z v —d; | (13)

(i.j)eA eV J:(i,5)€A 7:(4,8)eA
Z bij?)ij + (U,ij + m; — 7T'7')’I)Z"7' - Zﬂ—idia (14)
(i,j)eA eV

and the Lagrangian dual subproblem becomes:

. I 15

n(m) = minimum L (v,) (15)
Z Tid; + mlln<111;21;11m Z fz] (7)2_7a g, 71'_7)) (16)
eV - (i,j)EA

where t;;(vj, m;, ;) = byv; 4 (ai; + ™ — 7;)vi;. We refer to t;; as the dual
cost function over arc (i, j).

Solving our Lagrangian dual subproblem for an iteration 7, means per-
forming |A| minimizations over the dual cost function of each arc (i, j),
adding these results together, and then subtracting the term (7w")”d. The
minimum of the dual cost function ¢;; over [/;;, u;;] when 7 is fixed, is found

dtij (Lig,mi,m5) . 3
v > 0; at u;

when < 0,oratv; = %”7 when W 0. Note that
our primal ob]ectlve function is strlctly convex, 1.e. each bi; > 0, so the last

expression for 7;; is well defined.

at one of three possible locations: either at /;; when

(if7‘7' (71,‘7‘ ,7r,-,7r7')

4.2 Selecting the ascent direction

Newton’s method is a commonly used gradient method for finding a station-
ary point of a function. Newton’s method assumes that € C?, and uses the
second order Taylor expansion of n(7”) in the direction p” to determine an
ascent direction:

n(w" +p7") —n(x") =) p" + (") P u=")p” +o(|p7[]). (A7)

The closer the RHS approximates the LHS in 17, assuming o(||p7||) ~ 0
the better ascent directions can be found. The ascent direction in Newton’s’
method, the Newton direction, is selected as the best such direction that can
be obtained from the second order information, and constitutes the solution
to the following system of linear equations:

vin(nT)pT = vn(n").

14

Although Newton’s method usually has the fastest convergence rate of the
gradient methods, with the Newton direction as the best ascent direction,
it cannot be applied to our problem. For our dual problem n € C', i.e.
n is not twice differentiable, and thus the matrix 7%7(7") is not available.
To solve our dual problem, we must therefore use other methods that does
not require second derivatives. Two such methods are the steepest ascent
method and the conjugate gradient method.

4.2.1 Steepest ascent method

The steepest ascent method is an alternative to Newton’s method that does
not require the evaluation of second derivatives. Steepest ascent chooses
the ascent direction as the gradient of the function to be maximized. The
gradient points in the direction in which the function increases the fastest.
In our problem p™ = yyn(nw") = Ev(nw") — d. The steepest ascent method
has the drawback of having a slow convergence rate, but it has the advantage
of always progressing as long as the gradient is nonzero.

4.2.2 Conjugate gradient method

The conjugate gradient method is another alternative to Newton’s method
that also uses the gradient of the function to be maximized, but neither re-
quires the evaluation of second derivatives. The conjugate gradient method
uses an updating formula to compute the ascent direction. The purpose of
the updating formula is to modify the gradient so that the current ascent di-
rection differs from the ascent directions in previous iterations. The updat-
ing formula includes the gradient of the function to be maximized, a scalar
£7, and a previously computed ascent direction. Both the gradient and the
ascent direction is taken from the iteration prior to the current one.

p ' =vnl™) +57p".

A7 is set to zero when 7 is zero or some multiple of a chosen number m > 0.
Otherwise, there are several suggestions of how to compute 57. We use the
Polak-Ribiere formula (shown below) in our problem, since the findings of
Ventura [22] suggest that this is the superior method:

BT = (™) (wn(v™) — wn(v)/|| 7 (e (18)

If the ascent direction in the conjugate gradient method is not set to 77(v")
every m:th iteration, but exclusively given by formula 18, the resulting search
directions actually approaches 5/?n(v7) as the iterations proceed. The con-
jugate gradient method usually have a faster convergence rate than the

15

steepest ascent method, since the former avoids to search in an already
visited direction, whilst the latter tends to perform searches in the same
direction several times.

4.3 Selecting the step size
4.3.1 Inexact line search

The Armijo step size rule performs an approximate line search. For our
problem, this means to find an o™ = ™s for scalars o € (0,1), 5 € (0,1),
and s > 0 that satisfies the inequality below for the first nonnegative integer
m:

n(v" + B"sp") —n(v") > of"s 7 n(v") P’

According to Bertsekas [4], o is recommended to be within the interval
[0.00001, 0.1], g within the interval [0.1, 0.5], and s is suggested to be 1.

4.3.2 Exact line search

The Helgason step size rule suggested by Helgason et al. [11], gives a method
to perform an exact line search. By solving the line search subproblem be-
low, an optimal " is obtained.

maximize n(w’ + ap”) (19)
subjectto e > 0 (20)

We first apply the Helgason rule to our problem in matrix form. The
expression of 7 then becomes:

n(7” + ap”) = minimum v’ Bv + a’v + (77 + ap”) (Ev — d).

I<v<u

Since 7 is concave and differentiable, its optimal solution aw = o7 for a solu-
tion v” to the minimization problem above, is found when:

v +ap) 'pT = (Ev" —d)'p” = 0. (21)

Using (21), the line search subproblem can be reformulated as follows:

minimize v'Bv+a"v+n"" (Ev—d) (22)
subjectto p”" (Ev — d) = 0, (23)

16

with o” being the optimal Lagrange multiplier of constraint (23). Since our
problem is separable, we can also apply the Helgason rule component-wise.
The line search subproblem is then formulated:

minimize bijvii” + Y (ay+m" —m vy — Yy mTdi (24)
- (i,j)EA (i,j)GA eV
SUbjeCt to Z (pZT — pjﬂr)'l)z'j = szsz (25)
(i,5)€A i€V

The solution to the problem (24)-(25) is found by considering its opti-
mality conditions, and finding the value of the Lagrange multiplier to the
equality constraint. From the KKT conditions, the solution as a function of
@, v;j(e), is, for each arc, given by the following expression (Ventura [22],
Theorem 4):

(aij + ™7 —m") + (pi" —pj7)a
2b

vij(a) = MID {lij, - ,“z‘j} V(i j) € A,

ij
where MID is a function that selects the middle value of its three arguments.

Each v;;(«) is a piece-wise linear and continuous nonincreasing function

—(2bijuij+aij+mi—m; —(2bijlijtaij+mi—m;)

with two breakpoints at « =) and o = .

Pi—Dj Pi—pj
Let h(«) denote the function in the LHS of constraint (25): :
hla) =" (" — i vij()
(ij)eA
~ Y (o7 ") MID {li]’, (e AT W;Qb) + (0" —p)a,ui]}

(i) A "

h(«) is also a piece-wise linear and continuous nonincreasing function (Ven-
tura [22], Theorem 5). By considering the at most 2|A| breakpoints of the
function h(a), the optimal a” such that h(a”™) = .., pi"d;, is found when
applying the bisection method to the sorted breakpoints in increasing order.
Either o is found directly among the sorted breakpoints or defined by a lin-
ear interpolation between two consecutive breakpoints. We have chosen to
sort the breakpoints using Shellsort. The worst case running time of Shell-
sort is quadratic in the size of the input, but it has the advantage of having a
close to linear complexity if applied to a sequence of nearly sorted elements
(Sedgewick [20]). As the dual solution approaches optimality, there is a
good chance that the ordered sequence of breakpoints of two consecutive
iterations are identical. We have therefore chosen to start Shellsort with
the unsorted breakpoints from a current iteration in the same order as the

17

sorted breakpoints from the previous iteration. Thus, we can conclude that
the running time of Shellsort for our problem will become closer to linear
than quadratic as the dual solution approaches its optimal value.

4.4 Coordinate ascent method

The coordinate ascent method maximizes the objective function along one
coordinate direction at each iteration. The coordinate ascent method con-
sists of selecting a coordinate direction ¢, and a step size « in that direction
such that the objective function eventually is maximized. The way the co-
ordinate directions are chosen varies. We will describe the approach that
is used in the Curet heuristic [7]. The essence of the coordinate ascent al-
gorithm, as described by Curet, is to select a vertex ¢ with a violated flow
conservation constraint to determine the coordinate direction e;, where
e; denotes the i:th coordinate vector in RI“/. The direction p is selected
as te; such that 7/(m;p) > 0, and the step size a” is chosen such that
n(w™ + a’p”) > n(w"). The generic algorithm for the coordinate ascent
method is shown below:

Coordinate ascent method(7, w°)
1. determine v (7”) by solving the Lagrangian dual subproblem
2. if v(7") is feasible in the primal problem

3. goto 11

4. else

5. select a vertex ¢ with a violated flow conservation constraint
6. p” = te; such thatn/(w";p") > 0

7. a” > 0 such that n(w” +a"p7) > n(w7)

8. 7.‘.T+1 =7 + anT

9. T=71+1
10. goto 1
11. return v(w7)

In general the coordinate ascent method has a convergence rate similar
to the steepest ascent method. A convergence guarantee for the coordi-
nate ascent method is present if the objective function to be maximized is
strictly convex, and differentiable. The convexity assumption is needed as
the method performs a search for a unique maximum along each coordi-
nate; the differentiability assumption is needed as the method is known to
get stuck at nondifferentiable points. If not the prerequisites for the objec-
tive function are met, the coordinate ascent method is known to cycle with-
out approaching any stationary point. The coordinate ascent method have
the advantage of being suitable for parallel computing if the objective func-
tion is separable. The method can then be applied independently to each

18

coordinate subset, where a coordinate subset consists of those coordinates
that are not coupled through the objective function.

19

S5 Lagrangian heuristics

So, why not be satisfied with the solution to the Lagrangian dual problem
as produced by some dual gradient method? Our problem is strictly con-
vex and quadratic; the primal and dual problem are feasible. Thus, we are
guaranteed by the theorems presented i Section 3.1 that the dual optimal
solution and the primal optimal solution exists and have the same objective
value. Moreover, we have an explicit method to obtain the primal solution
from the dual solution. The dilemma is that the dual solution is not primal
feasible until we reach optimality, and finding the optimal dual solution can
take forever if we are unlucky. Fortunately, we can still make use of the
non-optimal dual solutions.

The purpose of a Lagrangian heuristic is to find near-optimal primal solu-
tions by solving the Lagrangian dual problem and manipulate the solutions
obtained to make them primal feasible. Even if the solutions produced by
a Lagrangian heuristic are non-optimal in the primal problem, they provide
a (primal) upper bound, and as we have the lower bound from the dual
solution, we can estimate how far from optimum we actually are.

In the following sections, seven Lagrangian heuristics that are used in
combination with a gradient method that is guaranteed to converge to the
optimal solution will be presented. Three of them have been presented
in the M.Sc. thesis by Marklund [15], and in the textbook by Patriksson
[19]. One is presented according to the findings of Curet [7]. FlowrouteD,
FlowrouteBS and Shortest PathLL are novel approaches that have not been
presented in the literature before. Note that all function names used in the
pseudocode for this section are either commonly used names for functions,
operations on ordinary data structures, or names used in the computer code
presented in Appendix A. The graph search techniques in Sections 5.3-5.6
are presented according to the descriptions in the textbooks by Ahuja [1],
Biggs [5], Cormen [6], and Migdalas&Gothe-Lundgren [16].

5.1 A projection-like property

That the dual solution will not be primal feasible until the optimal solu-
tion to the dual problem is found has already been stated. Let 77 € RV
denote the dual solution at iteration 7, and let v(7”) € R4/ denote the cor-
responding solution to the Lagrangian dual subproblem (9) for 7w”. We want
to find a primal feasible point by projecting v(7") onto the primal feasible
set F'. A good candidate to perform such an operation onto F'is the Eu-
clidian projection, Proj; the vector-valued mapping that produces a primal
feasible point of minimum distance from v (7 "). Unfortunately, finding the

20

Euclidian projected point is nearly as hard as solving our original problem.
Therefore, a “fake projection”, P, is required. P should be computationally
cheaper than the Euclidian projection, but with similar characteristics. A
point projected by P must not be worse than a point projected by Proj in
the sense that if the distance between v (7") and the projected point given
by Proj becomes very small, so must the distance between v(7”) and the
projected point given by P. Thus, to make sure that P converges towards
the optimal solution, the following properties must be established. Firstly,
P must have a projection-like property. Secondly, P must produce a primal
feasible point that approaches v* as 7™ approaches 7*.

Definition 5 (Patriksson [19], Definition 10.2.1.)
We say that for a sequence {v(n")} C R, the vector-valued mapping P :
R4l — F is projection-like onto F, if P has the property that

Proj(v(n™)) —v(n") = 0 = P(v(x")) — v(n") — 0. (26)

If a Lagrangian heuristic with the projection-like property is used, The-
orem 6 shows that the primal feasible points, P(v(w")), produced by the
heuristic will approach v* in the limit.

Theorem 6 (Liu [14], Theorem 5.) Consider the dual sequence {w"} with
the property that v(w™) — v* as T — oc, and the primal sequence {v™} =
{P(v(x"))} generated by a Lagrangian heuristic with a projection-like prop-
erty. Then v™ — v*.

Proof We have that

T

— o[=[[P(v(#7)) — v7]
= [[P(o(77)) —v(x7) + o(77) — v
< |[P(o(r7)) — v(@T)[[+ [[o(x7) — v7|].

v

Since v (") — v* by assumption, we must have that Proj(v(w"))—v(7") —
0 as 7 — oco. By the projection-like property of P, also P(v (7)) —
v(nw™) — 0, and hence, v7 — v*. |

A dual gradient method produces a sequence,{v(7")}, that converges to
v* in the limit. Since the Lagrangian heuristics we present in the following
sections are used in combination with a dual gradient method, the condi-
tion v(w”) — v* is satisfied automatically. Hence, Theorem 6 holds for each
Lagrangian heuristic if the relation P(v(7w")) — w(«") is proven. There-
fore, that P(v(w")) — wv(w") holds for each Lagrangian heuristic will be
established along with its presentation.

21

5.2 Minimum Deviation

The Minimum Deviation heuristic was first presented by Marklund [15].
Minimum Deviation aims to minimize the total amount of flow that needs to
be rerouted in the network from the flow produced by the dual solution in
order to accomplish primal feasibility. By associating a deviation variable,
d,;, with each arc (i, j) of the network, the original problem is converted to
a linear programming problem that can be solved by a regular linear mini-
mum cost network flow solver. The purpose of the deviation variable is to
find the minimum amount of flow that needs to be adjusted from the initial
infeasible flow given by the dual solution in order to satisfy the constraints
of the primal problem. Hence, for v(#"), the problem is formulated as the
following linear program:

minimize (67 + &) (114, (27)
(6%,67)

subjectto E(6T — 6) =d — E(v(w")), (28)

0" <u—wv(w"), (29)

0 < —-l+v(n7), (30)

ot 6 > 0. (31)

Minimum Deviation introduces a deviation variable, §;; = 6,;j+ — 0;; , that
denotes the deviation for each arc of the network. &,;;7 denotes the addi-
tion of flow needed for adjustment on the current arc, and §;; denotes the
subtraction of flow needed for adjustment on the current arc. Using the
original structure of the network, an arc in the same direction as the orig-
inal arc models the variable §,;", and a new arc in the opposite direction
as the original arc models the variable §;; . The pseudocode for Minimum
Deviation is presented below, and as suggested on line 9, the problem for

the altered network is solved by a linear minimum cost network flow solver.

Minimum Deviation heuristic(V)

1. forall arcsa € A

2. associate the decision variable 6 with a

3. set the upper limit of a to (Upper(a) - Flow(a))
4. make a copy a,., Of a in the opposite direction

5. associate the decision variable 6~ with a,.,

6. set the upper limit of a,., to (-Lower(a) + Flow(a))
7. for all verticesv € V

8. set the demand of v to (Demand(v) - Balance(v))
9. §* = MCFSolver(N,§",57)

10.return(v (77) + &)

22

Minimum Deviation satisfies property (26), and therefore the sufficient
conditions in Theorem 6.

Theorem 7 Consider the Lagrangian heuristic Minimum Deviation, PMP,
and the by PMP generated primal sequence {v™} = {PMP(v(n7))} starting
at v(w™). If PMP has the property that PP (v (7)) — v(n™) — 0'“, then
{v7} — v*.

Proof The expression ||[PMP(v(w™)) — v(m™)|| is closely related to the ex-
pression Y sic 4 [PMP(v(77))i; — v(@7);;|. If one of the expressions is
equal to zero, the other expression must also be equal to zero. Moreover,
the vector " = (67)* — (6)* is the solution to the problem:

.)+ 6) = d
minimize E 1045 (7:)
(5+767) (,5)€A 7 7T) * 6)

The maximum amount of flow that is rerouted by Minimum Deviation can
be no more than) ;- ,[d;;|. Therefore, this value constitutes an upper
bound for the maximum amount of flow that can be adjusted on any arc.
Since v(m") — w* as T — oo, it follows that Y-, ., [8i;| — 0. Then

Z(i,j)eA |PMD('U(7"T))1,_7 v(m")i | = Z (i,j)EA 10" ‘ S Z (i,j)€A 8| — 04,
Hence, we can conclude that ||[PMP(v(77)) — v (77| — 04, |}

5.3 Flowroute

The Flowroute heuristic was first presented by Marklund [15]. Flowroute
aims to accomplish primal feasibility by rerouting flow in a residual graph
constructed from the dual solution. As the dual solution does not respect
the flow conservation constraints, situations where these constraints are vi-
olated will occur. When more flow is entering a vertex than leaving it, the
vertex will become a source in the residual graph. When more flow is leav-
ing a vertex than entering it, the vertex will become a sink in the residual
graph. Using the breadth first search technique (BFS) augmenting paths
with the minimum number of arcs from the residual sources to the resid-
ual sinks are found. While respecting the limits of the involved arcs along
the paths, the flow is transported from the residual sources to the residual
sinks. When the supply at the residual sources satisfies the demand at the
residual sinks we have obtained a primal feasible solution, since rerouting
flow in the residual graph also means rerouting flow in the original network.
The pseudocode for Flowroute is presented below. The algorithm for BFS
is found in the textbook by Cormen [6], and has a running time bounded by
O(|V] + |A|) when applied from a single vertex.

23

Flowroute heuristic(V)

1. for all sources s € V

2. BFS(NV, s)

3 for all sinks ¢ € V connected to s

4 while Supply(s) > 0

5. find an augmenting path from s to ¢

6 augment as much flow as possible along the path
7. return

Flowroute satisfies property (26), and therefore the sufficient conditions
in Theorem 6.

Theorem 8 Consider the Lagrangian heuristic Flowroute, P", and the by
P" generated primal sequence {v"} = {P"(v(n"))} starting at v(w"). If
P" has the property that P* (v(%™)) — v(n”) — 04, then {v"} — v*.

Proof The expression ||PY(v(w™)) — v(m7)||is closely related to the expres-
sion 3, iiea |PP(v(w"));; — v(w");;|. If one of the expressions is equal to
zero, the other expression must also be equal to zero. Let g;(7") = — 8;97;7-::)
denote the flow imbalance at vertex ;. The maximum amount of flow that is
rerouted by Flowroute can be no more than)", _,, |¢;(w)|. Hence, this value
constitutes an upper bound for the maximum amount of flow that can be ad-
justed on any arc. Since v(7”) — v* as T — oo, it follows that g;(77) — 04!,
Then ||PY (v(n")) — v(n")|| < |A| Y,y lgi(m)| — 0. Hence, we can con-
clude that ||P"(v(77)) — v(x7)|| — 0. |}

5.4 FlowrouteD

The FlowrouteD heuristic is a modification of the Flowroute heuristic. As
in Flowroute, primal feasibility is accomplished by rerouting flow in a resid-
ual graph constructed from the dual solution. However, in FlowrouteD the
depth first search technique (DFS) is used to find augmenting paths from
the residual sources to the residual sinks. The running time for DFS is
O(|V] + |A]) (Cormen [6]), but by using the information provided by DFS
instead of BFS it is possible to find residual sinks faster. The DFS algorithm
favors deep progress in the network, and can be truncated as soon as any
sink has been found, usually before all of the vertices in the network have
been visited. The BFS, on the other hand, is normally truncated at a later
stage, since the algorithm favors broad progress, and usually visits more ver-
tices in the network before any sink can be found. So, with DFS replacing
BFS in step 2 of the pseudocode for Flowroute presented above, the pseu-
docode for FlowrouteD is identical to the pseudocode for Flowroute.

24

FlowrouteD satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 9 Consider the Lagrangian heuristic FlowrouteD, P*?, and the
by PP generated primal sequence {v"} = { P''P(v(n™))} starting at v(m").
If PT'" has the property that PP (v(x7)) — v(xw™) — 0", then {v"} — v*.

Proof Apply the proof of Theorem 8 with PP replacing P". |}

5.5 FlowrouteBS

The FlowrouteBS heuristic is another modification of the Flowroute heuris-
tic. The graph search technique used in FlowrouteBS is the multiple breadth
search technique (BS). At termination, the BS algorithm produces an acyclic
layered digraph (ALD) which is used in the polynomially bounded max
flow algorithm (MFALD) presented by Migdalas& Go6the-Lundgren [16] to
reroute flow along many paths simultaneously in the residual graph con-
structed from the dual solution.

The BS algorithm is a modification of the BFS algorithm. The modifi-
cation lies in how the information about reaching a vertex is stored. In the
BEFS algorithm a scalar with the index of the vertex that proceeds the current
vertex in the graph search is kept. In the BS algorithm this is changed to a
set of vertices (predecessors) that give the same path length to the current
vertex. The running time of BSis O(|V|+|A|) (Migdalas&Gothe-Lundgren
[16]).

The information provided by keeping the set of predecessors at each
vertex makes it possible to transport the flow along several paths simul-
taneously. The MFALD is a modification of the maximum flow algorithm
by Ford-Fulkerson (Cormen [6]) that uses this possibility. The MFALD is
based on the BS search technique, and uses a push and pull principle to up-
date the flows of the ALD as long as there exist paths from the source to the
sink, or until the source has a supply equal to zero. First, each vertex v € V
is assigned a capacity:

VertexCap(v) =MIN {Z Auj, Z Auji} : Vi e V\{s,t},

where Aw;; denotes the residual capacity of an arc, and MIN is a function
that selects the minimum of its two arguments. The value of Au;; is de-
fined as the upper capacity of the arc minus the current flow of the arc.
The capacity of the source is calculated as the sum of the residual capac-
ities of the outgoing arcs from the source, and the capacity of the sink is

25

calculated as the sum of the residual capacities of the incoming arcs to the
sink. The vertex with the minimum capacity is then chosen as the start ver-
tex. In the push procedure, a flow equal to the minimum capacity value is
transported from the start vertex along increasing layers towards the sink.
In the pull procedure, the flow is transported from the start vertex along
decreasing layers towards the source. If there are more paths from the
source to the sink, the next push and pull procedure is performed in the
residual graph of the current digraph. The residual graph has the vertices
with a capacity equal to zero removed along with the incoming and outgo-
ing arcs connected to them. The arcs with a flow equal to the arcs’ upper
capacity are also removed. Each vertex is assigned a new vertex capacity
based on the appearance of the residual graph, and the procedure repeats
until the sink is unreachable from the source, or the source has a supply
equal to zero. The running time for one iteration of the MFALD algorithm
is O(|V|? + |A]) (Migdalas&Gothe-Lundgren [16]). The pseudocode for
FlowrouteBS is presented below. The algorithms for BS and MFALD are
found in the textbook by Migdalas&Gothe-Lundgren [16]; together they
have a running time bounded by O(|V]?).

FlowrouteBS heuristic(V)
1. for all sources s € V'

2. link s to a supersource s’
3. for all sinkst € V
4. link t to a supersink #'

5. while Supply(s’) >0

6. ald=BS(N,s')

7. MFALD(ald, s, ')
8. return

FlowrouteBS satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 10 Consider the Lagrangian heuristic FlowrouteBS, P*5S, and

the by P"P5 generated primal sequence {v"} = {P"P%(v(n"))} starting
at v(n™). If PPP5 has the property that P75%(v(n™)) — v(x™) — 0", then
{v7} = v".

Proof The expression ||PI2%(v(w™)) — v(mw")|| is closely related to the ex-
pression >, 4 [PTP5(v(n7));; — v(w7); | If one of the expressions is
equal to zero, the other expression must also be equal to zero. Let Au;; =
uij — v(7"),; denote the remaining capacity of arc (ij), and let ¢;(v(77)) =
min{)_ Au;j, > Auj;} denote the capacity at vertex i. For the super-source

26

s' ugs =Y cpSupply(s), and ¢y (v (7)) = min{)_ Auy,, 0}. For the super-
sink ', wy = 3, Demand(t), and ¢y (v(w")) = min{0,) Auy}. The
maximum amount of flow that is rerouted by FlowrouteBS can be no more
than c¢(v(7w7)) = Z’;‘:O min;cy{c;(v(m))}, where k£ denotes the maximum
number of flow augmenting sweeps in the MFALD algorithm. Hence, this
value constitutes an upper bound for the maximum amount of flow that can
be adjusted on any arc. Since {v(n")} — v* as 7 — oo, it follows that
c(v(m7)) — 0. Then [[PTP5(v(x7)) — w(x7)|| < [A]| Y,y c(v(nT)) —
0'"!. Hence, we can conclude that ||[P*P5(v(n7)) — v(w7)|| — 0. |}

5.6 Shortest Path

The Shortest Path heuristic was first presented by Marklund [15]. As in
the Flowroute heuristic, Shortest Path aims to accomplish primal feasibility
by rerouting flow in a residual graph constructed from the dual solution.
However, in Shortest Path the rerouting of flow is done along the cheapest
paths in the residual graph. The cost to traverse an arc is defined as the
derivative of the arcs’ quadratic cost function. The graph search algorithm
used in Shortest Path is the Bellman—Ford algorithm. The Bellman-Ford
algorithm finds the shortest (cheapest) paths from a start-vertex to all other
vertices in a graph with possibly negative arc costs, provided that the graph
does not contain any negative cycles. A negative cycle means that the cost
of a path can be reduced infinitely. The residual graph, as constructed in
Section 5.3, will include arcs with negative costs. Therefore, to find feasible
solutions by using Bellman—-Ford, we must show that the residual network
does not contain any negative cycles, and this is done by contradiction in the
theorem below.

Theorem 11 The residual graph constructed from the dual solution, v(w7),
does not contain any negative cycles, C'.

Proof By Everett’s theorem (Andréasson et al. [2], Theorem 6.31), v(7")
is also an optimal solution to the following problem:

minimize ®(v),

subject to Ev = Ev(7"), (32)
I <v<u.

If the residual graph contains a negative cycle for the fixed flow v(77),
> (pyec @ij < 0, where a;; denotes the linearized cost of arc (i, j). Let p;;

27

define an addition of flow on arc (3, j):

1, if (4,5) € C, and (4, j) is used in forward direction
pij =< —1,if (i,7) € C, and (4, j) is used in the backward direction,
0 otherwise.

By the definition of p, any cycle satisfies Ep = 0!I, but a negative cycle
also fulfils: Y7, a;; < 0 v@(v(n7)) p < 0.

If a negative cycle exists, the circulating flow must satisfy I < v +ap < u
for some small scalar & > 0. Moreover, the point (v(7") 4+ ap) is feasible
in the problem (32), since E(v(n") + ap) = Ev(n") + «Ep = Ev(w") +
0" = Ev (7). Let us therefore study the Taylor expansion of ® around
v(7") in the direction p:

®(v(n7) + ap) = d(v(n")) + a v @(v(n7)" p + O(a?)

By using v®(v(77))"p < 0", and assuming that O(a?) = 0, we see that
O(v(w™) + ap) < ®(v(w”). This contradicts the optimality of v(w”) by
Everett’s theorem. Hence, we can conclude that the residual graph cannot
contain any negative cycles. |}

With Bellman—Ford replacing BFS in step 2 of the pseudocode for Flowroute
presented in section 5.3, the pseudocode for Shortest Path is identical to the
pseudocode for Flowroute. The algorithm for Bellman—Ford is found in
Cormen [6], and has a running time bounded by O(|V||A|).

Shortest Path satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 12 Consider the Lagrangian heuristic Shortest Path, P5", and the
by P°" generated primal sequence {v"™} = {P°"(v(n7))} starting at v(77).
If PS? has the property that PS5 (v (7)) — v(n7) — 0, then {v™} — v*.

Proof Apply the proof of Theorem 8 with P°” replacing P". |

5.7 Shortest PathL

The Shortest PathL is a modification of the Shortest Path heuristic. As
in Shortest Path, primal feasibility is accomplished by rerouting flow in a
residual graph constructed from the dual solution. However, in Shortest
PathL the cost to traverse an arc is defined as the derivative of the arcs’
Lagrangian function. This is motivated by considering the results in Lars-
son&Patriksson [13]. The relaxed primal-dual optimality conditions are for

28

our problem formulated:

O(v)+ 7 (Ev—d) <n(m) +e, (33)
Ev—d=0", (34)

€ <K, (35)

e,k > 0. (36)

From (33) we see that v is e-optimal in the Lagrangian dual subproblem
for a given mr, and from (34) that v satisfies ®(v) < n(w) + e. Therefore,
adjusting a primal infeasible v (7r) towards feasibility, means adjusting the
value of the Lagrangian function also. Assuming that 7r is non-optimal in
the dual problem, but that n(7r) is at most 5 > 0 from the optimal value
®*, it follows that v € X" # (Larsson&Patriksson [13], Corollary 12). Here,
X8 denotes the set of vectors that is feasible in the primal problem, and
deviates in objective value at most k — 3 from the optimal one. Note, if
f = k, then v is optimal in the primal problem. Note also, if § = k = 0,
then 7r is optimal in the dual problem since by (35) it follows that ¢ = 0, and
v = v(m) is optimal in the primal problem. Hence, if / is very small and the
system (33)—(36) is consistent, v is a very good approximation of the pri-
mal optimal solution, and it follows that « also is very small. A Lagrangian
heuristic that wants to obtain primal feasibility should therefore aim to ad-
just the Lagrangian function as little as possible. Therefore, minimizing the
Lagrangian function, as done in Shortest PathL, is motivated. Note, how-
ever, that when © — =*, the term 7’ (Ev — d) — 0", and the value of
the Lagrangian function is almost the same as the value of the primal cost
function.

As in the Shortest Path heuristic, the graph search algorithm used in
Shortest PathL is the Bellman—Ford algorithm. Hence, with the derivative
of the arcs’ quadratic cost function replaced with the derivative of the arcs’
Lagrangian function, the pseudocode for Shortest PathL is identical to the
pseudocode for Shortest Path.

Shortest PathL satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 13 Consider the Lagrangian heuristic Shortest PathL, P5P" and
the by P°"'L generated primal sequence {v"} = {P°"L(v(n"))} starting at
v(w7). If PSPL has the property that PSPE(v(x™)) — v(n™) — 041, then
{v7} — v*.

Proof Apply the proof of Theorem 8 with P°"" replacing P". |}

29

5.8 Curet

The Curet heuristic was first presented by Curet [7], but a modified version
that is used in combination with the steepest ascent method appears in the
thesis by Marklund [15] and in the textbook by Patriksson [19]. The essence
of the Curet heuristic is to truncate the coordinate ascent method prior to
the optimal dual solution, and yet produce a near-optimal primal solution.
The Curet heuristic follows the coordinate ascent method as described in
section 4.4, but uses a perturbed directional derivative, D (w", p7), by in-
troducing a small number ¢ > 0 in the real directional derivative when ap-
proaching the solution to the Lagrangian dual problem. The purpose of the
e factor is twofold. Firstly, it determines bounds within which the current
primal infeasible flow can be adjusted to become primal feasible. Secondly,
it determines the perturbation of the gradient in the Lagrangian dual prob-
lem. If a primal feasible flow is found within the given bounds, the heuristic
terminates. Otherwise, the coordinate ascent method continues, and a new
dual point is determined by taking a step o’ in a direction p” such that
D (wn7,p") > 0. a7 is in the Curet heuristic determined by an exact line
search.

The perturbed directional derivative acts as a lower bound for the true di-
rectional derivative, meaning that a step in the direction determined by the
perturbed gradient improves the dual function sufficiently, but not as much
as a step in the direction determined by the gradient of the Lagrangian dual
function. The perturbed directional derivative used in the Curet heuristic is
defined as follows:

D (7", p") = (p")"d - Z wiwi; (77, €) + Z wili; (77 €)

wi; >0 w;; <0
where w = E"p", and
T Uij, jf dmis(is) < 0or v (m7) + € > wij, o
wi(m) = dui; ' 77y) e A
v;j (") + €, otherwise;

l"(’TFT 6) _ lij; if ”{77#(37) > () or Uij(’TFT) — €5 < lij; V(Z 7)
R vi;(77) — €;;, otherwise, h

The terms u;; (7", €) and [;;(7", €) replace the current flow v;;(#") in the true
directional derivative, and ¢;; denotes the e perturbation for each v;;(#«"). By
definition, u;;(w", €) < u;; and [;;(w", €) > l;;, which means that the capacity
constraint of the primal problem will never be violated. The search for a
primal feasible solution in the Curet heuristic is thus performed on the fol-

30

€ A

lowing problem:

find a v such that:
Z Vij — Z V4 = di, Vi € ‘/, (37)
J:(,)eA J:(d,E) €A
lij (71'7, 6) < Vij < Ujj (WT, 6), V(Z,]) € A. (38)
That the Curet heuristic produces a primal feasible solution from the so-
lution by the truncated coordinate ascent method in a finite number of iter-
ations is shown in Curet [7], Proposition 3.1 and Proposition 3.2. Theorem

14 states that the primal feasible solution produced by the Curet heuristic
in fact is arbitrarily close to the primal optimal solution.

Theorem 14 (Curet, Proposition 3.3.) Let v¢(w") be the primal feasible so-
lution produced by the Curet heuristic, P®, at termination. Then,

O(v(n7)) -~ n(nT) < > €0y
(i.j)€A

where Oij = maX{((I)iy(v,]) — (I)” (U)U)) : lU S Wij, Vij S Ujjs |wm _Uij| S Gij}-
Proof By the definition of 7, we have that

d(v(n")) — (") = ®(v(n")) — P(v(n")) — 7 Ev(n") +w'd. (39)
@ is a convex and differentiable function so for any v, ¢ € RV the following
relation holds:

O(E) ~ @(v) > (€)' vV O(v).
The expression (39) can therefore be rewritten as follows:
¢ (7)) —p(n7) < (v(n7) — w(n7))" v (v (n7)) — 7 Bo(nT) + 77 d.
By adding and subtracting the term Ev¢(7") (which is feasible in problem
(37)-(38)), we obtain the following relation:
(v (n7)) —n(w") < (v(77) — v(NHve(v(nT)) — E'wT)
< Z 627 ’UE ﬂ_’r)) TTEZ_])’
(i,7)eA

where E" denotes the corresponding column for arc (7, j) in matrix E. By
the definition of v¢(w7), 1fd"g77)“”) = ! (u;;)—m"" BV < 0then v*(w") = uy,
and if d"#(]]?) =/ (l;;) — " EY > 0 then v*(x") = [;;. So each term in the
sum is bounded by €;;(|®}; (v (w")) — ®};(v(7"))|). Hence, we can conclude
that given bound >_; ;. , €;50; in the theorem holds, since o;; is an upper
estimation of ®};(v*(w")) — ®};(v(7")). |

31

6 Network modeling and generation

This section describes our choices of data structure and network genera-
tor needed for the computational studies in Section 7. The object oriented
(OO0) principle was used to create the minimum cost flow network data
structure described in Section 6.1. Section 6.2 describes a system accord-
ing to Ohuchi and Kaji [18] that generates transportation networks.

6.1 Network modeling

The straightforward way to represent a minimum cost flow network, without
considering any specific method of modeling, is to use vectors (arrays) and
matrices (Evans [9]). Characteristics connected to the arcs can for instance
be stored in matrices of size |V| x |A|, so called node-arc incidence matrices,
and characteristics connected to the vertices can be stored in arrays of size
|V'|. This is an easy way to model a network, but not the most descriptive
one. The OO principle, on the other hand, takes into account the inherent
relations of the ingoing objects that the network is made of. Hence, a data
structure that provides easy access to specific elements of the network, as
well as a good environment to speed up critical computational steps was
developed using OO design. The data structure supports both bipartite and
non-bipartite networks.

The network data structure have three main objects; the Vertex, the Arc,
and the Network. The Vertex is modeled as an object that is recognized
by its index, demand, and price (dual variable). A source has a positive
demand, a sink a negative demand, and a transshipment a demand equal
to zero. Moreover, each Vertex has two arrays of indices, in and out, of
those vertices connected to the current Vertex by incoming and outgoing
arcs respectively. Because of graph searching reasons, the variables from,
marked, cost, level, predecessors, and capacity are also stored in the Vertex
object. from denotes the index of the vertex preceding the current Vertex,
and is used in the BFS and DFS algorithms. marked indicates, in any graph
search, whether the current Vertex can be reached. cost denotes the total
cost (weight) to reach the current Vertex, and is used in the shortest path
algorithm. /evel denotes the level at which the current Vertex is found, and
is used in the BS and DS algorithms. predecessors denotes the set of indices
of vertices preceding the current Vertex, and is used in the BS and DS algo-
rithms. capacity denotes the capacity of the current Vertex, and is used in
the MFALD algorithm.

The Arc object stores the variables from and to to denote the indices of
the vertices at the current Arcs tail and head respectively. Further, infor-

32

mation about the lower and upper capacities of the Arc are stored in lower
and upper. The decision variable for the primal problem is stored in flow.
The cost function for the current Arc is modeled as a freestanding object,
a QuadFun, in which information about the linear a, quadratic, b, and con-
stant coefficient, ¢, of the function is stored. We also store the variables
residual, marked, alpha;, and alpha, in the Arc object. residual indicates
whether the current Arc is contained in an original network or in a residual
copy of a network. marked, alpha,, and alpha,, are used in the Helgason step
length rule algorithm. marked indicates if the current Arc should be con-
sidered when calculating A(«). alpha, and alpha, stores the values for the
breakpoints v;;(«) evaluated at the lower and upper limits of the current
Arc.

The Network object itself keeps an |V |-length array of vertices, vertices,
and a |V| x |V| matrix of arcs, arcs. Further, the Network contains two
arrays, sources and sinks, with indices of those vertices that have their
demand > 0 and demand < 0 respectively. Several, mainly dual elements
are stored in the Network object; dual_grad (Ev—d), an array of length |V|;
dual_grad_norm_square (||Ev — d||?), a scalar; balance (Ev), an array of
length |V|; price (), an array of length |V'|; demand_norm_square (||d|]?),
a scalar. The variables path_length and max_push are stored for graph
searching reasons. path_length denotes the length of a path along which
a specific amount of flow can be pushed, and maz_push the same specific
amount of flow. The Network object also stores the variables min_index,
no_marked and no_alpha. min_index is used in the MFALD algorithm to
store the index of the vertex with the minimum capacity. no_marked and
no_alpha are used in the Helgason step length rule algorithm. no_marked
indicates how many arcs that should be used when calculating A («), and
no_alpha stores the number of breakpoints that should be sorted by the
Shellsort algorithm.

Most numerical variables have the long double precision type provided
by the C programming language. Accessor and mutator functions were con-
structed as needed for all the above mentioned objects. The computer code
for each object, along with the exact types of the variables that make up
the objects, can be found under Section "Data structure related code" in
Appendix A.

6.2 Network generation by Ohuchi and Kaji

The system by Ohuchi and Kaji generates complete transportation networks.
In this system, the generated costs of the arcs become strictly convex, and

33

has for each arc the following form:
®; ;= bijvi;”° + ai;vi, V(i,j) € A

Values for the following parameters must be provided by the user:

* st number of sources

* 1 number of sinks

* seed: seed for the random number generator
* h: average amount of flow of an arc

*a maximum value of linear coefficient

*b maximum value of quadratic coefficient

The lower, /;;, and upper, u;;, limits of each arc are generated as uniform
random numbers over the interval [0,100], with /;; < u;;. The coefficients
b;; and a; ; are generated from four uniform random distributions:

Set1={0<a;; <10,0 <b;; <1}
Set2={0<a;; <50<b,; <2}
Set3={0<a,; <20<b, <5}
Setd={0<a;; <1,0<b,; <10}

For the values of each vertex demand and supply, the following formulas
are used:

Supply at vertexi= Z li g + Z(“iak —lig)h, 1 €S
k k

Demand at vertex j = Z lp; + Z(”PJ —lpj)h, jeT,
p p

where S and T denotes the sets of sources and sinks respectively, and h €
[0.1,0.2,...,0.9] indicates if the average flow on the arcs should be closer to
the arcs’ lower or upper limits. Below the pseudocode for the generation of
transportation networks according to Ohuchi and Kaji is presented.

34

OHUCHI&KAIJ(sources, sinks, seed, h, b, a)

1. for each source s

2. create arcs (s, t) to each sink ¢

3. set the lower limit of (s, ¢) to RAND(0,50)

4. set the upper limit of (s,¢) to RAND(0,100), ls; < g
5. set the linear cost of (s,) to RAND(0,a)

6. set the quadratic cost of (s,¢) to RAND(0,b), bs; > 0
7. for each source s

8. set the supply of s to >) I + > p(usk — ls k) x h

9. for each sink #

10. setdemand oftto Y- lps+ >, (upt — lpt) * h

11. return the network

RAND denotes a function that when given two arguments, with the first ar-
gument strictly less the second argument, returns a value randomly selected
between the first and second argument.

35

7 Results

This section sums up our choices of test problems, and the computational
results performed. We show results for the Lagrangian heuristics Flowroute
(Section5.3), FlowrouteD (Section5.4), FlowrouteBS (Section5.5), Shortest
Path (Section5.6), and Shortest PathL (Section5.7). The Lagrangian heuris-
tics are used in combination with the conjugate gradient method (Section
4.2.2) and an exact line search (Section 4.3.2). All computer programs have
been written in the C programming language (Bilting&Skansholm [21]),
compiled using the GNU C compiler with the gcc -O command, and run
on a Sun Fire 480R under the SunOS 5.9 operating system. The computer
code is found under Section "Algorithmic related code" in Appendix A.
Note that in our implementation, the Lagrangian heuristic FlowrouteBS is
a combination of FlowrouteBS and Flowroute. If the original FlowrouteBS
reroutes all the flow in the residual network, our version of FlowrouteBS
does the same. However, if the original FlowrouteBS fails to reroute all the
flow in the residual network, our version of FlowrouteBS uses Flowroute
to reroute the remaining flow. Note also that Shortest Path and Short-
est PathLL have an extra constant, tolerance, added to the cost function of
each arc to avoid computationally generated negative cycles. The generated
networks are described in Section 7.1; the computational results for dense
transportation networks (DTNs) are presented in section 7.2.1; the compu-
tational results for sparse transportation networks (STNs) are presented in
section 7.2.2. The tables in this section have the result of the Lagrangian
heuristic that performed best for a certain network marked bold, and the
Lagrangian heuristic that performed worst for a certian network marked
slanted. The figures presented in this section have been plotted in MAT-
LAB (Piart-Enander&Sjoberg [8]).

7.1 Transportation problems

The tests for transportation networks were conducted on twelve different
networks generated by the system described in Section 6.2. The selection
of parameters shown in Table 1 creates large scale networks with different
degrees of nonlinearity, and also permits the relationship between capacity
and demand to be tested. Note that the odd numbered networks are have
a more linear cost, and that the even numbered networks have a more non-
linear cost. Note also that Fxz. 1-6 have a total capacity far from the total
demand, and that Fx. 7-12 have a total capacity close to the total demand.
All networks were generated with the seed for the random number genera-
tor equal to 13502460 as recommended by Klingman et al. [12].

36

Ex S t h a b
1 50 50(03]10 1
21 50| 50103 1] 10
31100 | 100 | 0.3 | 10 1
4 | 100 | 100 | 0.3 1110
5| 100 | 200 | 0.3 | 10 1
6 | 100 | 200 | 0.3 1] 10
7 50| 5007110 1
8 50| 50| 0.7 1] 10
91100 | 100 | 0.7 | 10 1

10 | 100 | 100 | 0.7 1] 10
11 | 100 | 200 | 0.7 | 10 1
12 | 100 | 200 | 0.7 1110

Table 1: Selection of parameters for network generation according to
Ohuchi and Kaji.

7.2 Computational results

In the presentation of the computational results, the following abbrevations
for the different Lagrangian heuristics are used:

*® Flowroute

* FBS: FlowrouteBS

* F'D: FlowrouteD

* SP: Shortest Path
*SPL: Shortest PathLL

In several of the quantities measured, the optimal value of the primal
problem, ®(v*), is used. To obtain a good estimation of ®(v*), the conjugate

gradient method has been stopped when the scaled gradient W is less

than or equal to 1e "2
In all the results presented, the Lagrangian heuristics have been run af-
ter stopping the conjugate gradient method at a predetermined percentage

tolerance §, which is defined as:
5 =100 % (®(v") — (")) /B(v"). (40)

The quality @, of a certain Lagrangian heuristic, at a final iteration 7 for
a given 4, is defined as the relative error in percent between the projected
primal value given by the current heuristic, and the primal optimal value :

Q =100+ ((2(P(v(7T7))) — B(v")/®(v7), (41)

37

Further, the difference in quality of the solution returned by the dual
scheme () D, and the solution given by a certain Lagrangian heuristic) are
presented. ()D, at a final iteration 7 for a given ¢, is defined as the relative
error between the dual value, and the primal optimal value:

QD = (®(v) — (7)) /®(v7) (42)

The running time 7, of a certain Lagrangian heuristic, at a final itera-
tion 7 for a given 4, is defined as the quotient in percent of the CPU time
for the Lagrangian heuristic, C PU.y and the average CPU time for one
dual iteration, C' PUp. The time for one dual iteration have exclusively been
measured as the time spent solving the Lagrangian dual subproblem.

7.2.1 Dense transportation networks

The DTNs we have tested were complete bipartite networks that had their
parameters set as in the twelve examples in Section 7.1.

Quality When the stopping criterion for the conjugate gradient method
was d < 0.1% (7 = 5), the performance in quality, @), for the different heuris-
tics is shown in Table 2.

Ex Qr | Qres | QFrp | Qsp | Qspr,
1 1.171 | 0.716* | 1.080 | 0.381 | 0.380
2| 0.869 | 0.786* | 0.896 | 0.593 | 0.665
3] 0.986 | 0.523* | 1.795 | 0.374 | 0.357
4| 1.375 | 0.740* | 2.393 | 0.612 | 0.601
5| 2.050 | 0.677* | 2.370 | 0.632 | 0.627
6 | 0.562 | 0.394* | 0.524 | 0.327 | 0.313
7| 1.535 | 0.325* | 0.549 | 0.499 | 0.497
81| 1.776 | 0.141* | 0.641 | 0.772 | 0.554
91 0.830 | 0.106* | 0.498 | 0.338 | 0.341

10 | 1.000 | 0.190%* | 0.758 | 0.630 | 0.403
11 | 1.465 | 0.290* | 1.291 | 0.788 | 0.837
12 | 1.777 | 0.426* | 1.510 | 1.049 | 1.066

Table 2: Quality in solution for DTNs when 6 < 0.1%. In FBS, a * denotes
that Flowroute is used to reroute on average 10% of the initial flow imbal-
ance.

38

When the stopping criterion for the conjugate gradient method was set
to o < 0.001% (r = 9), the performance in quality, @), for the different
heuristics is shown in Table 3.

=
8

Qr | QFBs Qrp | Qsp | Qspr,
0.0877 | 0.0650 | 0.0584 | 0.0356 | 0.0393
0.1686 | 0.0824 0.1388 | 0.0571 | 0.0573
0.0943 | 0.0742* | 0.0763 | 0.0170 | 0.0158
0.1332 | 0.0951* | 0.1311 | 0.0294 | 0.0240
0.0906 | 0.132* 0.0825 | 0.0425 | 0.0439
0.1262 | 0.0964 | 0.1149 | 0.0748 | 0.0750
0.1597 | 0.0603* | 0.1070 | 0.0558 | 0.0598
0.1709 | 0.0780 0.0977 | 0.0839 | 0.0632
0.0641 | 0.0271* | 0.0345 | 0.0219 | 0.0219
10 | 0.0730 | 0.0322* | 0.0369 | 0.0389 | 0.0256
11 | 0.1085 | 0.0394* | 0.0574 | 0.0362 | 0.0372
12 | 0.1358 | 0.0526* | 0.0671 | 0.0467 | 0.0474

0 N[O N AW

O

Table 3: Quality in solution for DTNs when 6 < 0.001%. In FBS, a * de-
notes that Flowroute is used to reroute on average 3% of the initial flow
imbalance. In problem 5, 6 < 0.0014%.

Running time When the stopping criterion for the conjugate gradient method
was d < 0.1% (7 = 5), the performance in running time, 7, for the different
heuristics is shown in Table 4.

39

Ex | Tr | Trps | Trp T'sp Tspr
1| 94| 3259% 62 220,013 290,394
2 | 129 | 3681* 65 258,716 345,309
31 168 | 4897* | 104 1,016,327 1,370,664
4 | 167 | 4439*% | 103 1,022,258 1,327,400
51219 | 7288* | 132 | >2,000,000 | >2,000,000
6 | 242 | 8314* 87 | >2,000,000 | >2,000,000
7 | 122 | 1988* 61 239,751 311,725
8 | 125 | 2067* 63 211,790 280,173
9 | 181 | 3468* 67 832,260 991,966

10 | 188 | 3324* 83 844,525 1,055,102
11 | 214 | 5525% | 105 | >2,000,000 | >2,000,000
12 | 222 | 5611* | 111 | >2,000,000 | >2,000,000

Table 4: Running time for DTNs when 6 < 0.1%. In FBS, a * denotes that
Flowroute is used to reroute on average 10% of the initial flow imbalance.

When the stopping criterion for the conjugate gradient method was ¢ <
0.001% (7 = 9), the performance in running time, 7', for the different heuris-

tics is shown in Table 5.

Ex | Tr | Tras | Trp Tsp Tspr,
1| 125 | 2444 31 213,025 277,923
2 | 129 | 2163 65 263,494 345,309
3| 169 | 6888* 65 1,118,209 1,355,418
4 | 183 | 6425* 79 1,111,696 1,399,605
5 | 248 | 8657* 80 | >2,000,000 | >2,000,000
6 | 246 | 8752 79 | >2,000,000 | >2,000,000
7 | 122 | 2141* 601 211,762 288,355
8 | 125 | 2349 94 206,904 253,359
9 | 181 | 3422* 68 906,742 1,242,600

10 | 173 | 3354% 60 863,514 1,096,975
11 | 222 | 5988 87 | >2,000,000 | >2,000,000
12 | 211 | 6073* 89 | >2,000,000 | >2,000,000

Table 5: Running time for DTNs when § < 0.001%. In FBS, a * denotes that
Flowroute is used to reroute on average 3% of the initial flow imbalance. In
problem 5, § < 0.0014%.

40

Convergence of Lagrangian heuristics vs. dual scheme When the stopping
criterion for the conjugate gradient method was § < 10-7% (7 = 20) for the
network in Ex.1, Figure 1 shows the convergence of the primal objective
value given by the different heuristics vs. the dual objective value given by
the dual scheme.

x 10° Convergence of Lagrangian heuristics
214 T T T T T
Dual scheme
212 Flowroute 4
FlowrouteBS
FlowrouteD
21 ShortestPath
ShortestPathL
o 2.08 1
=
(4]
<
3 2.06 1
<
=)
< 2.04]
[
>
8
@ 2.02 4
5
(]
T ., |
1.98F
1.96F 1
194 L L L L L L L
1 2 3 4 5 6 7 8 9 10 11

Iteration

Figure 1: Convergence towards ®* = 1980065 of the primal objective value
given by the different heuristics and the dual objective value given by the
dual scheme (DTNs, Ex.1). § < 0.1% shown at 7 = 5, and § < 0.001%
shown at 7 = 9. FlowrouteBS produced a value below the optimal value at
iteration 7 = 0.

41

Quality in Lagrangian heuristics vs. dual scheme When the stopping cri-
terion for the conjugate gradient method was § < 10°7% (7 = 20) for the
network in E'z.1, the difference between the solutions given by the different
heuristics, /100, vs. the solutions given by the dual sheme,) D, is shown
in Figure 2.

o Flowroute, FLowrouteBS, FlowrouteD 0 ShortestPath and ShortestPathL
10 ‘ ‘ 10 ‘ ;
Dual scheme| Dual scheme
Flowroute ShortestPath
a FlowrouteBS a ShortestPathL
10 FlowrouteD [j E
[a) [a)
(04 (04
9 9
> >
o o
o o
o o
(04 (04
10_6 I I 10_6 I I
0 5 10 15 20 0 5 10 15 20
Iteration Iteration

Figure 2: Each figure shows /100 (upper curves) for the different heuristics
vs. QD (lower curve) plotted in logarithmic scale for each iteration 7 (DTNSs,
Ex.1).§ <0.1%shownatr = 5,and § < 0.1% shown at 7 = 9. FlowrouteBS
(left figure) produced a value below the optimal value at iteration 7 = 0.
This value was excluded by MATLAB.

42

7.2.2 Sparse transportation networks

The STNs we have tested were bipartite networks where 10% of arcs existed
(compared to the number of arcs in the same complete bipartite network).
The parameters for the STNs were set as in the twelve examples in Section
7.1.

Quality When the stopping criterion for the conjugate gradient method
was 0 < 0.1% (r = 19), the performance in quality, (), for the different
heuristics is shown in Table 6.

Ex | Qp | Qrs Qrp | Qsp | QspL
1| 4.448 | 0.951 4.836 | 0.977 | 0.914
2| 3.455 | 1.040 6.820 | 0.412 | 0.391
31 1.559 | 0.578 | 3.800 | 0.431 | 0.435
41 1.903 | 0.720 4.287 | 0.301 | 0.292
51 1.865 | 0.698 | 5.105 | 0.345 | 0.381
6 | 1.867 | 0.607 8.279 | 0.356 | 0.305
7| 2.600 | 0.774 7.549 | 0.746 | 0.675
8 | 3.151 | 0.578 6.332 | 0.771 | 0.690
91 2.149 | 0.869 6.123 | 0.816 | 0.783

10 | 2.523 | 1.126 6.511 | 1.196 | 1.122
11 | 1.756 | 0.672* | 5.035 | 0.613 | 0.621
12 | 1.920 | 0.767* | 5.440 | 0.776 | 0.662

Table 6: Quality in solution for STNs when § < 0.1%. In FBS, a * denotes
that Flowroute is used to reroute on average <1% of the initial flow imbal-
ance.

When the stopping criterion for the conjugate gradient method was set

to d < 0.001% (7 = 3384), the performance in quality, (), for the different
heuristics is shown in Table 7.

43

Ez Qr | Qs Qrp | Qsp | Qspr
1| 0.1397 | 0.0822 0.2582 | 0.0656 | 0.0629
2| 0.1639 | 0.0945 0.3403 | 0.0585 | 0.0586
31 0.0810 | 0.0287 0.3406 | 0.0208 | 0.0203
4 1 0.2081 | 0.0732 0.5462 | 0.0548 | 0.0540
51 0.1284 | 0.0614* | 0.6083 | 0.0332 | 0.0355
6 | 0.1591 | 0.0508 0.5690 | 0.0256 | 0.0241
7 1 0.0707 | 0.0232 0.2049 | 0.0358 | 0.0346
81 0.1178 | 0.0370 0.3744 | 0.0655 | 0.0619
91 0.1533 | 0.0614 0.2821 | 0.0574 | 0.0637

10 | 0.1479 | 0.0529 0.3293 | 0.0574 | 0.0490
11 | 0.1259 | 0.0561 0.5311 | 0.0502 | 0.0535
12 | 0.1286 | 0.0611 0.6255 | 0.0649 | 0.0594

Table 7: Quality in solution for STNs when § < 0.001%. In FBS, a * denotes
that Flowroute is used to reroute <1% of the initial flow imbalance.

Running time When the stopping criterion for the conjugate gradient method
was 0 < 0.1% (7 = 19), the performance in running time, 7', for the different

heuristics is shown in Table 8.

Ex | Tp Tres | Trp Tsp Tspr,
1212 6369 | 212 185,751 238,610
2 | 432 5189 | 432 203,651 265,914
3| 355 10,458 | 295 816,762 | 1,119,406
4 | 470 9357 | 530 815,564 | 1,031,491
5| 645 14977 | 430 | 2,081,528 | 2,781,786
6 | 544 14,479 | 635 | 2,005,486 | 2,663,019
7 | 636 4661 | 424 159,959 188,985
8 | 407 4478 | 204 136,384 187,274
9 | 493 8105 | 548 575,164 766,174

10 | 592 8445 | 592 623,079 782,560
11 | 631 | 13,753* | 500 | 1,518,445 | 1,965,905
12 | 928 | 15,888* | 551 | 1,666,675 | 1,997,284

Table 8: Running time for STNs when 6 < 0.1%. In FBS, a * denotes that
Flowroute is used to reroute on average <1% of the initial flow imbalance.

44

When the stopping criterion for the conjugate gradient method was ¢ <
0.001% (7 = 3384), the performance in running time, 7, for the different

heuristics were the following:

Ex | Tg Trps | Trp Tsp Tspr,
1| 424 5307 | 212 155,182 202,522
2 | 216 4972 | 216 124,525 167,331
31532 9454 | 414 | 1,196,515 | 1,510,150
41470 | 10,005 | 294 895,456 | 1,139,424
51645 | 16,696* | 368 | 2,416,986 | 2,857,747
6 | 695 15,023 | 423 | 2025,285 | 2,645,034
7| 636 5085 | 636 146,823 182,417
8 | 204 4071 | 407 174,857 215,976
91493 8488 | 274 600,848 786,819

10 | 430 8552 | 430 568,538 723,555
11 | 710 12,991 | 421 | 1,285,524 | 1,719,282
12 | 899 13,917 | 493 | 1,620,778 | 2,070579

Table 9: Running time for STNs when ¢ < 0.001%. In FBS, a * denotes that
Flowroute is used to reroute <1% of the initial flow imbalance.

45

Convergence of Lagrangian heuristics vs. dual scheme When the stopping
criterion for the conjugate gradient method was § < 0.005% (7 = 228) for
the network in Fx.1, Figure 7.2.2 shows the convergence of the primal ob-
jective value given by the different heuristics vs. the dual objective value
given by the dual scheme for Ex.1.

A x 10° Convergence of Lagrangian heuristics

Dual scheme
Flowroute
FlowrouteBS
FlowrouteD
ShortestPath
ShortestPathL

3.5

w

Heuristic vs. dual scheme
N
(6)]

N
T
!

15 b

1 | | | |
0 5 10 15 20 25

Iteration

Figure 3: Convergence towards ®* = 206737 of the objective primal value
given by the different heuristics and the objective dual value given by the
dual scheme (STNs, Fz.1). § < 0.1% shown at 7 = 19.

46

Quality in Lagrangian heuristic vs. dual scheme When the stopping crite-
rion for the conjugate gradient method was § < 0.005% (7 = 228) for the
network in E'z.1, the difference between the solutions given by the different
heuristics, ()/100, vs. the solutions given by the dual sheme, @)D, is shown
in Figure 4.

(g:Iowroute, FLowrouteBS, FlowrouteDFS o ShortestPath and ShortestPathL
10 ‘ ‘ ; ‘ 10 ‘ ‘ ; ;
Dual scheme| Dual scheme
Flowroute ShortestPath
FlowrouteBS ShortestPathL
FlowrouteD
10"
D D
© ©
. B [
¢ 107} 2
Q o
o =
o o]
10} 1 10}
10_4 I I I I 10_4 I I I I
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration

Figure 4: Each figure shows)/100 (upper curves) for the different heuristics
vs. @D (lower curve) plotted in logatritmic scale for each iteration 7 (STNs,
Ex.1). 6 < 0.1% shown at 7 = 19.

47

8 Discussion

The first aim was to verify the results given in the thesis by Marklund [15]
for the original Flowroute and Shortest Path to obtain a reference for futher
algorithmic development. Therefore, we had to conduct tests on similar
networks. The second aim was to compare the performance in quality and
time of the Lagrangian heuristics FlowrouteBS, FlowrouteD and Shortest
PathL with the performance of the original Flowroute and Shortest Path.

We expected that FlowrouteD would produce results faster than, but of
similar quality as Flowroute. We based these assumptions on the facts pre-
sented in Section 5.4, where we stated that DFS might reach a residual sink
faster than BFS, and in that case we can expect FlowrouteD to terminate
faster than Flowroute.

¢ The first assumption was confirmed for 100% of the DTNs, with Flow-
routeD producing results 2.5 times faster than Flowroute on average.
The running time was shorter for 70% of the more linear problems.
The second assumption was confirmed in 90% of the DTNs; in 70%
of Fx. 1-6, and in 100% of Fx. 7-12 FlowrouteD produced results of
siginificanly better quality than Flowroute. The quality in the solutions
was better for the more linear problems; in 70% of Exz. 1-6, and in
80% of Ex. 7-12.

¢ The first assumption was confirmed for 85% of the STDs, with Flow-
routeD producing results 1.5 times faster than Flowroute on average.
The running time was shorter for 80% of the more linear problems.
The second assumption was contradicted for all transportation net-
works, but FlowrouteD faired comparatively better on the more linear
problems; in 70% of Ex. 1-6, and in 80% of Ez. 7-12.

We believe that the reason that FlowrouteD produced results of lower qual-
ity than Flowroute for STNs can be explained by FlowrouteD having prob-
lems to find residual sinks when DFS is truncated prematurely.

We expected that FlowrouteBS would produce results faster than, but
of similar quality as Flowroute. We based these assumptions on the facts
presented in Section 5.5 where we state that the MFALD algorithm reroutes
flow on many paths simultaneously in the residual network. Rerouting flow
along many paths simultaneously might lead to that the residual sources are
emptied faster, and in that case we can expect that FlowrouteBS terminates
faster than Flowroute. However, unforseen difficulties were encountered
when executing the original FlowrouteBS which terminated prematurely for

48

many networks. Therefore, we used the modified FlowrouteBS described in
Section 7.

e The first assumption was contradicted in 100% of the DTNs, with
FlowrouteBS producing results 25 times slower than Flowroute on av-
erage. FlowrouteBS faired comparatively better for 55% of the more
linear problems; in 40% of Ex. 1-6, and in 70% of Ex. 7-12. The sec-
ond assumption was contradicted by 100% of the DTNs. FlowrouteBS
produced results of significantly better quality in 100% of the DTNs.
The quality in the solutions was better for the more linear problems;
in 80% of Ex. 1-6 (Fx. 5 excluded), and in 85% of Ez. 7-12. Further,
FlowrouteBS terminated prematurely in 85% of the DTNs.

¢ The first assumption was contradicted in 100% of the STNs, with Flow-
routeBS producing results 20 times slower than Flowroute on average.
FlowrouteBS faired comparatively better for 70% of the more nonlin-
ear problems; in 85% of Fx. 1-6, and in 50% of Fx. 7-12. The second
assumption was contradicted by 100% of the STNs. FlowrouteBS pro-
duced results of significantly better quality in 100% of the STNs. The
quality in the solutions was better for 70% of the more linear prob-
lems. Further, FlowrouteBS terminated prematurely in 10% of the
STNs.

We suspected that FlowrouteBS would produce results slower than Flow-
route, as the running time of the MFALD algorithm is O(|V'|*). However,
we hoped that the experimental results would be different in reality. We
did not forsee that FlowrouteBS would produce results of significanly bet-
ter quality than Flowroute. One hypothesis is that the ALD created in
FlowrouteBS always contain the minimum length paths from the super-
source to the supersink, and that using fewer arcs to reroute flow is favourable
in quality terms. Further, we did not forsee the difficulties with premature
termination of the original FlowrouteBS. We found that the supersink of
the (on average) third to fifth ALD created by the heuristic could not be
reached from the supersource, which is cruical for the MFALD algorithm,
and that this is one reason for the failure of the heuristic. Moreover, the
MFALD algorithm is a modification of the Ford—Fulkerson algorithm that is
known to terminate for integer data only. We use non integer data, and this
could be another explanation for the failure of the original FlowrouteBS.
However, more research must be conducted in order to explain these un-
forseen events.

We expected that Shortest PathL. would produce results in similar run-
ning time as, but of similar or better quality than Shortest Path. These as-

49

sumptions were based on the facts presented in Section 5.7 where we moti-
vated that using the derivative of the Lagrangian cost function instead of the
linearized cost function of the primal problem in the shortest path search
produces results closer to the optimal solution when the conjugate ascent
method is stopped at a lower accuracy. Further, unforseen difficulties were
experienced using the Bellman-Ford algorithm for the implementation of
Shortest Path and Shortest PathL. Bellman—Ford ran for such a long time
when applied to the larger DTNs, that reliable results of the running time
could not be obtained for Fx. 5,6, 11 and 12.

e The first assumption was contradicted in 100% of the DTNs, with
Shortest PathLL producing results 1.3 times slower than Shortest Path
on average. The running time was not affected by the linearity of the
problem on average, but Shortest PathL faired comparatively better
for 75% of the more linear problems in £z. 1-4, and for 75% of the
more nonlinear problems in Fxz. 7-10. The second assumption was
confirmed in 85% of the DTNSs, with the results for § < 0.1 having bet-
ter quality in 80% of Ex. 1-6, and in 50% of Ex. 7-12; for § < 0.001
having better quality in 30% of Fx. 1-6, and in 70% of Ex. 7-12. The
quality in the solutions was better for 90% of the more linear prob-
lems; 80% of Fx. 1-6, and in 100% of EFx. 7-12.

¢ The first assumption was contradicted in 100% of the STNs, with Short-
est PathLL producing results 1.3 times slower than Shortest Path on
average. Shortest PathL faired comparatively better for 70% of the
more nonlinear problems; in 100% of Fx. 1-4, and in 25% of Ex. 7-
10. The second assumption was confirmed in 95% of the STNs, with
the results for § < 0.1 beeing better in 85% of Fx. 1-6, and in 100%
of Fz. 7-12; for § < 0.001 beeing better in 100% of Fx. 1-6, and in
70% of Ex. 7-12. The quality in the solutions was better for 70% of
the more linear problems; 30% of Fx. 1-6, and in 85% of Fx. 7-12.

We believe that the longer running times in Shortest PathL are explained by
the extra computations needed to calculate the derivative of the Lagrangian
cost function.

50

9 Conclusion

This thesis presents results for five Lagrangian heuristics used in combina-
tion with the conjugate gradient method and the Helgason step size rule
[11] applied to the dual of the strictly convex quadratic minimum cost net-
work flow problem. Two new modifications of the Lagrangian heuristic
Flowroute, FlowrouteBS and FlowrouteD, and one new modification of the
Lagrangian heuristic Shortest Path, Shortest PathL have been studied. Tests
on transportation networks with strictly quadratic costs generated accord-
ing to the system by Ohuchi and Kaji [18] have been performed by first
running the conjugate gradient method with an exact line search to obtain
near-optimal dual solutions. Then the Lagrangian heuristics were applied to
the dual solutions to obtain primal feasibility. The quality of the solutions
were then evaluated, i.e. how close the solutions were compared to the op-
timal solution, and how good the quality of the solutions were compared
to the solutions obtained from the dual scheme. The running times for the
different Lagrangian heuristics were also evaluated.

We conclude that FlowrouteD performs better than Flowroute in time,
and produces results of better quality than FLowroute for dense networks.
We also conclude that FlowrouteBS performs worse than Flowroute in time
regardless of the sparsity of the network, and that FlowrouteBS produces
results of significantly better quality than Flowroute regardless of the spar-
sity of the network. The overall performance of FlowrouteD and Flow-
routeBS is better for networks with a more linear cost function, and with a
total capacity close to the total demand.

We conclude that Shortest PathLL performs worse than Shortest Path in
time regardless of the sparsity of the network. We also conclude that Short-
est PathLL produces results of better quality than Shortest Path when the
conjugate ascent method is stopped at a lower accuracy. The overall per-
formance of Shortest PathL is better for networks with a more linear cost
function, but it is hard to draw any conclusions regarding the influence of
the relationship between capacity and demand.

We conclude that the best results for transportation networks are given
by the Lagrangian heuristic FlowrouteBS when considering the overall per-
formance. The results given by FlowrouteBS have for most problems similar
quality to the Shortest Path heuristics, and are obtained in reasonable time.
However, if the quality of the solution is more important, our results show
that Shortest PathL produces results of best quality. If the running time of
the solution is more important, our results show that FlowrouteD is the best
choice for dense networks, and Flowroute for sparse networks.

The tests in this thesis have been restricted to transportation networks,

51

but it would be interesting to compare the performance of the different La-
grangian heuristics on transshipment networks as well. Further, with the
use of the Bellman-Ford algorithm in Shortest PathL, the presented run-
ning times are not at all competative with FlowrouteBS, but it would be in-
teresting to improve the implementation for Shortest PathL, and compare
the running times between FlowrouteBS and Shortest PathL. It would also
be intersting to compare the performance between the fastest Lagrangian
heuristics Flowroute or FlowrouteDS and any of the algorithms commonly
used to solve strictly convex quadratic minimum cost network flow prob-
lems. Further, more research needs to be conducted regarding FlowrouteBS
in order to explain its premature termination, and the reason for the excep-
tional good quality in its solutions.

52

References

[1] R. A. AHUIJA et al., Network Flows, Prentice Hall, Inc., New Jersey,
1993.

[2] N. ANDREASSON, A. EVGRAFOV AND M. PATRIKSSON, An
Introduction to Continous Optimization: Foundations and Fundamen-
tal Algorithms, Studentlitteratur, Lund, first ed., 2005.

[3] M. S. BAZARAA, H. D. SHERALI AND C. M. SHETTY, Nonlin-
ear Programming - Theory and Algorithms, John Wiley and Sons, Inc.,
second ed., 1993.

[4] D. P. BERTSEKAS, Nonlinear Programming, Athena scientific, Bel-
mont, Mass., second ed., 1999.

[S] N. L. BIGGS, Discrete Mathematics, Oxford University Press Inc.,
New York, second ed., 2002.

[6] T. H. CORMEN et al., Introduction to Algorithms, McGrawHill Book
Company, England, second ed, 2001.

[7] N. D. CURET, On the dual coordinate ascent approach for nonlinear
networks, Computers Ops. Res. vol 20 No.2 pp. 133-140, 1993.

[8] E. PART-ENANDER AND A.SJOBERG, Anvindarhandledning fér
MATLAB 6, Uppsala Universitet, 2001.

[9] J. R. EVANS, Optimization Algorithms for Networks and Graphs,
Marcel Dekker, Inc., New York, second ed., 1992.

[10] M. T. HEATH, Scientific Computing: An Introductory Survey,
McGraw-Hill, Singapore, 1997.

[11] R. HELGASON et al., A polynomially bounded algorithm for a singly
constrained quadratic program, Mathematical Programming 18, pp.
338-343, 1980.

[12] D. KLINGMAN et al., NETGEN: A program for generating large-
scale capacitated assignment, transportation, and minimum cost flow
network problems, Management Science, Vol. 20, pp. 814-821, 1974.

[13] T. LARSSON AND M. PATRIKSSON, Global optimality condi-
tions for discrete and nonconvex optimization - With applications to
Lagrangian heuristics and column generation, Operations Research,
Forthcoming.

53

[14] Z.LIU, A Lagrangian dual scheme for structured linear programs with
applications and extensions, Dissertation No. 283, Linkoping univer-
sity, Linkoping, 1992.

[15] J. MARKLUND, A study of Lagrangian Heuristics for Convex Net-
work Flow Problems, Master of science thesis, Linkdping university,
Linkoping, 1993.

[16] A. MIGDALAS AND M. GOTHE-LUNDGREN, Kombinatorisk
optimering - problem och algoritmer, Department of Mathematics,
Link6ping university, Linkoping, 1994.

[17] S. G. NASH AND A. SOFER, Linear and Nonlinear Programming,
MacGraw-Hill, Singapore, 1996.

[18] A. OHUCHI AND I. KAJI, Lagrangian dual coordinate wise
maximization algorithm for network transportation problems with
quadratic costs, Networks, Vol. 14 pp. 515-530, 1984.

[19] M. PATRIKSSON, The book, Forthcoming.

[20] R.SEDGEWICK, Algorithms, Addison—-Wesley Publishing Company,
Inc., second. ed., 1988.

[21] U. BILTING AND J. SKANSHOLM, Vigen till C, Studentlitteratur,
Lund, third ed., 2000.

[22] J. VENTURA, Computational development of a Lagrangian dual ap-
proach for quadratic networks, Networks, Vol.21 (1991), pp. 469-485,
1991.

[23] D. R. WILKINS, Getting Started with LaTex,
http://www.maths.tcd.ie/ dwilkins/LaTeXPrimer/, second ed., 1995.

54

A Computer code

A.1 Main program
All OK.c

#include <stdio.h>
#include <stdlib.h>
#include "Vertex.h"
#include "Arc.h"
#include "Network.h"
#include "NetworkUtil.h"
#include "Algorithms.h"
#include "Misc.h"
#include "Heuristics.h"
#include "Constants.h
#include "TestGraphs.h"
#include "Alpha.h"

int main(int args, char *argv[]){

Network *n;

char graph_type, test_type;

int no_sinks, no_sources, a, b, heur_type;
unsigned int seed;

double h, delta;

long double opt_value;

double opt_time;

Result *proij_value, *dual_opt_value;

dual opt value = (Result*)calloc(l, sizeof (Result));
proj value = (Result*)calloc(1l, sizeof(Result));

// Reading problem data

// S for sparse network, D for dense network

sscanf (argv[1], "%c", &graph type);

// Number of sources

sscanf (argv[2],"%d", &no sources);

// Number of sinks

sscanf (argv[3], "%d", &no_sinks);

// Average amount of of flow on arcs, h

sscanf (argv[4], "%1f", &h);

// Upper limit of linear coefficient, a

sscanf (argv[5], "%d", &a);

// Upper limit of quadratic coefficient, b

sscanf (argv[6], "%d", &b);

// Seed to random number generator

sscanf (argv[7], "%u", &seed);

// Tolerance when to stop dual solver, delta

sscanf (argv[8], "%1f", gdelta);

// O for finding the optimal dual value, H for test with heuristic
sscanf (argv[9], "%c", &test type);

// 0=FLOWROUTE, 1=FLOWROUTEBS, 2=FLOWROUTED, 3=SHORTESTPATH, 4=SHORTESTPATHL
sscanf (argv[10], %d", &heur type);

// The optimal value for the current problem

sscanf (argv[11], "SLf", &opt value);

// The average CPU time of one dual subsolution
sscanf (argv[12], "$%$1f", gopt_time);

// Create graph type
printf ("%s\n", "CREATING NETWORK");
if (graph_type=='D")

n = TestGraphs_GenTestBD(no_sources, no_sinks, h, 13502460, a, b);
else
n = TestGraphs_GenTestBS(no_sources, no_sinks, h, 13502460, a, b);

// Run desired test
printf ("%$s\n", "WORKING...");
if (test type 0" {
Algorithms CG(n, dual opt value);
printf ("Optimal value: %.16f\n",
dual opt value >value);
printf ("Average CPU time for one dual iteration: %.16f\n",
dual opt value >time);

}

else{
Algorithms_ConjugateGradient (n, heur_type, delta, opt_value, proj_value);
printf ("Projected value: %.16f\n", proj_value->value);
printf ("Quality of solution: %.16Lf\n"™, 100%*(

(proj_value->value - opt_value)
/opt_value));

55

printf ("CPU time for heuristic:
printf ("Time of soclution:
}
printf("$s\n", "DONE!
Network Destroy(n);
free(proj value);
free(dual_opt_value);
return 0;

.16f\n", proj value >time);

16f\n",100* (proj value >time/opt time));

56

A2
A.2.1 Algorithms.c

"Algorithms.h"
"NetworkUtil.h"
"Queue.h"
"Stack.h"
"Constants.h"
"Heuristics.h"
<stdio.h>
<assert.h>
<math.h>
<stdlib.h>
<float.h>
<time.h>
<stdio.h>

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

Algorithmic related code

R

* PUBLIC FUNCTIONS

ok ek ek ko kR Kk ok ok Kk s kK ko kK kK kR Kk ko ok ok ok kR Kk kK

/** Uses the Helgason et al.
stepsize
* among a vector of
network.

* @parm n

* [@param alpha
* @param d
*
*

stepsizes for the dual
network

vector of direction
Greturn alpha_opt
*/
double Algorithms_Helgason (Network *n,
*direction) {

Vertex *vp;
Arc *arc;
//1=index left,

r=index right, m=index middle

Alpha *alpha,

vector with candidate stepsizes

step length rule to determine the optimal

line search problem of a

long double

int 1, r, m, i, 3, k;
//L=h(alpha 1), R=h(alpha r), C=h(alpha m), c=sum i(demand i*direction i)
double L, R, C, ¢, alpha opt, a ij, b ij, price i, price j, direction i,

direction j;
QuadFun cost;
bool done = false;
bool first = true;

L=R=C=1=m-=c = alpha_opt = 0;

r = (Network_NoArcs(n)*2 -

while (!done) {
if((r-1)==1){

break;
}
else{
m = floor(0.5%(1+r));

for(i=0; i<Network NoVertices(n); i++){
vp = &Network Vertices(n)[il;
price i = Vertex Price(vp);

direction i = direction[i];

// calculate sum i(demand i*direction i)

if (first) {

c += Vertex Demand (vp)
}
if (Vertex_NoOut (vp) != 0){

for (k=0; k<Vertex NoOut (vp);
Vertex_Out (vp) [k]

&(n->arcs[i] [1]
Arc_Cost (arc);
QuadFun_a (&cost) ;
QuadFun_b (&cost) ;

* direction i;

k++) {
§ =
arc =
cost =
a_ij =
b_iq =
price j =
direction j direction([j];
assert(b ij 0);
// calculate sums at
if (first){

)i

1=

left index,

L += (direction i
((a ij + price i
Alpha Value(s&alpha[l]l))) /
Arc Upper (arc)));
R +=

(-(a_ii + price_i

right

Vertex Price(&n >vertices[]]);

index,

(NetworkUtil NoMarked(n)*2));

i

middle index

direction j)*(Algorithms Mid(Arc Lower (arc)
price j +((direction
(2*b 13)),

direction j)*

(direction_i - direction_7)*(Algorithms_Mid(Arc_Lower (arc),
- price_1i +((direction_i - direction_7j)*

Alpha_Value(&alphalr]))) / (2*b_ij)),
Arc_Upper (arc)));
}
C += (direction_i - direction_7)* (Algorithms_Mid(Arc_Lower (arc),

57

((a ij + price i price j +((direction i direction j)*

Alpha Value(salphalml))) / (2*b i§)),
Arc Upper(arc)));
}
}
}
if (first){
first = false;
}
}
if (C==c) {
alpha_opt = Alpha_Value (&alpha[m]);
done = true;
}
else if (C>c){
1 = m;
L =2C;
}
elsef
r m;
R = C;
}
c = 0;
}
if (!done) {
alpha_opt = Alpha_Value(&alpha[l]) + (((Alpha_Value(&alphalr]) -
Alpha_Value(&alpha([l])) * (¢ - L)) / (R - L));

}
return(alpha_opt);

/** Solves the dual problem starting from the current price values,
* for each vertex, sets the prices that corresponds to the solution.
* Returns the value of the dual function at the current price and flow

values.
* @param n network
* @param heuristic O0=Flowroute, 1=FlowrouteBS, 2=FlowrouteD,
* 3=ShortestPath, 4=ShortestPathL
* (@param delta tolerance when to stop dual method
* @param opt val optimum value to problem
* @return result primal value and CPU time for choosen heuristic
*k)

void Algorithms_ConjugateGradient (Network *n, int heuristic, double delta,
long double opt_val, Result *result) {

double alpha, cpu_time_used;

long double *dual_grad_old, *dual_grad_new, *direction, dual_grad_norm,
dual_grad_square, dual_value, primal_value;

Alpha *all_alpha, *all_alpha_new;

clock t start, end;

int k = 0;
bool done = false;
bool first = true;

Network *copy;
double stop = opt val* (100 delta)/100;

printf("%s %d %s %f\n", "CONJUGATE GRADIENT with heuristic ", heuristic, ",
delta = ", delta);
dual_value = alpha = primal value = cpu_time_used = 0;
dual_grad_old = (long double*)calloc(Network NoVertices(n),
sizeof (long double));
direction = (long double*)calloc(Network_NoVertices(n),
sizeof (long double));
all _alpha = (Alpha*)calloc(((Network NoArcs(n)*2) + 1), sizeof(Alpha));
all_alpha_new = (Alpha*)calloc(((Network_NoArcs(n)*2) + 1), sizeof(Alpha));
start = end = clock();
while(!done && (k++ < MAX_ITERATIONS)) {
// calculate the solution to the dual subproblem, w(v)
dual value = NetworkUtil SolveDualSub(n, NULL, true);
dual grad new = NetworkUtil DualGrad(n);
dual grad square = NetworkUtil DualGradNormSquare(n);
dual grad norm sgrt (dual grad square);
// termination criteria
if (stop <= dual value){
done = true;
// adjust to primal feasiblility
switch(heuristic) {

case 0:
copy = Network_ ResidualCopy(n, false);
start = clock();

primal_value = Heuristics_Flowroute(copy);
end = clock();
break;

58

case 1:
copy = Network ResidualCopy(n, true);
start = clock();
primal value = Heuristics FlowrouteRS(copy);
end = clock();

break;

case 2:
copy = Network_ResidualCopy(n, false);
start = clock();
primal_value = Heuristics_FlowrouteD(copy);
end = clock();
break;

case 3:
copy = Network_ResidualCopy(n, false);
start = clock();

primal value = Heuristics ShortestPath(copy);
end = clock();

break;

case 4:
copy = Network ResidualCopy(n, false);
start = clock();

primal value = Heuristics ShortestPathL (copy);
end = clock();

break;
default:
copy = Network_ ResidualCopy(n, false);
primal_value = -1;
break;

}
//printf("f(x)=%.16LEf\n", primal_value);
result->value = primal_value;
Network_Destroy (copy) ;
}
else{
// ascent direction should be set to gradient every given iteration
if ((k$RESTART) == 0)
direction = dual grad new;
else
Algorithms FindDirection(dual grad new, dual grad old, direction,
dual grad square, Network NoVertices(n));
// calculate the stepsize by Helgason et al.
alpha = Algorithms_CalcHelgasonAlpha(n, all_alpha, all_alpha_new,
direction, first);
if (first)
first = false;
// set the new price vector v_new = v + alpha*d
NetworkUtil UpdatePrice(n, alpha, direction);
Algorithms_ArrayCopy(dual_grad_old, dual_grad_new, Network NoVertices(n));

}

printf("w(v)=%.16Lf\n", dual value);

cpu time used = ((double) (end start)) / CLOCKS PER SEC;
result >time = cpu time used;

free(all alpha new);

free(all alpha);

free(dual grad old);

free(direction);

/** Solves the dual problem starting from the current price values,
* for each vertex, sets the prices that corresponds to the solution.
* Returns the value of the dual function at the current price and flow

values.
* (@param n network
* @return result dual_value and average time for one dual subsolution
**/

void Algorithms_CG(Network *n, Result *result) {

double alpha, cpu time used;

long double *dual grad old, *dual grad new, *direction, numerator, denominator,
dual grad norm, dual grad square, dual value;

Alpha *all alpha, *all alpha new;

clock t start, end;

int k = 0;

bool done = false;

bool first = true;

numerator = denominator = dual_value = alpha = cpu_time_used = 0;

dual_grad_old = (long double*)calloc(Network NoVertices(n), sizeof(long double));
direction = (long double*)calloc(Network_NoVertices(n), sizeof(long double));

all _alpha = (Alpha*)calloc(((Network_NoArcs(n)*2) + 1), sizeof(Alpha));

all _alpha_new = (Alpha*)calloc(((Network NoArcs(n)*2) + 1), sizeof(Alpha));

while(!done && (k++ < MAX_ITERATIONS)) {

59

/** Uses the breadth first search

*

* that are not saturated are
*
* (@param n network
* (@param s source
*k)
void Algorithms BFS(Network *n,

// calculate the solution

start = clock();
dual value = NetworkUtil
end = clock();

dual grad new
dual_grad_square =
dual_grad_norm
// termination criteria
numerator
denominator
if ((numerator/denominator
done true;
else{

// ascent direction should be set to gradient every given iteration

if ((k$RESTART)
direction
else

0
dual gra

to the dual

SolveDualSub(

dual_grad_norm;
sgrt (NetworkUtil_DemandNormSquare(n));

) <= OPT_EPSI

d new;

subproblem,

w(v)

n, NULL, true);

NetworkUtil DualGrad(n);

NetworkUtil DualGradNormSquare (n);
sgrt (NetworkUtil_ DualGradNormSquare(n));

LON)

Algorithms FindDirection(dual grad new, dual

// calculate the stepsize
alpha

Algorithms CalcHelgasonAlpha(n,

dual grad square,
by Helgason et al.
all

grad old, direction,
Network NoVertices(n));

alpha, all alpha new,

if (first)
first false;
// set the new price ve

NetworkUtil_ UpdatePrice(n,
Algorithms_ArrayCopy(dual_grad_old, dual_grad_new,

}

//printf("grad w(v)/grad

//printf ("w(v)=%.16Lf\n",

cpu_time_used +=
}

printf("sd %s\n", k,

((double)

ctor v_new
alpha,

h =

dual_value);
(end -

"iterations");printf("grad w(v)/grad b

(numerator/denominator)) ;

free(all alpha new);
free(all alpha);
free(dual grad old);
free(direction);
result >value
result >time

dual wvalue;

cpu time used/k;

(BFS)

%.16Lf\n",

start))

direction, first);

v + alpha*d

direction);

(numerator/denominator));
/ CLOCKS_PER_SEC;

strategy to find paths

in a network from a given source to any reachable sink.Only arcs

Network_NoVertices(n));

%.16LF\n",

Assumes all the vertices are unmarked and have from

considered.

-1 initially.

Queue *queue;
Vertex *vertices;
int *ip, j, vertex index,

no sinks 0;
queue
vertices
source_index
Vertex_SetMarked (s,
Vertex_SetFrom(s,

Queue_Add (queue,

true);

Vertex *s)

source index,

source_index) ;
source_index) ;

while (!Queue_Empty (queue)) {

vertex_index

Queue_First (queue) ;

{

no sinks;

Queue Create(Network NoVertices(n));
Network_Vertices(n);
Vertex_Index(s);

if (Vertex_IsSink (&vertices|[vertex_index])) {

no_sinks++;
if (noc sinks
break;

Network

}

if (Vertex NoOut (&vertices|[vertex index]

NoSinks(n)){

> 0){

ip = Vertex Out(&vertices[vertex index]);
for (j=0; j<Vertex NoOut (&vertices|[vertex index]); j++){
if (!Vertex Marked(&vertices|[*ipl) &&
'Arc_Saturated (& (n->arcs[vertex_index] [*ip]))){
Vertex_SetMarked(&vertices[*ip], true);

Vertex_SetFrom(&vertices[*ip],

Queue_Add (queue,
}

ip++;

vertex_index);
Vertex_Index (&vertices|[*ipl));

60

}
Queue Destroy(queue) ;

/** Uses the multipel breadth first search (BS) strategy to find paths
* in a network from a supersource to a supersink.Only arcs that are not

* saturated is considered.

* Assumes the network has a supersource, ss and supersink added

* at indices no_vertices-2, no_vertices-1 respectively.

* Assumes all the vertices are unmarked and have from = level = -1
initially.

* (@param n network

**/

void Algorithms_BS (Network *n) {

Queue *queue;
Vertex *vertices, *ss;
int *ip, Jj, vertex index, source index;

queue = Queue Create (Network NoVertices(n));

vertices = Network Vertices(n);

ss = &(Network Vertices(n) [Network NoVertices(n) 2]);
source index = Vertex Index(ss);

Vertex_SetMarked(ss, true);
Vertex_SetLevel (ss, 0);
Queue_Add (queue, source_index);
while (!Queue_Empty (queue)) {
vertex_index = Queue_First (queue);
if (Vertex_NoOut (&vertices|[vertex_index]) > 0){
ip = Vertex_OQOut (&vertices[vertex_index]);

for (j=0; i<Vertex NoOut (&vertices|[vertex_index]); F++) {
if (!Vertex_Marked(s&vertices[*ip]) &&
!Arc Saturated(&(n >arcs[vertex index][*ip]))){

Vertex SetMarked(s&vertices[*ip], true);
Vertex SetLevel (&vertices[*ip],

(Vertex Level (gvertices[vertex index]) + 1));
Vertex SetPre(g&vertices|[*ip], vertex index);
Queue Add(gqueue, Vertex Index(&vertices[*ip]l));

i
elsef
if (Vertex Level (gvertices[*ip])==
(Vertex_Level (g¢vertices|[vertex_index]) + 1)) {
if (!Arc_Saturated(&(n->arcs[vertex_index] [*ip])))
Vertex_SetPre(&vertices[*ip], vertex_index);

ip++;

}
Queue Destroy (queue) ;

/** Uses the deapth first search (DFS) strategy to find a path
* in a network from a given source toc a reachable sink. Only arcs
* that are not saturated is considered.
* Assumes all the vertices are unmarked and have from = 1 initially.
* @param n network
* (@param s source
* @return sink_index
**/
void Algorithms_DFS (Network *n, Vertex *s){

Stack *stack;
Vertex *vertices;
int *ip, j, vertex_index, source_index, no_sinks;

no sinks = 0;

stack = Stack Create(Network NoVertices(n));
vertices = Network Vertices(n);

vertex index = source index = Vertex Index(s);

Vertex SetMarked (s, true);
Vertex SetFrom(s, source index);
Stack Push(stack, source index);
while (!Stack Empty(stack)){
vertex_index = Stack_Top(stack);
if (Vertex_IsSink (&vertices|[vertex_index]))
break;
if (Vertex_NoOut (&vertices|[vertex_index]) > 0){
ip = Vertex_OQOut (&vertices[vertex_index]);

for (j=0; i<Vertex NoOut (&vertices|[vertex_index]); F++){
if (!Vertex_Marked(&vertices[*ip]) &&
'Arc_Saturated (& (n->arcs[vertex_index] [*ip]))) {

61

Vertex SetMarked(&vertices[*ip], true);
Vertex SetFrom(&vertices|[*ip], vertex index);
Stack Push(stack, *ip);

}

ip++;

}
Stack_Destroy(stack) ;

/** Finds the shortest paths in a network from a source to all other
vertices.

* The cost functions assocciated with the arcs may have negative costs.

* Only arcs that are not saturated are considered.

* If lagrange=false, use linearized cost function of the primal problem,

* otherwise use linearized cost of Lagrange function.

* Returns true if paths can be found, false otherwise.

.* Assumes that all the vertices have from = 1 and cost =

DBL MAX initially.

* @param n network

* @param s source vertex from which the search origins

* @param lagrange false if linearized cost of primal problem should be
used

* true if linearized cost of Lagrange function should
be used

* Q@return true if no negative cycles are present

* false otherwise

**/

bool Algorithms_BellmanFord(Network *n, Vertex *s, bool lagrange) {

Vertex *vertex;
int i, j, *j p, iteration;
long double cost j, cost i273;

Vertex SetFrom(s, Vertex Index(s));

Vertex SetCost(s, 0);

//iterate over all non saturated arcs V 1 times

for(iteration=0; iteration<Network NoVertices(n) 1; iteration++){
for(i=0; i<Network NoVertices(n); i++){

vertex = gNetwork Vertices(n)[i];
if (Vertex_NoOut (vertex) != 0){
j_p = Vertex_Out (vertex);
for(j=0; j<Vertex NoOut (vertex); J++){
if(!Arc_Saturated(& (Network_ Arcs(n) [1]1[*_pl))){

if(!lagrange)
Algorithms_RelaxArc(n, & (Network_ Arcs(n)[i][*i_p]l), false);
else
Algorithms_RelaxArc(n, & (Network_ Arcs(n)[i][*i_pl), true);
i
J ptt;

}
// check for negative cycle
for(i=0; i<Network NoVertices(n); i++){
vertex = gNetwork Vertices(n)[i];
if (Vertex_NoOut (vertex) != 0){
i_p = Vertex_Out (vertex);
for(i=0; j<Vertex_NoOut (vertex); j++){
if (!Arc_Saturated (& (Network_ Arcs(n) [i] [*i_pl))) {

cost_j = Vertex_ Cost (&Network_ Vertices(n) [*i_pl);
if(!lagrange)
cost_12j = Vertex Cost(vertex)+
Arc_CurrLinearizedCost (& (Network_ Arcs(n) [i][*j_p]))+TOLERANCE;
else
cost i2j = Vertex Cost(vertex)+

Arc CurrlLinearizedlLagrangeCost (& (Network Arcs(n) [i][*] pl),
Vertex Price(vertex),

Vertex Price(&(Network Vertices(n)[*]j p]l)))+TOLERANCE;
if(cost j > cost 123){

fputs("Bellman Ford detected negative cycles.\n", stderr);

exit (99);

return(false);
J_ptt;

}

return(true) ;

62

/** Traces the reversed path from the given sink to the given source in
the network.

* Simultanecusly checks how much flow that can be pushed on the path,
and

* updates the network with this value, (max push) and the length of the
path (path_length).

* Assumes that a graph search algorithm has been run.

* @param n network

* @param sink_index

* @param source_index

* @param path_r vertex indicies from sink to source
* %/

void Algorithms_TracePath(Network *n, int sink_index, int source_index,
int *path_r){

int path length, i, 3j;
long double max push;

path length = 0;

max push = (Vertex Demand (&Network Vertices(n) [sink index]));
path r[path length++] = sink index;

j = sink index;

i = Vertex_From(&Network Vertices(n)[]]);

if (Arc_ResidualFlow (& (Network_Arcs(n) [i] [1])) < max_push) {

max_push = Arc_ResidualFlow (& (Network_ Arcs(n) [i][7]));
}

i =1i;
if (i != source_index) {
while (7 != source_index) {
path_r[path_length++] = 7;
i = Vertex_From(&Network Vertices(n) []]);

if (Arc ResidualFlow (& (Network Arcs(n)[i][J])) < max push) {
max push = Arc ResidualFlow(&(Network Arcs(n) [i][3]));

i
=i
}
}
path r[path length++] = j;
if (Vertex Demand(&Network Vertices(n) [j]) < max push) {

max push = Vertex Demand (&Network Vertices(n)[]j]);
}
NetworkUtil_ SetPathLength(n, path_length);
NetworkUtil_ SetMaxPush(n, max_push);

/** Updates the flows on the arcs on path with max_push value for network.
* Also updates the demand for the source and sink vertex on path.
* Assumes that the path is in order sink -> source, and that there is

only
* one source and cne sink on the path.
* @param n network
* @param path
*x)

void Algorithms UpdateFlowOnPath (Network *n, int *path){

int i, row, col;
Arc *arc r;

row = col = 0;
if (NetworkUtil_MaxPush(n) > 0){
for (i=NetworkUtil PathLength(n)-2; i>=0; i--){
col = path[i];
row = path[i+1];
arc_r = &(Network_Arcs(n) [row] [col]);
Arc_SetFlow(arc_r, (Arc_Flow(arc_r) + (NetworkUtil_ MaxPush(n))));
}
Vertex ChangeDemand (& (Network Vertices(n)
[path[NetworkUtil PathLength(n) 111),
NetworkUtil MaxPush(n));
Vertex ChangeDemand (& (Network Vertices(n) [path[0]1]),
NetworkUtil MaxPush(n));

** Uses the polynomial maximum flow algorithm for ALD’s by Migdalas
* to reroute flow from the supersource to the supersink in the network.
* Simultaneously updates the demands of the supersource and supersink.
* Assumes the supersource has supply>0 initially.
* (@param original original network in which flow alsc should be rerouted
* (@param ald network which holds the ald
*/
void Algorithms_MFALD (Network *original, Network *ald) {

63

int min index;

long double min cap;
Vertex *start;
Network *ald copy;
bool done = false;

Algorithms_SetCapacities(ald);
ald_copy =
min_index = Algorithms_SetCapaci
while (!done) {

Network_MFALDCopy (ald) ;

ties(ald_copy);

if(min_index < 0){//Network_Print (ald);

done = true;

break;
}
start = &Network Vertices(ald
min cap = Vertex Cap(start);

Vertex SetCap(&Network Vertices(ald) [min index],
Vertex SetMarked(&Network Vertices(ald) [min index],

// push flow to the supersink
Algorithms PushNPull (coriginal,

copy) [min index];

0);

// pull flow to the supersource

Algorithms PushNPull (coriginal,
Network_Destroy(ald_copy);

Algorithms_SetCapacities(ald);
ald_copy =
min_index =
//Network_Print (ald_copy);

false);
ald, ald copy, start, min cap, true);
ald, ald copy, start, min cap, false);

Network_MFALDCopy (ald) ;
Algorithms_SetCapacities (ald_copy);

// continue or terminate depending on capacity of supersource

if (Vertex_Cap(&Network_Vertices(ald_copy) [Network_ NoVertices(ald)-2

=0)
done = true;

}
Network Destroy(ald copy);

/** Downloaded from http://linux.wku.edu/~lamonml/algor/sort/shell.html

* (homepage of Michael Lamont),

modified to take Alpha objects.

* Shell sort sorts a given array of numbers in incrementing order.

* @param numbers
* (@param array size size of the
*k)

void Algorithms_ShellSort (Alpha numbers([],

{
int i, i, increment;
Alpha *temp;

numbers to be sorted

(Alpha Value (&numbers[i]))
array to be sorted

int array_size)

temp = Alpha_Create(0, 0, 0, false);
increment = 3;
while (increment > 0)
{
for (i=0; i < array size; i++)
{
=1
temp >value = (&numbers[i]) >value;
temp >i = (&numbers[i]) >i;
temp >j = (&numbers[i]) >3;
temp >lower = (&numbers[i]) >lower;
while ((j >= increment) &&
(Alpha_Value (&numbers[j-increment]) > Alpha_Value(temp)))
{
(&numbers[i])->value = (&numbers[j - increment])->value;
(&numbers[i])->i = (&numbers[j - increment])->i;
(&numbers[i])->7 = (&numbers[j - increment])->7;
(&numbers[j])->lower = (&numbers[]j - increment])->lower;
i = j - increment;
}
(&numbers[j]) >value = temp >value;
(&numbers[j]) >1 = temp >i;
(&numbers[J]) >3 = temp >7;
(&numbers[j]) >lower = temp >lower;
}
if (increment/2 != 0)
increment = increment/2;
else if (increment == 1)
increment = 0;
else
increment = 1;

}

free(temp) ;

/** Uses the Polak-Ribiere formula to

compute the ascent direction, i.e.

64

1)<

* d k+1 = dual grad k+1 + beta k*d k, where

* Dpeta k = (dual grad k+1(dual grad k+1 dual grad k)) /
dual grad k"Tdual grad k.

* (@param new gradient dual grad k+l

* @param old gradient dual grad k

* @param old direction d k

* @param old_gradient_square dual_grad_k"Tdual_grad_k.

* (@param no_vertices

* @return new_direction d_k+1

*x)

void Algorithms_FindDirection(long double *new_gradient, long double
*old_gradient, long double *old_direction,
long double old_gradient_square, int
no_vertices) {

double beta;

assert (old gradient square != 0);
beta = (Algorithms ScalarProd(new gradient, new gradient, old gradient,
no vertices)/old gradient square);
Algorithms AddArrays(new gradient, old direction, beta, old direction,
no vertices);

/** Copies the elements in the the old array to the new array
* assumes that the new array can hold at least size # of elements

* (@param copy the array to hold the copy

* (@param original the array that holds the elements to be copied
* (@param size the size of the original array

*x)

void Algorithms_ArrayCopy(long double *copy, long double *original,
int size){

int i;
long double *d c, *d o;

d c = copy;

d o = original;
for(i=0; i<size; i++){
*d c++ = *d o++;

/* Returns the middle value of three given values
* @param v_1
* @param v_2
* @param v_2
* @return the middle value of (v_1, v_2, v_3)
*/
double Algorithms Mid(double v 1, double v 2,double v 3){

if(v 3<=v 2){
if(v 3<=v 1){

if(v 1<=v 2){
//v 3<v 1<v 2
return(v 1);

i

elsef
//v_3<v_2<v_1
return(v_2);

}

else{
//v_l<v_3<v_2
return(v_3);

}
else{
if(v 1<=v 3){
if(v 1<=v 2){
//v 1<v 2<v 3
return(v 2);
i
elsef
//v 2<v 1<v 3
return(v_1);

}
else{
//v_2<v_3<v_1
return(v_3);

65

R e T

* PRIVATE FUNCTIONS

ok Kk K ko ok ko ok ok ok

/** Sets the capacities for the unmarked vertices of the network, and
* unmarkes those vertices that have a capacity equal to zero;
* Returns the array index for the vertex with minimum capacity, capacity

> 0.
* @param ald network
* Q@return min_index

*% [

int Algorithms_SetCapacities (Network *ald) {

int i;

long double in, out;

Vertex *supersource, *supersink;
int min index = 1;

long double min cap = DBL MAX;

// calculate capacities for all marked vertices except the super source
and super sink
for (i=0; i<Network_NoVertices(ald)-2; i++){
if (Vertex_Marked (&Network_Vertices(ald) [i])){
in = NetworkUtil_DeltaFlow(ald, &Network_Vertices(ald) [i
out = NetworkUtil_DeltaFlow(ald, &Network_Vertices(ald) |
if(in < out)
Vertex_SetCap(&Network_Vertices(ald) [i], in);
else
Vertex_SetCap (&Network_Vertices(ald) [i], out);
// unmark those vertices with a capacity equal to zero
if (Vertex Cap (&Network Vertices(ald) [i]) == 0)
Vertex SetMarked(&Network Vertices(ald) [i], false);
if ((Vertex Marked(&Network Vertices(ald) [i])) && (min cap >
Vertex Cap(&Network Vertices(ald) [1]))){
min cap = Vertex Cap(&Network Vertices(ald)[i]);
min index = i;

1, true);
i], false);

}
// calculate capacity for super-source

supersource = &gNetwork_Vertices(ald) [Network NoVertices(ald)-2]1;
Vertex_SetCap(supersource, NetworkUtil DeltaFlow(ald, supersource, false));
if ((Vertex_Cap(supersource)>0) && (min_cap > Vertex_Cap(supersource))) {

min_cap = Vertex_Cap(supersource);
min_index = Network_NoVertices(ald)-2;
}
supersink = &Network Vertices(ald) [Network NoVertices(ald)-1];
Vertex SetCap(supersink, NetworkUtil DeltaFlow(ald, supersink, true));
if ((Vertex Cap(supersink)>0) && (min cap > Vertex Cap(supersink))){
min cap = Vertex Cap(supersink);
min index = Network NoVertices(ald) 1;
}

return(min index);

/* Calculates the scalar product between two arrays of same length,
* where the product is taken as al*(a2-a3).

* @param al array 1

* @param a2 array 2

* @param a3 array 3

* @param no number of elements in array

* @return sum

*

/
double Algorithms_ScalarProd(long double *al, long double *a2,
long double *a3, int no){

long double sum;

int i;
sum = 0;
for(i=0; i<no; i++){
sum += al[il*a2[i] allil*a3[il;

}

return sum;

Adds two arrays elementwise and stores the result in result.
Multiplies array 2 with scalar before addition.

Assumes that both arrays are of same length.

Gparam al array 1

Gparam a2 array 2

S

66

* @param scalar
* @param result
* @param no number of elements in array
*/
void Algorithms AddArrays(long double *al, long double *a2, double scalar,
long double *result, int no){

int 1i;

for (i=0; i<no; i++){
result[i] = al[i] + (scalar*a2[i]);

/** Pushes (push=true) or pulls (push=false) flow from a given start vertex

* to the sink or source of an ald produced by a BS or DS search of a

network.

* Simultaneousely updates the flows in the original network. The demands
of the supersource of the original network and ald are also updated if
* the push or pull procedure was successful.

* A copy of the ald is used to hold the current predecessor and out

information.
* (@param original original network
* @param ald original ald
* (@param copy copy of ald
* (@param start vertex
* (@param flow amount of flow to be pushed or pulled
* @param push true or false
*x)

void Algorithms_PushNPull (Network *original, Network *ald, Network
*ald_copy, Vertex *start, long double flow, bool push) {

Queue *queue;

Vertex *o source, *a source, *o sink, *a sink;
int vertex index, *neighbours;

bool successful = false;

neighbours = NULL;
queue = Queue Create(Network NoVertices(original)*
Network NoVertices(original));
Queue Add(queue, Vertex Index(start));
o_source = &Network_Vertices(original) [Network_NoVertices(original)-2];

o_sink &Network_ Vertices(original) [Network NoVertices(original)-1];
while (!Queue_Empty (queue)) {
vertex_index = Queue_First (queue);
if (vertex_index != Vertex_Index(start)){
Vertex_SetCap (&Network_Vertices(ald) [vertex_index],
(Vertex_Cap (&Network_Vertices(ald) [vertex_index])-flow));
if (Vertex_Cap (&Network_Vertices(ald) [vertex_index]) == 0)

Vertex SetMarked(&Network Vertices(ald) [vertex index], false);
}
// pull flow towards the source
if (push==false) {
if (Vertex NoPre(&Network Vertices(ald copy) [vertex index]) > 0){
successful = true;
neighbours = Vertex Predecessors|(
&Network Vertices(ald copy) [vertex index]);
Algorithms AddFlowOnAdjacent (original, ald, flow, neighbours,
Vertex_NoPre (§Network_ Vertices (ald_copy)
[vertex_index]), vertex_index, queue, false);

}
// push flow towards the sink
else{
if (Vertex_NoOut (&§Network Vertices (ald_copy) [vertex_index]) > 0){

successful = true;

neighbours = Vertex Out (&Network Vertices(ald copy) [vertex index]);

Algorithms AddFlowOnAdjacent (original, ald, flow, neighbours,
Vertex NoPre (&Network Vertices(ald copy) [vertex index]),
vertex index, queue , true);

}
// adjust the demands of the supersource of the original network, and ald
if (push==false && successful) {
Vertex_SetDemand (o_source, (Vertex_Demand(o_source)-flow));
a_source = &Network_Vertices(ald) [Network_NoVertices(ald)-2];
Vertex_SetDemand (a_source, (Vertex_Demand(a_source)-flow));
}
if (push==true && successful) {
Vertex_SetDemand (o_sink, (Vertex_Demand(o_sink)+flow));
a_sink = gNetwork_Vertices(ald) [Network_NoVertices(ald)-1];

67

Vertex SetDemand(a sink, (Vertex Demand(a sink)+flow));
}
Queue Destroy (queue) ;

/** Adds amount flow to the arcs defined by an index and its neighbours
in an ald.

* If push is true, the neighbours are taken from the current vertex
outgoing arcs,

* 1if false from the vertex predecessors.

Assumes that the arcs has enough capacity to add amount flow between

*

them.

* (@param original original network

* @param ald

* @param flow amount of flow that should be added

* @param neighbours array that holds the indices of the vertices
adjacent to index

* @param index index of the current vertex

* (@param gqueue holds indicies of those vertices with involved arcs

* @param push true or false

*k)

void Algorithms AddFlowOnAdjacent (Network *original, Network *ald,
long double flow, int *neighbours,
int no_neighbours, int index,
Queue *queue , bool push) {

Arc *arc_a, *arc_o;// arc_a=ald arc, arc_o=original arc
long double curr_flow = flow;
int iterator = 0;

while(curr_flow>0 && iterator<no_neighbours) {
// use predecessor arcs

if (!push){
arc a = &Network Arcs(ald) [*neighbours] [index];
arc o = &Network Arcs(original) [*neighbours] [index];

}
// use outgoing arcs

else{
arc a = &Network Arcs(ald) [index] [*neighbours];
arc o = &Network Arcs(original) [index] [*neighbours];

}

// Arc_Print(arc_o);Arc_Print (arc_a);

if (Arc_ResidualFlow(arc_a) >= curr_flow) {
Arc_ChangeFlow(arc_a, curr_flow);
Arc_ChangeFlow(arc_o, curr_flow);

curr_flow = 0;
}
else{
curr_flow —= Arc_ResidualFlow(arc_a);

Arc SetFlow(arc a, Arc Upper (arc a));
Arc SetFlow(arc o, Arc Upper (arc o));
}
Queue Add(queue, *neighbours++);
iterator++;

* Reduces the cost to an vertex J in a shortest path search if
the current cost of the vertex is higher than the sum of a
current neighbour vertex i and the arc (i, i) between them.
To avoid negative cycles by computer arithmetic, a small tolerance is
added to the flow of each arc.
Gparam n network that holds the array of vertices in the network
@param arc arc (i,1
Gparam lagrange false if linearized cost of primal problem should be
used
* true if linearized cost of Lagrange function should be
used

P A

**/
void Algorithms RelaxArc(Network *n, Arc *arc, bool lagrange) {

int 1 = Arc From(arc);
int j = Arc To(arc);
long double tmp cost = DBL MAX;

if(!lagrange)
tmp_cost = Vertex_Cost (&Network Vertices(n) [i]) +
Arc_CurrLinearizedCost (arc) + TOLERANCE;
else
tmp_cost = Vertex_Cost (&Network Vertices(n) [i]) +
Arc_CurrlLinearizedLagrangeCost (arc,
Vertex_Price(&Network_Vertices(n) [i]),
Vertex_ Price (&Network Vertices(n)[j])) + TOLERANCE;

68

if (Vertex Cost(&Network Vertices(n)[j]) > tmp cost) {
Vertex SetCost(&Network Vertices(n)[j], tmp cost);
Vertex SetFrom(&Network Vertices(n) 3], i);

/** Calculates the step size according to Helgason et al.

* If first=true, the candidate stepsizes are set in all_alpha,

* otherwise all_alpha from previous iteration is sorted, now traverse
sorted all_alpha

* and replace current values with the new values that for each alpha is

found

* in the corresponding arc, store the new alphas in all_alpha_new with
elements

* equal to -1 in all_alpha removed.

\k*/

double Algorithms CalcHelgasonAlpha(Network *n, Alpha *all alpha,
Alpha *all alpha new, long double
*direction, bool first){

double alpha;
int old alpha length;

// set the candidate alphas in all_alpha
if (first){
NetworkUtil CalcAlphas(n, all_alpha, direction, true);
Algorithms_ShellSort(all_alpha, ((Network NoArcs(n)*2) + 1 -
(NetworkUtil NoMarked(n)*2)));
alpha = Algorithms_Helgason(n, all_alpha, direction);
}
// traverse sorted all_alpha and replace values,
// sort all_alpha_new, and apply Helgason
else{
old alpha length = NetworkUtil NoAlpha(n);
NetworkUtil CalcAlphas(n, all alpha, direction, false);
Algorithms ReplaceAlphas(n, all alpha, all alpha new, old alpha length);
Algorithms ShellSort(all alpha new, NetworkUtil NeoAlpha(n));
alpha = Algorithms Helgason(n, all alpha new, direction);
}
if (!first)
Algorithms AlphaArrayCopy(all alpha, all alpha new,
NetworkUtil NoAlpha(n));
return(alpha);

/** Takes an array of sorted alpha values with length number of elements,
and

* replaces each value with the corresponding value of the arc in the
network.

* Then removes all elements from the array that have a value equal to 1.

* @param n network

* (@param alpha old array of sorted alpha values from previous iteration

* (@param alpha new array of to hold (un)sorted alpha values from

current iteration
* (@param length number of sorted elements in alpha old

void Algorithms ReplaceAlphas(Network *n, Alpha *alpha old,
Alpha *alpha_new, int length) {

int i, from, to, i;
Arc *arc;

=03
for(i=0; i<length; i++){
from = Alpha_From(&alpha_old[i]);
to = Alpha_To(&alpha_old[i]);
arc = &Network Arcs(n) [from][to];
if (Alpha Lower (&alpha old[i]))
Alpha SetValue(&alpha old[i], Arc Alphal (arc));
else
Alpha SetValue(galpha old[i], Arc AlphaU(arc));
}
for(i=0; i<Network NoArcs(n)*2 + 1; i++){
if (Alpha Value(&alpha old[i])!= 1)
alpha_new[j++] = alpha_old[i];

/** Copies the elements in the the old array to the new array

* assumes that the new array can hold at least size # of elements
* (@param copy the array to hold the copy

* (@param original the array that holds the elements to be copied

69

* @param size the size of the original array
*k)
void Algorithms AlphaArrayCopy(Alpha *copy, Alpha *original, int size){

int i;
Alpha *a c, *a o;

a_c = copy;

a_o = original;

for(i=0; i<size; i++){
*a_c++ = *a_o++;

70

A.2.2 Alpha.c

#include <assert.h>
#include <stdlib.h>
#include "Alpha.h"

/*typedef struct{
double value; // the current value of alpha

int ij; // index of vertex at arcs tail which alpha is associated with
int 7; // index of vertex at arcs head which alpha is associated with
bool lower; // true if alpha is evaluated at the lower limit of arc (i,7),

false otherwise
}Alpha;*/

R
* PUBLIC FUNCTIONS

ok ok ok ok K ok K ok ok ok ok ok ok ok ok ok ok ok ok ok R ok ok ok R ok ok K ok R ok ok K ok R Kk ok Kk ok ok ok ok kR Kk Kk X

/** Allocates memory for an alpha.
* @param value value of alpha
* @param i index of vertex at arcs tail which alpha is associated with
* @param j index of vertex at arcs head which alpha is associated with
* (@param lower true if alpha evaluated at lower limit, false otherwise
* Q@return alpha
*x)

Alpha* Alpha Create(double value, int from, int to, bool lower) {

Alpha *alpha = (Alpha *)calloc(l, sizeof (Alpha));
alpha->value = value;

alpha->i = from;

alpha->1 = to;

alpha->lower = lower;

return(alpha);

/** Returns memory for an alpha.
* @param aalpha
*x)

void Alpha Destroy(Alpha *alpha) {

assert (alpha!=NULL) ;
free(alpha) ;

/** Gets the value for alpha.
* @param alpha
* Q@return value
*x)
double Alpha_Value (Alpha *alpha) {

assert (alpha!=NULL) ;
return(alpha->value);

/** Sets the value for alpha.
* @param alpha
* @param value
*x/
void Alpha SetValue(Alpha *alpha, double value) {

assert (alpha!=NULL) ;
alpha->value = value;

/** Gets the value for index at arcs tail to which alpha is associated.
* [@param alpha
* Qreturn i

*x)

int Alpha_From(Alpha *alpha) {

assert (alpha!=NULL) ;
return(alpha >i);

/** Sets the value for index at arcs tail to which alpha is associated.
* @param alpha
* @param i
*x/

void Alpha_SetFrom(Alpha *alpha, int i) {

assert (alpha!=NULL) ;
alpha->i = i;

71

/** Gets the value for index at arcs head to which alpha is associated.
* @param alpha

* Q@return j

*k)
int Alpha To(Alpha *alpha){

assert (alpha!=NULL) ;
return(alpha->1);

/** Sets the value for index at arcs head to which alpha is asscciated.
* @param alpha
* @param j
*k /)

void Alpha_SetTo(Alpha *alpha, int 7){

assert (alpha!=NULL) ;
alpha >3 = j;

/* Gets the value for lower. True if alpha evaluated at lower limit,
false ctherwise.
* @param alpha
* @return true or false
*/
bool Alpha_Lower (Alpha *alpha) {

assert (alpha!=NULL) ;
return(alpha->lower);

/* Sets the value for lower of alpha.
* @param alpha
* @param lower true if alpha evaluated at lower limit, false otherwise
*/

void Alpha SetLower (Alpha *alpha, bool lower) {

assert (alpha!=NULL) ;
alpha >lower = lower;

72

A.2.3 Constants.h

#ifndef _Constants_h

#define _Constants_h

#include <stdlib.h>

#define CORR EPSTLON 0.0000000000000001 // 16
#define OPT FPSTLON 0.000000000001 // 12
#define FEPSTLON 0.00000001 // 8

#define TOLERANCE MIN 1000

#define MAX_ITERATIONS 200000

#define RESTART 100

typedef struct{

double value; // value returned by process
double time; // CPU time for process
}Result;
#endif

73

A.2.4 Heuristics.c

#include "Heuristics.h"
#include "Algorithms.h"
#include "NetworkUtil.h"
#include "Queue.h"
#include "Constants.h"
#include <stdioc.h>
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <float.h>

3ok ko ok ko ok Kk ok Kok ok o Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok kKo ok kR K Kk Kk ok o Kk K K
* PUBLIC FUNCTIONS

Sk ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok kK ok ok ko ok ok Kok ok kK K

/** Uses the Flowroute method with the BFS search strategy to adjust the
* current flows of the network to primal feasibility.

* Returns the primal objective value after adjustment.
* Assumes there is a feasible solution.

* @param n network

* @return value sum f ij(x ij

*k)

long double Heuristics Flowroute (Network *n) {

int i, 1§, *path;
Vertex *source, *sink;

path = (int*)calloc(Network_NoVertices(n), sizeof(int));
for (i=0; i<Network_NoSources(n); i++){
source = §&(Network_Vertices(n) [Network_Sources(n) [i]]);

Algorithms_BFS(n, source);
for(i=0; j<Network_NoSinks(n); j++){
sink = & (Network_Vertices(n) [Network_Sinks(n)[]1]1);
if (Vertex Marked(sink)) {
Algorithms TracePath(n, Vertex Index(sink), Vertex Index(source), path);
Algorithms UpdateFlowOnPath(n, path);

}
NetworkUtil UnMark (n);
}
free(path);
return (NetworkUtil PrimalValue(n));

** Uses the Flowroute method with the DFS search strategy to adjust the
* current flows of the network to primal feasibility.
* Returns the primal cobjective value after adjustment.
* Assumes there is a feasible solution.
* @param n network

* Q@return value sum £_ij(x_i7)

**/

long double Heuristics FlowrouteD(Network *n) {

int i, j, *path;
Vertex *source, *sink;

bool done = false;
path = (int*)calloc(Network NoVertices(n), sizeof(int));
for(i=0; i<Network NoSources(n); i++){

source = §&(Network_Vertices(n) [Network_Sources(n) [i]]);

while (!done) {
Algorithms_DFS(n, source);
for(i=0; j<Network_NoSinks(n); j++){
sink = & (Network_Vertices(n) [Network_Sinks(n)[]]1]);
if (Vertex_Marked (sink)) {
Algorithms_TracePath(n, Vertex_ Index(sink), Vertex_Index(source),
path);
Algorithms UpdateFlowOnPath(n, path);
if (Vertex Demand(scurce) < OPT EPSTLON) {
done = true;
break;

}
NetworkUtil UnMark (n);
}
done = false;
}
free (path);
return (NetworkUtil PrimalValue(n));

74

/** Uses the Flowroute method with the BS search strategy, and the

* MFALD method to adjust the current flows of the network to primal

feasibility.

* If the super source has supply left after FlowrouteBS has been run,
* Flowroute empties the remaining supply.

* Returns the primal objective value after adjustment.
* Assumes that network has a supersource and a supersink, and that
* there is a feasible solution.
* (@param copy network
* Q@return value sum f_if(x_i7)

**/
long double Heuristics_FlowrouteBS (Network *copy) {

Network *ald;

int i, source_index, sink_index;
Arc arc;

bocl residual = false;

while (Vertex Demand(&Network Vertices(copy) [Network NoVertices(copy) 21) >
OPT EPSTILON) {
Algorithms BS(copy);
if (!Vertex Marked(&Network Vertices(copy) [Network NoVertices(copy) 11)){
residual = true;
break;
}
ald = Network_ALDCopy (copy) ;
Algorithms_MFALD(copy, ald);
Network_Destroy(ald);
NetworkUtil_ UnMark (copy) ;
}
if (residual) {
copy->no_sources -= 1;
copy >no sinks = 1;
for (i=0; i<Network NoSources (copy) 1; i++){
source index = Network Sources(copy) [i];
arc = Network Arcs(copy) [Network NoVertices(copy) 2] [source index];
Vertex SetDemand (&Network Vertices(copy) [source index],
(Vertex Demand (&Network Vertices(copy) [source index]) Arc Flow(&arc)));
}
for (i=0; i<Network NoSinks(copy) 1; i++){
sink index = Network Sinks(copy) [1];
arc = Network_ Arcs(copy) [sink_index] [Network_NoVertices (copy)-1];
Vertex_SetDemand (&Network_Vertices(copy) [sink_index],
(Vertex_Demand (&Network_Vertices (copy) [sink_index])+Arc_Flow(&arc)));
}
return(Heuristics_Flowroute (copy));
}
else
return(NetworkUtil PrimalValue(copy));

/** Uses the Shortest Path method to adjust the current flows of the network
* to primal feasibility.
* Assumes there is a feasible solution, and that all reachable sinks are
* unmarked initially.
* @param n network
* @return value sum f ij(x ij
*k)
long double Heuristics_ShortestPath(Network *n) {

int i, 14, *path, min_index;
Vertex *source, *sink;
bool ok = false;

path = (int*)calloc(Network_ NoVertices(n), sizeof (int));
for (i=0; i<Network_NoSources(n); i++) {
source = & (Network_Vertices(n) [Network_Sources(n) [i]]);
if ((ok = Algorithms BellmanFord(n, source, false))){
for(j=0; j<Network NoSinks(n); J++){
min index = Heuristics FindMinSink (Network Vertices(n),
Network Sinks(n), Network NoSinks(n));
sink = &Network Vertices(n) [min index];

Vertex SetMarked(sink, true);
Algorithms TracePath(n, Vertex Index(sink), Vertex Index(source),
path);
Algorithms_UpdateFlowOnPath(n, path);
}
NetworkUtil_UnMark (n);
}
else
break;
}
free (path);

75

if (ok)

return(NetworkUtil PrimalValue(n));
else

return(1);

/** Uses the Shortest Path method used for the linearized Lagrange function wrt x
* to adjust the current flows of the network to primal feasibility.

* Assumes there is a feasible solution.

* (@param n network

* Q@return value sum £_ij(x_i7)

**/

long double Heuristics_ShortestPathL (Network *n) {

int i, i, *path, min_index;
Vertex *source, *sink;

bool ok = false;
path = (int*)calloc(Network NoVertices(n), sizeof(int));
for(i=0; i<Network NoSources(n); i++){
source = & (Network Vertices(n) [Network Sources(n)[i]]);
if ((ok = Algorithms BellmanFord(n, source, true))){

for (j=0; j<Network NoSinks(n); J++){
min_index = Heuristics_FindMinSink (Network_Vertices(n),
Network_Sinks(n), Network_NoSinks(n));
sink = gNetwork_Vertices(n) [min_index];
Vertex_SetMarked(sink, true);
Algorithms_TracePath(n, Vertex_ Index(sink), Vertex_Index(source),
path);
Algorithms_UpdateFlowOnPath(n, path);
}
NetworkUtil_ UnMark(n) ;
}
else
break;
}
free(path);
if (ok)
return(NetworkUtil PrimalValue(n));
else
return(1);

3ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok kK ok ok kR K kR Kk ok o Kk kK

* PRIVATE FUNCTIONS
Sk ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok K ok ok ko ok ok ok ok o kK K

/** Finds the sink with the minimum cost among the set of reachable sinks
* that are unmarked from a source, and returns that sinks index.

@param vertices

@param sinks

@param no sinks size of the array holding sinks

@return min index
*/

int Heuristics FindMinSink (Vertex *vertices, int *sinks, int no sinks){

T

int i, min index;
long double min cost;
Vertex *sink;

min_cost = DBL_MAX;

min_index = -1;
for (i=0; i<no_sinks; i++){
sink = gvertices[sinks[i]];
if ((Vertex_Cost (sink) != DBL_MAX) && (!Vertex_Marked(sink))){

if (min_cost > Vertex_Cost(sink)) {
min_cost = Vertex_Cost(sink);
min index = Vertex Index(sink);

}

return(min index);

76

A.3 Data structure related code
A.3.1 Arc.c

#include "Arc.h"
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "Constants.h"

/*typedef struct{

int from; // index of vertex at arcs tail

int to; // index of vertex at arcs head

double lower; // lower limit for flow on arc, i.e. 1_ij

double upper; // upper limit for flow on arc, i.e. u_ij

QuadFun cost; // f_ij(x_iq) = c_ij + a_id*x_ij + b_ij*x_iq"2

long double flow; // flow on arc, i.e. x ij

bool residual; // false if arc original, true if arc residual

bool marked; // true if arc removed from Helgason, false otherwise

double alpha 1; // the value for alpha evaluated at the lower limit
of arc

double alpha u; // the value for alpha evaluated at the upper limit
of arc

}Arc; */

[Kk Kk R K Kk KRk o KKk K R ok R o KK o KKk K K Kk Kk ok o ko o X K K X

* PUBLIC FUNCTIONS
ok ok ok ok K ok K ok ok ok ok ok ok ok ok ok ok ok ok ok kR ok ok ok R ok ok kR ok ok K R Kk ok ok ok ok ok kK R Kk

/** Allocates memory for an arc.
* @param from vertex index for the tail of the arc
* @param to vertex index for the head of the arc
* @param lower the lower flow-limit of the arc
* (@param upper the upper flow-limit of the arc
* @return arc
*x)
Arc *Arc Create(int from, int to, double lower, double upper, QuadFun *cost) {

Arc *arc;

arc = (Arc *)calloc(l, sizeof (Arc));
arc >from = from;

arc->to = to;

arc->lower = lower;

arc->upper = upper;

(&arc->cost)->a = QuadFun_a(cost);
(&arc->cost)->b = QuadFun_b(cost) ;
(&arc->cost)->c = QuadFun_c(cost);

arc->flow = 0; // 1 for testing purposes, otherwise 0 initially
arc->residual = arc->marked = false;
arc->alpha_l = arc->alpha u = -1;

QuadFun Destroy(cost);
return arc;

/** Returns memory for an arc.
* @param arc
*x)

void Arc Destroy(Arc *arc) {

free(arc);

/* Sets the lower limit of an arc.
* @param arc
* @param lower
*/
void Arc_SetLower (Arc *arc, double lower) {

assert(arc != NULL);
arc >lower = lower;

/** Gets the lower limit of an arc.
* @param arc
* @return lower
*x)

double Arc_Lower (Arc *arc) {

assert (arc != NULL);
return arc->lower;

77

/* Sets the upper limit of an arc.
* @param arc
* @param upper
*/
void Arc SetUpper (Arc *arc, double upper) {

assert (arc ! NULL) ;
arc->upper = upper;

/** Gets the upper limit of an arc.
* @param arc
* Q@return upper
*k)

double Arc_Upper (Arc *arc) {

assert(arc != NULL);
return arc >upper;

/** Gets the cost function to traverse an arc.
* @param arc
* @return cost

*k /)

QuadFun Arc_Cost (Arc *arc) {

assert (arc != NULL);
//Arc_Print (arc) ;
return arc->cost;

/** Gets the flow for an arc.

* @param arc

* @return flow

*k)

long double Arc Flow(Arc *arc){

assert(arc != NULL);
return arc >flow;

/** Sets the flow on arc to new_flow.
* (@param arc
* @param new_flow
*k /
void Arc_SetFlow(Arc *arc, long double new_flow) {

assert (arc != NULL);
arc->flow = new_flow;

/** Returns true if the arc has flow (i.e. x ij != 0),
* otherwise false.
* @param arc
* @return true or false
**/
bool Arc HasFlow(Arc *arc){

assert (arc != NULL);
return(! (Arc_Flow(arc) == 0));

/** Changes the flow for an arc by given amount if the change is within limits,

* otherwise nothing happens.
* (@param arc
* @param amount
**/
void Arc ChangeFlow(Arc *arc, long double amount) {

long double new;

assert(arc != NULL);

new = (arc >flow) + amount;

if (Arc ValidChange (new, arc >upper, arc >lower)) {
arc >flow = new;

/** Returns the value of how much flow can be added to the arc based on

* the current flow and the upper limit of the arc.
* (@param arc
* Qreturn value

78

long double Arc ResidualFlow(Arc *arc){

assert(arc != NULL);
return(arc >upper arc >flow);

/** Returns true if the arc is saturated, false otherwise.
* (@param arc
* Q@return true or false
**/

bool Arc_Saturated(Arc *arc) {

assert (arc != NULL);
return((arc->upper - arc->flow) == 0);//< OPT_EPSILON) ;

/** Gets the value for residual on arc.
* Returns true if arc is an residual arc, otherwise false.
* @param arc
* @return true or false

\kk/

beoel Arc Residual (Arc *arc){

assert (arc != NULL);
return(arc->residual);

/** Sets the value for residual on arc to residual.
* (@param arc
* (@param remove

* %/

void Arc_SetResidual (Arc *arc, bool residual) {

assert(arc != NULL);
arc >residual = residual;

/** The cost in copy is set to minus the cost in original.
* @param copy
* @param original
*x)

void Arc_SetResidualCost (Arc *copy, Arc *original) {

QuadFun original_cost ;

assert (copy != NULL);

assert (original != NULL);

original_cost = Arc_Cost(original);
(©->cost)->a = -(QuadFun_a(&original_cost));
(© >cost) >b = (QuadFun b(&original cost));
(© >cost) >c = (QuadFun c(&original cost));

/** Gets the value for marked on arc.
* Returns true if arc has d i d j=0, otherwise false.
* @param arc
* @return true or false

\kk/

bool Arc_Marked(Arc *arc) {

assert (arc != NULL);
return(arc->marked) ;

/** Sets the value for marked on arc to marked.
* (@param arc
* (@param mark

*x)

void Arc SetMarked(Arc *arc, bool mark) {

assert(arc != NULL);

arc >marked = mark;

/** Calculates the cost for the current flow.
* @param arc

* @return sum

* %/

long double Arc_CurrCost (Arc *arc) {

QuadFun f;

assert (arc != NULL);

79

f = Arc Cost(arc);
return (QuadFun Value(&f, Arc Flow(arc)));

/** Calculates the cost for the current linearized flow.
* @param arc

* @return sum

*k)

long double Arc_CurrLinearizedCost (Arc *arc){

QuadFun cost;

assert (arc != NULL);
cost = Arc_Cost (arc);
return ((2*QuadFun_b(&cost) *Arc_Flow(arc)) + QuadFun_a(&cost));

/** Calculates the cost for the current linearized Lagrange function

* evaluated for the current flow.

* @param arc

* (@param price i dual variable associated with vertex at arcs tail

* @param price j dual variable associated with vertex at arcs head

* @return sum

*k)

long double Arc_CurrLinearizedLagrangeCost (Arc *arc, long double price_i,
long double price_7){

QuadFun cost;

assert (arc != NULL);

cost = Arc_Cost (arc);

return ((2*QuadFun_b(&cost) *Arc_Flow(arc)) + QuadFun_a(&cost) +
price i price J);

/** Sets the index of the vertex at the tail of the arc.
* @param arc
* @param from
*k)

void Arc SetFrom(Arc *arc, int from){

assert (arc != NULL);
arc->from = from;

/** Returns the index of the vertex at the tail of the arc.
* (@param arc

* @return from

*k)

int Arc From(Arc *arc){

assert(arc != NULL);
return arc >from;

/** Sets the index of the vertex at the head of the arc.
* @param arc
* @param to
*k)

void Arc_SetTo(Arc *arc, int to){

assert (arc != NULL);
arc->to = to;

/** Returns the index of the vertex at the head of the arc.
* @param arc

* @return head

*k)

int Arc To(Arc *arc){

assert(arc != NULL);
return arc >to;

/* Sets the value for alpha_l of the arc.
* @param arc
* @param alpha_l
*/
void Arc_SetAlphaLl (Arc *arc, double alpha_1){

assert (arc NULL) ;
arc->alpha_1 = alpha_1;

80

/* Returns the value for alpha 1 of the arc.
* @param arc
* @return alpha 1
*/

double Arc_Alphal (Arc *arc) {

assert (arc != NULL);
return(arc->alpha_1);

/* Sets the value for alpha_u of the arc.
* @param arc
* @param alpha_u
*/
void Arc SetAlphaU(Arc *arc, double alpha u){

assert(arc != NULL);
arc >alpha u = alpha u;
}

/* Returns the value for alpha u of the arc.
* @param arc
* @return alpha_u
*/

double Arc_AlphaU(Arc *arc) {

assert (arc != NULL);
return(arc->alpha_u);

/** Returns true if arc holds the "empty" arc,
* otherwise false.
* @param arc
* @return true or false
\kk/
beel Arc Empty(Arc *arc){

assert(arc != NULL);

return ((arc >from==0) && (arc >to==0) && (arc >upper

/** Sets all the values of arc to zero
* (@param arc
* %/

void Arc_MkEmpty (Arc *arc) {

arc->from = arc->to = 0;
arc >lower = arc >upper = arc >flow = 0;
(s&arc >cost) >a = (&arc >cost) >b = (&arc >cost) >c = 0;

/** String representation of an arc.
* @param arc
*x)

void Arc Print (Arc *arc){

assert (arc != NULL);

printf ("Arc from vertex %d to vertex %d has:\n", arc->from, arc->to);
printf ("current flow = %Lf\n", arc->flow);

printf ("cost = %Lf\n", (QuadFun_Value (& (arc->cost), arc->flow)));
printf("lower limits = %£f\n", arc->lower);

printf ("upper limits = %.16f\n", arc->upper);

printf ("residual = %d\n", arc->residual);

printf ("marked = %d\n", arc->marked);

printf ("%s", "cost = ");

QuadFun Print(&arc >cost);

e

* PRIVATE FUNCTIONS

ok ek ek ke k kK kK ok kK kR kK R kK kK R Kk ok ok ko kK R K

/** Returns true if the parameter new is within limits lower to upper,
* otherwise false.

* @param new the parameter to check if within limits

* (@param upper upper limit

* (@param lower lower limit

* @return true or false

*%)

bool Arc_ValidChange (long double new, double upper, double lower) {

81

if (new<=upper && new>=lower)
return true;

else
return false;

82

A.3.2 Network.c

#include "Network.h"
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include "Arc.h"
#include "Misc.h"
#include "Constants.h"

/*typedef struct{

int *sources; // array with indices of the source-

vertices in network

int *sinks; // array with indices of the sink-
vertices in network

Vertex *vertices; // array with the vertices of network

Arc **arcs; // matrix with the arcs of network

int max sources; // maximum size of *sources

int max sinks; // maximum size of *sinks

int max vertices; // maximum size of *vertices

int no arcs; // current size of **arcs

int no sources; // current size of *sources

int no sinks; // current size of *sinks

int no vertices; // current size of *vertices

long double *price; // array with the dual variables of
the vertices in network, i.e. v

long double *dual_grad; // the dual gradient of network,
i.e. grad w(v) = Ax-b

long double *balance; // the current balance of each vertex,
i.e. Ax

long double dual_grad_norm_square; // the norm of the dual gradient of
network, i.e. grad w(v) ||

long double demand_norm_square; // the norm of the demand of the
vertices in network, i.e. ||bl]|

int path length; // pathlength of current path from
source to sink in residaul network

long double max push; // maximum amount of flow that can be
pushed on current path

int min index; // index of vertex with minimum
capacity

int no marked; // number of marked arcs in network

int no_alpha; // no_arcs*2 + 1 — no_marked*2

}Network; */

[k Kk ok kR kKR KRk o K KKk K Kk o R o Kk o KKk o K Kk Kk ok o ko ok K K K K

* PUBLIC FUNCTIONS
ok Kk ok Kk Kok K ok ok ok K ok ok R ok ok ok ok ok ok ok Rk ok ok R R ok ok R R K ok ok R R Kk ok ok ok ok ok kR Kk Kk

/** Allocates memory for a network.
* @param max_vertices the maximum number of vertices in the network
* @return network
*x)

Network *Network Create(int max vertices){

Network *n;

int i;
n = (Network *)calloc(l, sizeof (Network));
n >max vertices = max vertices;
n->vertices = (Vertex *)calloc (max_vertices, (sizeof (Vertex)));
n->arcs = (Arc **)calloc(max_vertices, (sizeof(Arc*)));
for(i=0; i<max_vertices; i++){
n->arcs|[i] = (Arc *)calloc(max_vertices, (sizeof (Arc)));
}
n->price = (long double *)calloc(max_vertices, (sizeof(long double)));
n->dual_grad = (long double *)calloc(max_vertices, (sizeof(long double)));
n->balance = (long double *)calloc(max_vertices, (sizeof(long double)));
n >sources = n >sinks = NULL;

return n;

/** Allocates memory for a bipartite graph.
* @param max sources the number of socurces of the bipartite graph

* @param max sinks the number of sinks of the bipartite graph
* @return graph
*x)

Network *Network_CreateB(int max_sources, int max_sinks) {

Network *b;
int max_vertices;

max_vertices = max_sources+max_sinks;

83

b = Network Create(max vertices);
b >max scurces = max sources;

b >max sinks = max sinks;
b
b
r

>sources = (int *)calloc(max sources, (sizeof(int)));
>sinks = (int *)calloc(max sinks, (sizeof(int)));

eturn b;

/** Returns memory for a network (or a bipartite graph).
* (@param network
**/

void Network_Destroy(Network *network) {

int i;

for(i=0; i<network >max vertices; i++){
if ((&network >vertices[i]) >in != NULL)
free((&network >vertices[i]) >in);
if ((&network >vertices[i]) >out != NULL)
free((&network >vertices|[i]) >out);
if ((&network >vertices[i]) >predecessors != NULL)
free((&network >vertices[i]) >predecessors);
}
free (network->vertices);
if (network->sources != NULL) {
free (network->sources) ;
}
if (network->sinks != NULL) {
free (network->sinks) ;
}
free (network->price);
free(network->dual_grad);
free (network >balance);
for(i=0; i<network >max vertices; i++){
free(network >arcs(il]);
}
free (network >arcs);
free (network) ;

/** Adds a vertex to a network.
* Assumes there is encugh space in *vertices.
* (@param vertex
* (@param network
**/
void Network_AddVertex(Network *network, Vertex *vertex){

Vertex *v;

assert (network != NULL);

assert (network >no vertices < network >max vertices);
v = &network >vertices[network >nc vertices++];

v >index = Vertex Index (vertex);

v >max in = Vertex NolIn(vertex);

v >max out Vertex NoOut (vertex);

v >marked = false;

v >from = v >level = 1;

v >cost = DBL MAX;

Vertex_Destroy(vertex);

/** Sets one index in the array of source indices.
* If the array is too small, it gets extended to twice its current size.
* (@param network
* @param source_index
**/
void Network_SetSource (Network *network, int source_index) {

assert (network != NULL);
if (network >sources != NULL) {
if (network >no sources >= network >max sources) {
network >sources = (int*)realloc(network >sources,

((network >max scurces*2)*sizecf(int)));
network >max sources *= 2;

}

else{
network->sources = (int*)calloc(l, sizeof(int));
network->max_sources = 1;

}

network->sources [network->no_sources++] = source_index;

84

/** Sets one index in the array of sink indices.
* If the array is too small, it gets extended to twice its current size.
* @param network
* @param sink index
*x)
void Network SetSink(Network *network, int sink index){

assert (network != NULL);
if (network->sinks != NULL) {
if (network->no_sinks >= network->max_sinks) {
network->sinks = (int*)realloc(network->sinks, ((network->max_sinks*

2)*sizeof (int)));
network->max_sinks *= 2;

}

else{
network >sinks = (int*)calloc(1l, sizeof(int));
network >max sinks = 1;

}

network >sinks[network >no sinks++]

sink index;

/** Adds an arc to a network, if there is another arc present at the
* coordinates where this arc is to be added, the old arc remains.
* Sets the incoming and outgoing indexes for the involved vertices.
* Returns true if addition successful, otherwise false.
* @param arc
* (@param network
* Q@return true or false
**/
bool Network_ AddArc(Network *network, Arc *arc){

int from, to;
Arc *a;
QuadFun cost;

assert (network != NULL);

from = Arc From(arc);

to = Arc Tol(arc);

a = &network >arcs[from][to];

cost = Arc Cost(arc);

if (Arc_Empty(a)) {
a->from = from;
a->to = to;
a->lower = Arc_Lower (arc);
a->upper = Arc_Upper (arc);
a->flow = Arc_Flow(arc);
(&a->cost)->a = QuadFun_a(&cost);
(&a->cost)->b = QuadFun_b(&cost);
(&a >cost) >c = QuadFun c(&cost);
a >residual = Arc Residual (arc);
network >no arcs++;
Vertex SetOut (&network >vertices|[from], to);
Vertex SetIn(&network >vertices|[to], from);
Arc Destroy(arc);
return true;

}

else{
Arc_Destroy(arc);
return false;

/** Gets the number of sources in the network.
* (@param network

*x)

int Network_NoSources (Network *network) {

assert (network != NULL);
return network >no sources;

/** Gets the array with sources of the network.
* @param network

* @return sources

*x)

int* Network_Sources (Network *network) {

assert (network != NULL);

return network->sources;

/** Gets the number of sinks in the network.

85

* @param network
*k)
int Network NoSinks(Network *network) {

assert (network != NULL);
return network >no sinks;

/** Gets the array with sinks of the network.
* @param network

* Q@return sinks

*k)
int* Network_Sinks (Network *network) {

assert (network != NULL);
return network >sinks;

/** Gets the number of vertices in the network.
* @param network

*k)

int Network NoVertices(Network *network) {

assert (network != NULL);
return network->no_vertices;

/** Gets the array with vertices of the network.
* @param network
* Qreturn vetices
*k)

Vertex* Network_Vertices(Network *network) {

assert (network != NULL);
return network >vertices;

/** Gets the number of arcs of the network.
* @param network

* @return no arcs

*k)

int Network_NoArcs (Network *network) {

assert (network != NULL);
return network->no_arcs;

/** Gets the matrix with arcs of the network.
* @param network
* @return arcs
*k)

Arc** Network Arcs(Network *network) {

assert (network != NULL);
return network >arcs;

/** Returns true if an arc is present in the network at given coordinates,
* otherwise false.

* @param network

* @param row

* @param col

* Q@retrun true or false

**/

bool Network_ArcPresentAt (Network *network, int row, int col){

return(! (Arc_Empty (&network->arcs[row] [col])));

/** Constructs a copy of a network, resembeling the residual graph.
* If the total incoming flows of a vertex is more than the total
outgoing flows,
* the vertex is considered a residual source. If opposite a residual sink.
* If super=true, a supersource and a supersink are added to the copy at
position
* [max_vertices-2], [max_vertices-1] in vertices.
* Assumes that NU_SolveDualSub has been run for the setting of each
vertex balance.
* @param network
* (@param super
* @return copy
**/
Network *Network_ResidualCopy(Network *network, bool super) {

86

int i, super source index, super sink index;

long double curr demand, total source demand, total sink demand,
difference;

Network *copy;

assert (network != NULL);
super_source_index = super_sink_index = 0;
total_source_demand = total_sink_demand = 0;
if (!super) {
if ((network->max_sources + network->max_sinks) ==
network->max_vertices) {
copy = Network_CreateB(network->max_sources, network->max_sinks);
}
else({
copy = Network Create(network >max vertices);

}
else{
copy = Network Create(network >max vertices+2);
}
Network ArcsVerticesCopy(copy, network);
for(i=0; i<network >no vertices; i++){
curr_demand = network->balance [Vertex_Index(&network->vertices[i])];
if (curr_demand != Vertex_Demand(&network->vertices[i])){
Vertex_SetDemand(©->vertices[i],
(Vertex_Demand (&network->vertices[i]) -
curr_demand)) ;
if (Vertex_IsSource (©->vertices([i])) {
Network_SetSource (copy, Vertex_ Index(©->vertices[i]));
total_source_demand += Vertex_ Demand(©->vertices[i]);
}
if (Vertex TIsSink(© >vertices[i])){
Network SetSink(copy, Vertex Index(© >vertices([i]));
total sink demand += Vertex Demand(© >vertices[i]);

}

if (super) {
//create a supersource and a supersink
super source index = network >max vertices;

super_sink_index = network->max_vertices+1l;
Network_AddVertex(copy, Vertex_ Create(super_source_index,
0, network->max_vertices));
Network_SetSource (copy, super_source_index);
Network_AddVertex(copy, Vertex_ Create(super_sink_index,
network->max_vertices, 0));
Network_SetSink (copy, super_sink_index);
// create an arc between the supersource and each source
for (i=0; i<copy >no sources 1; i++){
Network AddArc(copy, Arc Create(super source index,
Vertex Index(© >vertices[copy >sources[i]]),
0, Vertex Demand(© >vertices[copy >sources[i]]),
(QuadFun Create(0, 0))));
Vertex SetDemand(© >vertices[super source index],
(Vertex Demand(© >vertices[super source index]) +
Vertex Demand(© >vertices[copy >sources[i]])));
}
// create an arc between each sink and the supersink
for(i=0; i<copy->no_sinks-1; i++){
Network_AddArc(copy, Arc_Create(
Vertex_Index (©->vertices[copy->sinks[i]]),
super_sink_index, 0, -
Vertex_Demand (©->vertices[copy->sinks[i]]),
(QuadFun_Create (0, 0))));
Vertex_SetDemand (©->vertices[super_sink_index],
(Vertex_Demand (©->vertices[super_sink_index]) +
Vertex Demand(© >vertices[copy >sinks[i]]1)));

}
// balance network if total source demand != total sink demand and
difference not too small
//printf("st %.16Lf,ss %.16LFf\n ",
Vertex Demand(© >vertices[super sink index]),

Vertex Demand(© >vertices[super source index]));
if(total_source_demand < (-total_sink_demand)) {
difference = (-total_sink_demand)-total_source_demand;

if(difference > CORR_EPSILON)
Vertex_SetDemand (©->vertices[super_sink_index],
(Vertex_Demand (©->vertices[super_sink_index])+difference));
}
else if (total_source_demand > (-total_sink_demand)) {
difference = total_source_demand+total_sink_demand;

87

if(difference > CORR EPSILON)
Vertex SetDemand(© >vertices|[super source index],
(Vertex Demand(© >vertices|[super source index]) difference));
}
return copy;

/** Constructs an ald of a network based on the information in each
vertex’s

* predecessor vector. The ald contains necessary vertex and arc
information need

* in the A_MFALD algorithm only.

No arrays containing sources or sinks, nor any other specifics

connected

*

* to the network are copied.

* Assumes that either A BS or A DS has been run.

* @param network network containing information to create an ald
* Q@return ald network holding the resulting ald

*k)

Network *Network ALDCopy(Network *network) {

int i, J, *pre p;
Vertex *old, *new, *source, *sink;
Network *ald;

ald = Network_Create(network->max_vertices);

ald->no_vertices = network->no_vertices;

// copy the information of the vertices that are marked

for (i=0; i<network->no_vertices; i++){

if (Vertex_Marked (&network->vertices[i])) {

(&ald->vertices|[i])->index = Vertex_Index (&network->vertices[i]);
(&ald->vertices|[i])->marked = true;
(&ald >vertices[i] >level = Vertex Level (gnetwork >vertices[i]);
(&ald >vertices[i]) >capacity = Vertex Cap(&network >vertices[i]);
}

)
)

}
// copy arcs that are included in the predecessor array of a vertex if
// the current arc connects to a marked vertex and the arc is not
saturated,
// adjust in and out for the involved vertices
for(i=0; i<network >no vertices; i++){
if (Vertex_Marked (&network->vertices[i])) {
new = &ald->vertices[i];
0old = gnetwork->vertices[i];
if (Vertex_NoPre(old) > 0){
pre_p = Vertex_ Predecessors (old);
for(i=0; j<Vertex_NoPre(old); ij++){
if (Vertex_Marked (&network->vertices[*pre_p]) &&
(!Arc_Saturated(&network->arcs[*pre_p][i]))) {
Vertex SetPre(new, *pre p);
// the arc from Vertex *pre p to new should be copied
ald »arcs[*pre p][i] = network >arcs[*pre pl[il;
Vertex SetlIn(new, *pre p);
Vertex SetOut(&ald >vertices|[*pre pl,i);
}

pre pt+;
}
}
}

}
source = gald->vertices[ald->no_vertices-2];
source->demand = (&network->vertices[network->no_vertices-2])->demand;
source->no_pre = source->no_in = 0;
sink = g&ald->vertices[ald->no_vertices-1];
sink->demand = (&network->vertices|[network->no_vertices-1])->demand;
sink->no_out = 0;

return(ald);

/** Constructs a copy of a network, resembeling the residual graph used
in the

* polynomial maxflow algorithm by Migdalas.

* If the capacity of a vertex is zero, the vertex is removed along with
* its incoming and outgoing arcs.

* If an arc has a flow equal to its upper capacity, the arc is removed.
* Assumes that the vertices with nonzero capacity are marked.

* @param network

* @return copy

**/

Network *Network MFALDCopy (Network *network) {

int i, i, *out_p, *pre_p;
Network *copy;

88

Vertex *old, *new;
//Arc *arc;

copy = Network Create(network >max vertices);
copy >no vertices = network >no vertices;
// copy the vertices with a capacity > OPT EPSTLON
for (i=0; i<network->no_vertices; i++){
if (Vertex_Marked (&network->vertices[i])) {

(©—->vertices[i])->index = Vertex_ Index(&network->vertices[i]);
(©->vertices[i])->marked = true;

(©—->vertices[i])->level = Vertex Level (&network->vertices[i]);
(©->vertices[i])->capacity = Vertex Cap(&network->vertices[i]);

}
(©->vertices[copy->no_vertices-2])->demand =
(&network >vertices|[network >noc vertices 2]) >demand;
(© >vertices|[copy >no vertices 1]) >demand =
(&network >vertices|[network >no vertices 1]) >demand;
// 1) copy the arcs that has flow < upper capacity of the current arc,
// if the arc does not lead to an umarked vertex
// adjust in and out for the involved vertices
// 2) update the predecessor array of each vertex
for (i=0; i<copy >no vertices; i++){

if (Vertex_Marked (&network->vertices[i])) {

new = ©->vertices[i];
old = &network->vertices[i];
if (Vertex_NoPre(old) != 0){

pre_p = Vertex Predecessors(old);
for(j=0; j<Vertex NoPre(old); i++){
if((Vertex_Marked(&network->vertices[*pre_p])==
(!Arc_Saturated(&network->arcs[*pre_p][i])))
Vertex_SetPre(new, *pre_p);
pre p++;

true) &&

i
if (Vertex NoOut (old) > 0){
out p = Vertex Out(old);
for (§=0; j<Vertex NoOut (old); j++){
if ((Vertex Marked(gnetwork >vertices[*out p])==true) &&
(!Arc Saturated(snetwork >arcs[i][*out pl))){
copy >arcs[i][*out p] = network >arcs[i] [*out pl;
Vertex_SetOut (new, *out_p);
Vertex_SetIn(©->vertices[*out_pl, i);
}

out_p++;

}

return(copy) ;

/** String representation of a network.
* @param network
*k)

void Network Print (Network *network) {

int i, j, k, noOut, *ip;
Vertex *vp;

assert (network != NULL);
vp = network->vertices;
for (i=0; i<network->no_vertices; i++){
Vertex_Print (vp);
printf("%s\n", " ")
noOut = Vertex_NoOut (vp);
if (noOut != 0){
ip = Vertex Out (vp);
for (k=0; k<noOut; k++){
3 o= *ipt+;
Arc Print(&(network >arcs[Vertex Index(vp)]l[jl));
printf "%S", "\n");

}
printf("$s\n", " ")
Vp++;

[Kk Kk kK Kk K KRk o K KKk K R K Kk KR o K KKk o K Kk K ok ok ok o K K K X

* PRIVATE FUNCTIONS
ok ok ok Kok Kk ok ok ok ok ok ok ok ok ok ok ok ok R ok ok ok R R ok ok R R Kk ok K R Kk ok ok ok ok ok kK Kk Kk

89

/** Copies the arcs and the vertices in the original network to the copy
network.
* If arc (ij) in original has flow, it is copied as is to arc (ij
* and to arc (ji) with flow 0 and upper(ji)=flow(ij) in copy.
* Otherwise, arc (ij) in original is copied as is to arc (ij) in copy.
* @param copy the network to hold the copy
* @param original the matrix that holds the elements to be copied
**/
void Network_ ArcsVerticesCopy (Network *copy, Network *original) {

int i, 14, k;
Vertex *c, *o;

for(i=0; i<Network_ NoVertices(original); i++){

c = &Network_Vertices(copy) [1];

o = &Network Vertices(original) [i];
c >index = o >index;

c >price = o >price;

c >from = o >from;

c >marked = o >marked;

c >cost = o >cost;

copy >no vertices++;

}
for(i=0; i<Network_ NoVertices(original); i++){
if (Vertex_NoOut (&Network_Vertices(original) [i]) != 0){
[

for(k=0; k<Vertex_ NoOut (&Network_ Vertices(original) [i]); k++) {
i = Vertex_Qut (§Network_Vertices (original) [i]) [k];
if (Arc_HasFlow (&Network_Arcs(original) [i][7])){
Network_Arcs(copy) [1] [1] = Network_ Arcs(original) [i]1[]];
Network_SetResidualArc(copy->arcs, original->arcs,
scopy->vertices[]], ©->vertices[i]
J.o01);
}
else{
Network Arcs(copy) [1]1[j] = Network Arcs(original)[i][]];

}
Vertex SetOut (&Network Vertices(copy) [i1,73);
Vertex SetTn(s&Network Vertices(copy) [3],1);

/** Sets an copy of the arc at position (j, i) at position (i, 7)
* in a copy of the networks matrix of arcs. Updates the involved

vertices.
* @param copy the copy to hold the arcs of the copied network
* @param original the matrix of arcs in the original network
* @param v i the vertex at position i in copy of network
* @param v jJ the vertex at position j in copy of network
* @param i
* @param jJ
*k)

void Network SetResidualArc(Arc **copy, Arc **original, Vertex *v i,
Vertex *v j, int i, int J){

copy[il[j] = originallj][il;
Arc_SetFrom(©[i] [], 1);
Arc_SetTo(© [1]1 131, 1);

Arc_SetResidualCost (©[i] [i], &original[j][i]);
Vertex_SetIn(v_1, i);
Vertex_SetOut(v_i, 1);
Arc_SetFlow(©[i] []
Arc_SetLower (©l[i]

1. 0);

3
Arc_SetUpper (© [i] [7]

i

3

1. 0);

, Arc_Flow(&original[i][il));
[11, true);

1, true);

Arc_SetResidual (© [
Arc SetMarked(©[i]

90

A.3.3 NetworkUtil.c

#include "NetworkUtil.h"
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include "Vertex.h"
#include "Arc.h"
#include "Misc.h"
#include "QuadFun.h"
#include "Algorithms.h"

[Kk ok kR o KR K K KKk o KKk K R o R KRk o Kk o K Kk K ko o ko ok o X K K X
* PUBLIC FUNCTIONS

ok ok ok ok ok ok ok ok ok ok K ok K ok ok ok ok ok ok R ok ok ok K R ok ok ok kR ok ok K R Kk ok ok kK ok ok kK R Kk

/** Returns the norm of the squared demand of the vertices in the network,
i.e. IIbll.
* Assumes Network SolveDualSub has been run.
* @param network
* @return demand norm
*x)
long double NetworkUtil DemandNormSquare (Network *network) {

assert (network != NULL);
return network->demand_norm_square;

/** Returns an array with the prices of the networks vertices.
* Assumes Network_SolveDualSub has been run.
* @param network
* Q@return price
**/
long double* NetworkUtil Price(Network *network){

assert (network!=NULL) ;
return network >price;

/** Sets the prices of the networks vertices to the values in new price.
* Assumes that price holds same # elements as there are vertices in
network,
* and that Network_SolveDualSub has been run.
* (@param network
* (@param new_price
*x)
void NetworkUtil_ SetPrice(Network *network, long double *new_price) {

int i, no_vertices;
Vertex *vp;
long double *fp;

assert (network!=NULL) ;

no vertices = network >no vertices;

vp = network >vertices;

fp = new price;

for(i=0; i<no vertices; i++){
Vertex SetPrice(vp++, *fp);
network >priceli] = *fp++;

/** Adds scalar*vector to the current prices of the networks vertices.
Assumes that vector holds same # elements as there are vertices in
network,

* and that Network_SolveDualSub has been run.

* (@param network

* @param scalar

* @param vector

\k*/
void NetworkUtil UpdatePrice(Network *network, double scalar, long double *vector) {

int i, no vertices;

Vertex *vp;

long double new price;

assert (network!=NULL) ;

no_vertices = network->no_vertices;
vp = network->vertices;
for(i=0; i<no_vertices; i++){
new_price = Vertex_ Price(vp)+(scalar*vector[i]);

Vertex_SetPrice(vp++, new_price);

91

network >priceli] = new price;

/** Returns an array with the dual gradient of the network.
* Assumes Network SolveDualSub has been run.

* @param network

* Q@return gradient

*k)

long double* NetworkUtil_ DualGrad (Network *network) {

assert (network!=NULL) ;
return network->dual_grad;

/** Returns an array with the balance of the network.
* Assumes Network SolveDualSub has been run.

* @param network

* @return balance

*k)

long double* NetworkUtil BRalance(Network *network) {

assert (network!=NULL) ;
return network->balance;

/** Returns the value of the squared norm of the dual gradient of the
network.

* Assumes Network_SolveDualSub has been run.

* @param network

* Q@return dual_grad_norm

**/

long double NetworkUtil DualGradNormSquare (Network *network) {

assert (network!=NULL) ;
return network >dual grad norm square;

/** Sets the pathlength of current path from source to sink in residual
network
* @param network
* @param path_length
*k /)
void NetworkUtil SetPathLength(Network *network, int path_length) {

assert (network != NULL);
network->path_length = path_length;

/** Gets the pathlength of current path from source to sink in residual network
* @param network

* Q@return path length

*k)

int NetworkUtil PathLength(Network *network) {

assert (network != NULL);
return(network >path length);

/** Sets the max_push of current path from source to sink in residual
network
* @param network
* @param max_push
**/
void NetworkUtil SetMaxPush(Network *network, long double max_push) {

assert (network != NULL);
network >max push = max push;

/** Gets the value for max push of current path from source to sink in
residual network

* @param network

* @return max push

*k)

long double NetworkUtil MaxPush(Network *network) {

assert (network != NULL);
return(network->max_push);

/** Sets the index of the vertex with minimum capacity in vertices
* @param network

92

* @param min index
*k)
void NetworkUtil SetMinIndex (Network *network, int min index) {
assert (network != NULL);
network >min index = min index;

/** Gets the index of the vertex with minimum capacity in vertices
* @param network
* @return min_index

**/
int NetworkUtil_MinIndex (Network *network) {
assert (network != NULL);

return(network->min_index) ;

/** Gets the number of marked arcs in arcs.
* @param network
* @return no marked

*k)
int NetworkUtil NoMarked (Network *network) {
assert (network != NULL);

return(network >noc marked);

/** Gets the current length of the alpha array
* @param network
* @return no_alpha

**/
int NetworkUtil NoAlpha(Network *network) {
assert (network != NULL);

return(network->no_alpha);

/** Unmarkes all the vertices in the network.
* Sets all from values to 1, and all cost values to DBL MAX.
* @param network
*x)

void NetworkUtil UnMark (Network *network) {

int i, no vertices;

assert (network!=NULL) ;

no_vertices = network->no_vertices;

for(i=0; i<no_vertices; i++){
Vertex_SetMarked (&network->vertices[i], false);
Vertex_SetFrom(&network->vertices[i], -1);
Vertex_SetCost (&network->vertices[i], DBL_MAX);
Vertex_SetLevel (&network->vertices[i], -1);
(&network >vertices[i]) >predecessors = NULL;
(&network >vertices[i]) >no pre = 0;

/** Returns the primal objective function value evaluated at the current
* flow values, i.e. sum f ij(x ij)
* @param network
* @return value
**/
long double NetworkUtil PrimalValue (Network *network) {

long double sum;
int i, d;
Vertex *vertex;
Arc *arc;

assert (network != NULL);
sum = 0;
for(i=0; i<Network NoVertices(network); i++){
vertex = gNetwork Vertices(network) [i];
if (Vertex NoOut (vertex) != 0){
for(j=0; j<Vertex NoOut (vertex); J++){
arc = &(Network Arcs(network) [i] [Vertex Out(vertex) [J]]);

sum += Arc CurrCost(arc);

}

return sum;

/** Returns delta_flow for an vertex.
* delta_flow is calculated as sum (u_ij-flow_ij) for all incoming arcs
* if in=true.

93

* If if=false, delta flow is calculated for all outgoing arcs.
* @param network
* @param vertex
* @param in
* @return delta flow
*/
long double NetworkUtil DeltaFlow(Network *network, Vertex *vertex,
bool in) {
int i;

Arc *arc;
long double sum = 0;

if('in) {
if (Vertex_NoOut (vertex) > 0){
for(i=0; i<Vertex NoOut (vertex); i++){
arc = &(Network Arcs(network) [Vertex Index(vertex)]
[Vertex Out (vertex)[ill);
if (Vertex Marked(&Network Vertices(network) [Vertex Out (vertex) [i]])

&& !Arc Saturated(arc))

sum += Arc Upper (arc) Arc Flow(arc);

}
else{
if (Vertex_NolIn(vertex) > 0){
for(i=0; i<Vertex_NolIn(vertex); i++){
arc = & (Network_Arcs (network) [Vertex_In(vertex) [i]]
[Vertex_Index (vertex)]);
if (Vertex_Marked (&Network_Vertices(network) [Vertex_In(vertex) [i]])
&& !Arc_Saturated(arc)
sum += Arc_Upper(arc) - Arc_Flow(arc);

}

return(sum) ;

/** Solves the dual subproblem, and returns the value of the dual function.
* If current=true, uses the current price values of the vertices

* otherwise uses the prices provided in new price.

* Sets the flows that corresponds to the solution for each arc,

* the gradient of the dual function, the norm of the demand,

* and the norm of the dual gradient.

* Assumes new_price holds same # elements as there are vertices in
network.

* @param network

* (@param new_price

* @param current

* @return dual value

*

*/
long double NetworkUtil SolveDualSub(Network *network, long double
*new price, bool current) {

int i, 3, k;

Vertex *vp;

Arc *arc;

QuadFun cost;

long double curr_flow, dual_value, sumout, sumin, imbalance,
demand_norm_square, dual_grad_norm_square;

assert (network!=NULL) ;
curr_flow = dual_value = sumout = sumin = imbalance =
demand_norm_square = dual_grad_norm_square
for (i=0; i<network->no_vertices; i++){
vp = &network->vertices[i];
// sets or gets flows for outgoing arcs of vertex i
if (Vertex NoOut (vp) != 0){
for (k=0; k<Vertex NoOut (vp); k++) {
j = Vertex Out(vp) [k];

Il
o

arc = &(network >arcs[i][j1);
cost = Arc Cost(arc);
if(3>=i){

if (current) {
if (!Arc Marked(arc))
curr_flow = NetworkUtil CalcFlow(arc, Vertex_ Price(vp),
Vertex_Price(&network->vertices[i]));

else{

curr_flow = Algorithms_Mid(Arc_Lower (arc),
(—(QuadFun_a (&cost)+ Vertex Price(vp),
Vertex_Price(&network->vertices[j])) /
(2*QuadFun_b(&cost))), Arc_Upper(arc));

Arc_SetMarked (arc, false);}

94

i
else
curr flow = NetworkUtil CalcFlow(arc,
new price[Vertex TIndex(vp)],
new price[Vertex Index(&network >vertices[j])]);
Arc SetFlow(arc, curr flow);
}
else
curr_flow = Arc_Flow(arc);
if (current) {
dual_value += QuadFun_DualValue(&cost, curr_flow,
Vertex_Price(vp),
Vertex_Price(&network->vertices[i]));
}
else{
dual value += QuadFun DualValue(&cost, curr flow,
new price[Vertex Index(vp)],
new price[Vertex Index(&network >vertices[j])]);
i

sumout += curr flow;

}

// set flows for incoming arcs of vertex i
if (Vertex_NolIn(vp) != 0){

}

ne
ne
re

/*%
*
*

*x)

for (k=0; k<Vertex_NoIn(vp); k++){
j = Vertex_In(vp) [k];
arc = &(network->arcs[][1i]);
if(3>1){
if (current) {
curr_flow = NetworkUtil_CalcFlow(arc,
Vertex_Price(&network->vertices[7]),
Vertex_Price(vp));
i
elsef
curr flow = NetworkUtil CalcFlow(arc,
new price[Vertex Index(&network >vertices[j])],
new price[Vertex TIndex(vp)]);
i
Arc SetFlow(arc, curr flow);
i
else{
curr_flow = Arc_Flow(arc);
}

sumin += curr_flow;

}
if (current) {
dual_value -= Vertex_Price(vp)*Vertex_ Demand (vp) ;
}
else{
dual value = new price|Vertex Index(vp)]*Vertex Demand(vp);
}
imbalance = sumout sumin Vertex Demand(vp) ;
network >dual grad[Vertex Index(vp)] = imbalance;
network >balance[Vertex Index(vp)] = sumout sumin;
dual grad norm square += imbalance*imbalance;
sumout = sumin = 0;
demand norm square += Vertex Demand (vp) *Vertex Demand(vp);

twork->dual_grad_norm_square = dual_grad_norm_square;
twork->demand_norm_square = demand_norm_square;
turn dual_value;

Calculates all stepsizes alpha according to the solution of KKT

for the dual line search problem (max w(v + alpha*d)) of the network.
Assumes Network_SolveDualSub has been run, and that all arcs are
unmarked.

@param network

@param alpha array to hold the stepsizes
Gparam d array of directions d
@param first true if the alphas should be set in array,

false if in arc

void NetworkUtil CalcAlphas (Network *network, Alpha *alpha, long double

*d, bool first){

Vertex *vp;

Arc *arc;

int i, 14, k, m;

double a_ij, b_iq, v_i, v_j, d_i, d_1i, value_u, value_1l;
QuadFun cost;

95

m = 0;

(salpha[m++]) >value = 0;
network >nc marked = 0;
for(i=0; i<network >no vertices; i++){
vp = &network >vertices[i];
v i = Vertex Price(vp);
d_i = d[i];
if (Vertex_ NoOut (vp) != 0){

for (k=0; k<Vertex_NoOut (vp); k++) {
i = Vertex_Out (vp) [k];

arc = & (network->arcs[i][j]);

cost = Arc_Cost (arc);

a_ij = QuadFun_a(&cost);

b_id = QuadFun_b(&cost);

v_ij = Vertex_Price(&network->vertices[i]);
d j =dljl;

if((d i d J) == 0 {

Arc SetMarked(arc, true);
Arc SetAlphaU(arc, 1);
Arc SetAlphal (arc, 1);
network >no marked++;

}

elsef
value_u = ((-(a_if + v_i - v_j + (2 * b_ij * Arc_Upper(arc)))) /
(d_i - d_7));
value_1 = ((-(a_if + v_i - v_j + (2 * b_ij * Arc_Lower(arc)))) /
(d_i - d_7));
// the values should be set to alpha directly
if (first){
(&alpha[m])->value = value_u;
(&alpha[m])->1i i;
(galpha[m])->7 = J;
(&alpha[m++]) >lower = false;
(&alpha[m]) >value = value 1;
(galpha[m]) >i = i;
(salpha[m]) >3 = J;
(&alpha[m++]) >lower = true;
}
// if the current arc had alpha l=-alpha u== 1, in previous

iteration,
// i.e. d i d j=

, value 1 and value u should be included in

alpha
// at position no_alpha_old+1l, no_alpha_old+2
else{
if (Arc_AlphaU(arc) == -1){
(&alpha[network->no_alpha])->value = value_u;
(&alpha[network->no_alphal)->i = i;
(&alpha[network->no_alphal)->7 = 7;
(salpha[network->no_alpha++])->lower = false;
(&alphalnetwork >no alphal) >value = value 1;
(gsalpha[network >no alphal) >i = i;
(gsalpha[network >no alphal) >3j = J;
(&alphalnetwork >no alpha++]) >lower = true;

}

// the values should be set to the involved arc directly
Arc SetAlphaU(arc, value u);

Arc SetAlphal (arc, value 1);

}

network->no_alpha = (network->no_vertices*2) + 1 - (network->no_marked*2);

3 ok ko ok ko ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok Kk ok ok Kok ok Kok o ok kR K Kk Kk ok o Kk

* PRIVATE FUNCTIONS

ok o ok ok ok ok Kk K ko ok ok ok ok ko

/** Returns a flow value for arc.
* If dual diff for arc evaluated at lower > 0, returns lower.

* If dual diff for arc evaluated at upper < 0, returns upper.
* Otherwise returns the value found when dual diff = 0.

* @param arc the arc under consideration

* Q@param v i the price for the arcs tail

* @param v_7j the price for the arcs head

* @return flow value

*k /)

long double NetworkUtil CalcFlow(Arc *arc, long double v_i, long double v_7){

QuadFun *dual_diff, cost;
long double value;

96

assert(arc != NULL);

cost = Arc Cost(arc);
dual diff = QuadFun Create (0,0);
QuadFun DualDiff (&cost, dual diff, v i, v j);

// dual diff > 02

if (NetworkUtil CheckLimits(dual diff,

value = Arc_Lower (arc);
// dual_diff < 072

else if (NetworkUtil CheckLimits(dual_diff, Arc_Upper (arc)

value = Arc_Upper (arc);
// dual_diff = 0
else

value = —(QuadFun_a(&cost)
QuadFun_Destroy(dual_diff);
return(value) ;

/** A check for an arcs dual
* If lower=true,
* I1f lower=false,
* @param dual diff

* @param x

* @return true or false
**/

bool NetworkUtil_CheckLimits (QuadFun *dual_diff,

bool ok = false;
if (lower) {
if (QuadFun_Value (dual_diff,
ok = true;
}
else{
if (QuadFun Value(dual diff,
ok = true;
}

return ok;

the differential
* true is returned if the differential
the differential
* true is returned if the differential

+ v_i - v_i) /

at the
> 0.

< 0.

lower/upper value of flow

x)>0)

x)<0)

Arc Lower (arc),

lower

true))

at the upper limit is checked,

long double x,

97

false))

(2*QuadFun_b(&cost)) ;

functions differential value at its limits.
limit is checked,

and

and

bool lower) {

A.3.4 QuadFun.c

#include "QuadFun.h"
#include <stdlib.h>
#include <stdioc.h>

#include <assert.h>

/*typedef struct{
double c; // constant ccefficient
double a; // linear coefficient
double b; // quadratic coefficient
}QuadFun; */

3ok ko ok ko ok ok Kk ok ok Kk ok ok ok Kk ok ok ok K ko ok ok Kk ok ok Kok ok ok ok Kk ok ok ok Kk ko ok K K kR Kk ok ok Kk

* PUBLIC FUNCTIONS

Sk o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K kR Kk K ok ko kK ok Kk ok

/* Allocates memory for a QuadFun.

* @param a linear coefficient

* @param b quadratic coefficient
* @return gquadfun

*/

QuadFun* QuadFun Create(double a, double b){
QuadFun *fun;

fun = (QuadFun *)calloc(l, sizeof (QuadFun));
fun->a = a;
fun->b = b;
fun->c = 0;
return fun;

/* Returns memory for a QuadFun.
* @param fun
*/
void QuadFun Destroy(QuadFun *fun) {

free(fun);

/* Returns the constant coefficient.
* @param fun
* @return c
*/

double QuadFun_c (QuadFun *fun) {

assert (fun != NULL);
return fun->c;

/* Returns the linear ccefficient.
* @param fun
* @return a
*/

double QuadFun a(QuadFun *fun) {

assert (fun != NULL);
return fun >a;

/* Returns the quadratic coefficient.
* @param fun
* @return b
*/

double QuadFun_b (QuadFun *fun) {

assert (fun != NULL);
return fun->b;

/* Returns the differential of the quadratic function,
* d.e. F7 i3(x 13) = a ij + 2%b ij*x ij.
* @param fun
* @param dfun
*/
void QuadFun Diff (QuadFun *fun, QuadFun *dfun) {

dfun->a = 2*QuadFun_b(fun);
dfun->c = fun->a;

/* Returns the value of the quadratic function evaluated at x_ij, i.e.
foif(x_ij).

98

* @param fun
* @param x ij
* @return value
*/
long double QuadFun Value (QuadFun*fun, long double x i7j){

assert (fun != NULL);
return ((fun->c)+((fun->a)*x_ij)+((fun->b)*x_ij*x_1i7));

/* Returns the value for the of x_ij depending part of the dual function
evaluated at x_if,

* i.e. f_if(x_ii)+(v_i-v_7)*x_iq.

* @param fun

* @param x_ij

* @param v i price of vertex at arcs tail

* @param v j price of vertex at arcs head

@return value

*

*/
long double QuadFun DualValue (QuadFun*fun, long double x ij, long double
v i, long double v j){

assert (fun != NULL);
return (QuadFun_Value(fun, x_ij)+((v_i-v_7j)*x_iq));

}

/* Sets the differential in x_ij of the dual function,
* i.e. 2*b_id*x_iq + (a_if + v_i - v_1).

* @param fun original function

* @param dual_diff differential of fun in x_ij

* @param v_i price of vertex at arcs tail

* @param v_j price of vertex at arcs head

*/

void QuadFun DualDiff (QuadFun *fun, QuadFun *dual diff, long double v i,
long double v 7J){

assert (fun != NULL);

assert(dual diff != NULL);

dual diff >a = 2 * (QuadFun b(fun));

dual diff >b = 0;

dual diff >c = QuadFun a(fun) + v i v 3j;

/* Returns true if the quadfun holds the "empty function"
* otherwise false.

* @param fun

* @return true or false

*/

boocl QuadFun_Empty (QuadFun*fun) {
assert (fun != NULL);
return ((fun >a==0) && (fun >b==0));

/* String representation of a quadfun.
* @param fun
*/

void QuadFun Print (QuadFun *fun) {

assert (fun != NULL);
printf("c = $f a = $f b = %f\n", fun->c, fun->a, fun->b);

99

A.3.5 Vertex.c

/* Body for Vertex */

#include "Vertex.h"
#include "Misc.h"

#include <stdlib.h>
#include <stdioc.h>
#include <assert.h>
#include <float.h>

/*typedef struct{
int index;
long double demand;

int *in;

int max in;
int no in;
int *out;

int max out;
int no out;
long double price;

// index of vertex

// demand for vertex, i.e. b_i

// demand>0 => source,

// demand<0 => sink,

// demand=0 => transports

// array with indices of those vertices connected
to vertex by incoming arcs

// maximum size of *in

// current size of *in

// array with indices of those vertices connected
to vertex by outgoing arcs

// maximum size of *out

// current size of *out

// dual variable for vertex, i.e. v i

// for graph searching reasons...

int from;

bool marked;

long double cost;

int level;

int *predecessors;
int max pre;

int no pre;

long double capacity;

}Vertex; */

// index of vertex preceding this in a path search

// true if reached in a path search, false other-—
wise

// true if included in MFALDCopy, false otherwise

// current cost to reach this vertex in a shortest
path search

// number of level at which this vertex can be
found in a BS search

// indicies of verticies preceding this in a BS
search

// maximum size of *predecessors

// current size of *predecessors

// capacity for vertex used in the MaxFlowALD
algorithm

3ok ko ok ko ok ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk o ok Kk o ok ok Kok ok ok ok Kk ok ok ok Kk ko K Kk K K Rk Kk ok ok Kk

* PUBLIC FUNCTIONS

Sk o ok ok ok ok ok ok ok ok ok ok K kR Kk K ok ko k Kk Kk ok

/** Allocates memory for a vertex.
* @param index the index of the vertex
* @param demand the demand of the vertex

* Qreturn vertex
**/

Vertex *Vertex Create(int index, int max in, int max out) {

Vertex *v;

v = (Vertex *)calloc(l, sizeof(Vertex));
v >index = index;
v >max in = max in;
if(max in > 0)
v >in = (int *)calloc(max in, (sizeof (int)));
else
v->in = NULL;
v->max_out = max_out;
if (max_out > 0)
v->out = (int *)calloc(max_out, (sizeof(int)));
else
v->out = NULL;
v->from = v->level = -1;

v >predecessors = NULL;

v >marked = false;

v >cost = DBL MAX; // 0 for testing purposes, DBL MAX otherwise

return v;

/** Returns memory for a vertex.

* @param vertex

*x /

void Vertex_Destroy(Vertex *vertex) {

if (vertex->in != NULL)

free (vertex->in);

if (vertex->out != NULL)

free (vertex->out) ;

100

if (vertex >predecessors != NULL)
free(vertex >predecessors);
free(vertex) ;

/** Gets the index for a vertex.
* [@param vertex

* Q@return index

*x)

int Vertex_Index(Vertex *vertex) {

assert (vertex != NULL);
return vertex->index;

/** Sets the demand for a vertex.
* @param vertex
* @param demand
*x)
void Vertex SetDemand(Vertex *vertex, long double demand) {

assert (vertex != NULL);
vertex >demand = demand;

/** Gets the demand for a vertex.
* [@param vertex
* @return demand
*x)
long double Vertex_ Demand(Vertex *vertex) {

assert (vertex != NULL);
return vertex >demand;

/** Changes the demand for a vertex by a given amount.
* Assumes that the amount is is within limits, i.e.
* 1if the vertex is a source, demand stays >=0.
* if the vertex is a sink, demand stays <=0.
* @param vertex
* @param amount
**/
void Vertex_ChangeDemand (Vertex *vertex, long double amount) {

assert (vertex != NULL);
if ((vertex->demand) != 0){
vertex->demand = Vertex ValidChange ((vertex->demand), amount);

/** Returns true if the vertex is a source,
* otherwise false.
* @param vertex
* @return true or false
\k*/
bool Vertex IsSource(Vertex *vertex){

assert (vertex != NULL);
return(Vertex_Demand (vertex)>0);

/** Returns true if the vertex is a sink,
* otherwise false.
* (@param vertex
* Q@return true or false
**/
bool Vertex_IsSink(Vertex *vertex){

assert (vertex != NULL);
return(Vertex Demand(vertex)<0);

/** Sets one index, assumes index not already present, in the array with
* indices of those vertices connected to a vertex by incoming arcs.
* If the array is too small, it gets extended to twice its current size.
* @param in
**/
void Vertex_SetIn(Vertex *vertex, int in){

assert (vertex != NULL);
if (vertex->in != NULL) {
if (vertex->no_in >= vertex->max_in) {
vertex->in = (int*)realloc(vertex->in, ((vertex->max_in*2)*sizeof(int)));

101

vertex >max in *= 2;

}

else{
vertex >in = (int*)calloc(l, sizeof(int));
vertex >max in = 1;

}

vertex->in[(vertex->no_in)++] = in;

/** Gets the array with indices of those vertices connected to a vertex
* by incoming arcs.

* (@param vertex

* Q@return in

**/

int* Vertex In(Vertex *vertex){

assert (vertex != NULL);
return vertex >in;

/** Gets the number of incoming arcs.
* @param vertex

* Q@return max_in

*k)

int Vertex_NolIn(Vertex *vertex) {

assert (vertex != NULL);
return(vertex->no_in);

/** Sets one index, assumes index not already present, in the array with
* indices of those vertices connected to a vertex by outgoing arcs.
* If the array is too small, it gets extended to twice its current size.
* @param out
**/
void Vertex SetOut (Vertex *vertex, int out){

assert (vertex != NULL);
if (vertex >out != NULL) {
if (vertex >no out >= vertex >max out){
vertex->out = (int*)realloc(vertex->out, ((vertex->max_out*2)*

sizeof (int)));
vertex->max_out *= 2;

}

else{
vertex->out = (int*)calloc(l, sizeof(int));
vertex->max_out = 1;

}

vertex >out[vertex >no out++] = out;

/** Gets the array with indices of those vertices connected to a vertex
* by outgoing arcs.

* @param vertex

* @return out

*k)

int* Vertex_Out (Vertex *vertex) {

assert (vertex != NULL);
return vertex->out;

/** Gets the number of outgoing arcs.
* (@param vertex

* Q@return no_out

*k)

int Vertex NoOut(Vertex *vertex) {

assert (vertex != NULL)
return(vertex >noc out)

/** Sets the value for price.
* (@param vertex
* (@param price
*k /)
void Vertex_SetPrice(Vertex *vertex, long double price) {

assert (vertex != NULL);
vertex->price = price;

102

/** Gets the value for price.
* @param vertex
* Q@return price
*x)
long double Vertex Price(Vertex *vertex) {

assert (vertex != NULL);
return(vertex->price);

/** Sets the value for marked.
* [@param vertex
* [@param marked
*x)
void Vertex SetMarked(Vertex *vertex, bool marked) {

assert(vertex != NULL);
vertex >marked = marked;

/** Gets the value for marked.
* @param vertex
* @return marked
*x)
bool Vertex_Marked (Vertex *vertex) {

assert (vertex != NULL);
return(vertex->marked) ;
/** Sets the value for from.
* @param vertex

* @param from

\k\k/

void Vertex SetFrom(Vertex *vertex, int from){

assert (vertex != NULL);
vertex >from = from;

/** Gets the value for from.
* [@param vertex
* @return from
*%)
int Vertex_ From(Vertex *vertex) {

assert (vertex != NULL);
return(vertex->from);

/** Sets one index, assumes index not already present, in the array with
* indices of those vertices visited before this vertex in a BS search.
* If the array is too small, it gets extended to twice its current size.
* @param in
*x)
void Vertex SetPre(Vertex *vertex, int in){

assert (vertex != NULL);
if (vertex->predecessors != NULL) {
if (vertex->no_pre >= vertex->max_pre) {
vertex->predecessors = (int*)realloc(vertex->predecessors,

((vertex—->max_pre*2)* sizeof(int)));
vertex->max_pre *= 2;

}

else{
vertex >predecessors = (int*)calloc(l, sizeof(int));
vertex >max pre = 1;

}

vertex >predecessors|(vertex >no pre)++] = in;

/** Gets the array with indices of those vertices visited before this
* vertex in a BS search.
* (@param vertex
* Q@return predecessors
**/
int* Vertex_ Predecessors (Vertex *vertex) {

assert (vertex != NULL);
return(vertex->predecessors) ;

103

/** Gets the number of predecessors.
* @param vertex

* @return no pre

*k)

int Vertex NoPre(Vertex *vertex) {

assert (vertex != NULL);
return(vertex->no_pre);

/** Sets the value for level.
* [@param vertex
* @param level
*k)
void Vertex Setlevel (Vertex *vertex, int level) {

assert (vertex != NULL);
vertex >level = level;

/** Gets the value for level.

* @param vertex

* @return level

*k)

int Vertex_Level (Vertex *vertex) {

assert (vertex != NULL);
return(vertex->level);

/** Sets the value for cost
* @param vertex
* @param cost
*k)
void Vertex SetCost(Vertex *vertex, long double cost){

assert (vertex != NULL);
vertex >cost = cost;

/** Gets the value for cost.

* @param vertex

* @return cost

*k)

long double Vertex_Cost (Vertex *vertex) {

assert (vertex != NULL);
return(vertex->cost) ;

/** Sets the value for capacity
* @param vertex
* @param cap
*k)
void Vertex SetCap(Vertex *vertex, long double cap){

assert (vertex != NULL);

//if (Vertex_Index(vertex) == 100)

// printf("old cap %Lf, new cap%Lf\n",vertex->capacity, cap
vertex->capacity = cap;

/** Gets the value for capacity.

* @param vertex

* Q@return capacity

*k)

long double Vertex Cap(Vertex *vertex){

assert (vertex != NULL);
return(vertex >capacity);

/** Changes the value for capacity with amount
* @param vertex
* @param amount
*k)
void Vertex_ChangeCap (Vertex *vertex, long double amount) {

assert (vertex != NULL);
Vertex_Print (vertex) ;

assert (amount <= vertex->capacity);
vertex->capacity -= amount;

104

/** Returns true if two vertices have the same index
* @param vl vertex 1
* @param v2 vertex 2
* @return true or false
**/
bool Vertex_IsEqual (Vertex *vl, Vertex *v2) {

assert (vl != NULL);
assert(v2 != NULL);
return(Vertex_Index(vl) == Vertex_Index(v2));

/** String representation of a vertex
* @param vertex
*x)

void Vertex Print (Vertex *vertex) {

int i;

assert (vertex != NULL);

printf ("Vertex %d has demand: %$Lf\n", vertex >index, vertex >demand);
printf("price : $Lf\n", vertex->price);

printf ("marked : %d\n", vertex->marked);

printf ("from : %d\n", vertex->from);

printf ("cost : $Lf\n", vertex->cost);

printf("level : %d\n", vertex->level);

printf ("capacity : %.16Lf\n", vertex—->capacity);

if (vertex—->no_in>0) {
printf("is head of arc from vertex: ");
for (i=0; i<vertex->no_in; i++){
printf ("%d ", vertex >in[i]);
}
printf("%s", "\n");
}
if (vertex >no out>0) {
printf("is tail of arc to vertex ")
for (i=0; i<vertex >no out; i++){
printf("%d ", vertex >outli]);
}
printf("%s", "\n");
}
if (vertex->no_pre>0) {
printf ("has predecessors = ")
for (i=0; i<vertex->no_pre; i++) {
printf("%d ", vertex->predecessors[i]);
}
printf("%s", "\n");

[Kk KKk K KKK K K KK K K K K K K KR K K KR K K KK K K K K K K K K K K K K Kk K K K K K

* PRIVATE FUNCTIONS

ok ek ek ok ok Kk K kK ok ok ko kR kK kK K kR R Kk ok ok ok ok ok kR Kk K

/** Returns old amount if old > 0,
* otherwise old + amount.
Eparam old
Eparam change
@return value
*/
long double Vertex_ValidChange (long double old, long double amount) {

*
*
*
*

if(0ld>0){ // this is a source
return old - amount;

}
else{ // old<0, this is a sink
return old + amount;

105

A.4 Miscellaneous code
A.4.1 Stack.c

#include <stdioc.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include "Stack.h"

/*typedef struct{
int *indices; // the elements in the stack

int no; // maxsize of the stack
int top; // current array-index of stacks front
}Stack; */

e

* PUBLIC FUNCTIONS

ok kR Kk K ok ok ok ko ok ok ok R K

/** Allocates memory for a stack.

* (@param no number of elements in the stack
* @return stack
*k)

Stack *Stack_Create(int no) {

Stack *stack;

stack = (Stack *)calloc(l, sizeof(Stack));
stack->indices = (int *)calloc(no, sizeof(int));
stack->no = no;

stack->top = -1;

return stack;

/** Returns memory for a stack.
* @param stack
*k)

void Stack Destroy(Stack *s){

free(s >indices);
free(s);

/** Pushes an index on top of the stack, if index not already present.
* @param v index
* (@param s stack
*k /)

void Stack_PushOnto(Stack *s, int wv){

assert (s NULL) ;
assert(s >top < s >no);
if (!Stack Empty(s)){
if (!Stack Contain(s, v)){
s >indices[++s >top] = v;

}
else{
s >indices[++s >top] = v;

/** Pushes an index on top of the stack.
* Assumes index not present.
* @param v index
* @param s stack
**/
void Stack Push(Stack *s, int v){

assert (s != NULL);
assert(s >top < s >no);
s >indices|[++s >top] = v;

/** Returns the first element of the stack.
* @param s stack

*k /)
int Stack_Top(Stack *s){

assert (s != NULL);

assert (s->top >= 0);
return(s->indices[s->top--1);

106

/** Returns true if the stack is empty.
* @param s stack
*x)

bool Stack Empty(Stack *s){

assert (s != NULL);
return(s->top < 0);

/** Returns true if the stack is full.
* (@param s stack
*x)

bool Stack_Full(Stack *s){

assert (s != NULL);
return(s >top == s >no 1);

/** Prints a string representation

* in order bottom to top of the stack.
* @param s stack

**/

void Stack_Print (Stack *s){

int i;

assert (s != NULL);
printf("ss", "[");

for(i=0; i<=s->top; i++){
printf("%d ",s->indices[i]);

}

printf("ss", "1");

/** Returns true if the stack contains index, false
* Assumes that the stack is nonempty.
* @param s stack
* @param v index
* @return true or false
**/
bool Stack_Contain(Stack *s, int v){

int i;
for(i=0; i<=s->top; i++){
if((s->indices[i]) == v){

return true;

}

return false;

otherwise.

107

A.4.2 Queue.c

#include <stdioc.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include "Queue.h"

/*typedef struct{
int *indices; // the elements in the queue

int no; // maxsize of the queue

int front; // current array-index of queues front

int back; // current array-index of queues back

int in_queue; // current number of elements in the queue
}Queue; */

3ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk sk ok ok Kk ok ok ok Kk ok ok ok K ko ok ko ok kR K K Kk Kk ok o Kk ko kK

* PUBLIC FUNCTIONS

ok kR Kk K ok ok ok ko ok ok ok R K

* @param no number of elements in the queue
* @return queue
*/

Queue* Queue Create(int no){
Queue *queue;
queue = (Queue *)malloc(sizeof (Queue));
queue->indices = (int *)malloc(no*sizeof(int));
queue->no = no;
queue->front = queue->back = queue->in_queue = 0;
return queue;

/* Returns memory for a queue.
* @param queue
*/

void Queue Destroy(Queue *q) {
free(qg >indices);
free(q);

/* Adds an index last in the queue, if index not already present.
* @param v index
* @param g gueue
*/
void Queue_AddLast (Queue *q, int v){
assert (g != NULL);
assert (g->back <= g->no);
if (! (Queue_Contain(q, v))){
g->indices [g->back++] = v;
g->in_queue++;

/* Adds an index last in the gqueue.
* Assumes index not present.

* @param v index

* @param g gueue

*/

void Queue Add(Queue *qg, int v){
assert (g != NULL);
assert (g >back <= g >no);
g->indices [g->back++] = v;

g->in_queue++;

/* Returns the first index in the queue.
* @param g queue

*/
int Queue_First (Queue *q) {
assert (g != NULL);

assert (g >in queue > 0);
g >in queue ;
return(g >indices[qg >front++]);

/* Returns true if the queue is empty.
* @param g gueue

*/
bool Queue_Empty (Queue *q) {
return(g->in_queue == 0);

/* Returns true if the queue is full.
* @param g queue

108

*/
bool Queue Full (Queue *qg) {
return((g >back 1) == g >no);

/* Prints a string representation of the queue.
* @param g queue
*/
void Queue_Print (Queue *q) {

int i;

printf("%s", "[");

for(i=g->front; i<g->back; i++){

printf("%d ",g->indices[i]);
}
printf("%s", "I");

/* Returns true if the queue contains index, false otherwise.
* @param g queue

* @param v index

* @return true or false

*/
bool Queue Contain(Queue *g, int v){
int ij;

if (! (Queue_Empty (q))) {
for(i=g->front; i<g->back; i++){
if((g->indices[i]) == V) {
return true;

}

return false;
}
elsef

return false;

109

A.5 Test problem generator
A.5.1 TestGraphs.c

#include <stdioc.h>
#include <stdlib.h>
#include <math.h>
#include "TestGraphs.h"

3ok ko ok ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kk ok ok ok Kok ok kR K K Kk Kk ok ok o Kk ko kK

* PRIVATE FUNCTIONS
Sk ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok kK ok ok ko ok ok Kok ok kK K

/** By random, creates a dense bipartite graph with type 1 or type 2
* arc costs(Ohuchi&Kaii

* @param noSources number of sources in the network

* (@param noSinks number of sinks in the network

* @param h factor for avarage flow on arcs in network

* @param seed seed for the random values

* @param max a ceiling for the linear coefficient in the cost function

* @param max b ceiling for the quadratic coefficient in the cost
function

* @return network
**/
Network* TestGraphs GenTestBD(int no sources, int no sinks, double h,
unsigned int seed, int max_a, int max_b) {

int i, i, no_vertices;
double demand;

Vertex *vertex;

Arc *arc;

Network *g;

no_vertices = no_sources+no_sinks;
g = Network CreateB(no sources, no sinks);
srand (seed) ;

// create sources and sinks and add them to network
for(i=0; i<(no vertices); i++){
if(i<no sources) {
// create sources an set them in sources
vertex= Vertex Create(i, 0, no sinks);
Network_SetSource(g, 1i);
}
else{
// create sinks and set them in sinks
vertex= Vertex_Create (i, no_sources, 0);
Network_SetSink(g, i);
}
Network_AddVertex(g, vertex);
}
// create arcs, randomize arc limits and costs, add arcs to network
for(i=0; i<no sources; i++){
for (j=0; j<no sinks; J++){
arc = TestGraphs CreateArc(i, (j+no sources), max a, max b);
Network AddArc(g, arc);

}
// set supply for sources, set demand for sinks
for(i=0; i<no vertices; i++){
vertex = gNetwork_Vertices(g) [i];
if (i<no_sources) {
demand = TestGraphs_CalcDemand(vertex, g, h, true);
Vertex_SetDemand (vertex, demand);
}
else{
demand = TestGraphs_CalcDemand(vertex, g, h, false);
Vertex_SetDemand (vertex, —-demand);

}

return g;

/** By random, creates a sparse bipartite graph with type 1 or type 2
* arc costs(OhuchigKaji), ca 10% of the arcs exist.

* (@param noSources the number of sources in the network

* (@param noSinks the number of sinks in the network

* @param h factor for avarage flow on arcs in network

* @param seed the seed for the random values

* [@param max_a the ceiling for the linear coefficient in the cost
function

* @param max_b the ceiling for the quadratic coefficient in the cost
function

110

* @return network
\k*/
Network* TestGraphs GenTestBS(int no sources, int no sinks, double h,
unsigned int seed, int max a, int max b){

int i, j, no vertices, density, no arcs;
double demand;

bool mkConnection;

Vertex *vertex;

Arc *arc;

Network *g;

bool done = false;

no_vertices = no_sources+no_sinks;
density = (int)floor(0.l*no_sinks);
ne arcs = 0;
g Network CreateB(no sources, no sinks);
srand (seed) ;
// create sources and sinks and add them to network
for(i=0; i<no vertices; i++){
if (i<no sources) {
// create sources
vertex = Vertex Create(i, 0, no sinks);
Network_SetSource(g, 1i);

}

elsef
// create sinks
vertex = Vertex_ Create (i, no_sources, 0);

Network_SetSink (g, 1i);
}
Network_AddVertex(g, vertex);
}
// for each source create arcs to 10% of the sinks by random,
// randomize arc limits and costs, add arcs to network
for(i=0; i<no sources; i++){
while(!done) {
for(j=0; Jj<no sinks; J++){

mkConnection = false;
mkConnection = TestGraphs MkConnection(rand());
if (mkConnection) {
arc = TestGraphs CreateArc(i, (j+no sources), max a, max b);

if (Network_AddArc (g, arc)){
no_arcs++;
if (no_arcs>=density) {

no_arcs = 0;
done = true;
break;
}
}
i
i
}
done = false;

}
// set supply for sources, set demand for sinks
for(i=0; i<(no vertices); i++){
vertex = &Network Vertices(g)[i];
if (i<no sources) {
demand = TestGraphs_CalcDemand(vertex, g, h, true);
Vertex_SetDemand (vertex, demand);
}
else({
demand = TestGraphs_CalcDemand(vertex, g, h, false);
Vertex_SetDemand (vertex, —-demand);

}

return g;

[Kk KKk KKk K KR K K KK K K KK K K KK K K K K K K K K KR K K KR K Kk ok K Kk K K K K K K

* PRIVATE FUNCTIONS

ok ok ek kR Kk ok ok Kk o kK kK kK kK K kR Kk ok ko ok ok ok kR K R K kK Rk

/** Returns an arc with randomized arc limits and costs

* @param i index for the tail of the arc

* @param 7 index for the head of the arc

* @param max_a ceiling for the linear coefficient of the cost function

* (@param max_b ceiling for the guadratic coefficient of the cost function
* Q@return arc

*/

Arc* TestGraphs_CreateArc(int i, int i, int max_a, int max_b) {

double lower, upper;

111

QuadFun *cost;

cost = QuadFun Create(0,0);
lower = TestGraphs LowerLimit (rand());
upper = TestGraphs UpperLimit(((int)lower), rand());

TestGraphs_Cost (max_a, rand(), max_b, rand(), cost);
return(Arc_Create(i, i, lower, upper, cost));

/** Returns the demand for vertex (sum(arc->lower) +
sum(arc->upper - arc->lower)*h).
* If out=true, the demand is set for a source and equals total value of
outgoing arcs.
* If out=false, the demand is set for a sink and equals total value of
incoming arcs.

* @param vertex

* @param n network that the vertex belongs to

* @param h factor for avarage flow on arcs in network
* @ return demand

*/

double TestGraphs CalcDemand(Vertex *vertex, Network *n, double h, bool out){
Arc *arc;
double sum = 0;

int i;

// demand for sources

if (out) {
for (i=0; i<Vertex_NoOut (vertex); i++){
arc = gNetwork_Arcs(n) [Vertex_Index (vertex)] [Vertex_Out (vertex) [i]];

sum += Arc_Lower (arc) + ((Arc_Upper (arc)-Arc_Lower (arc))*h);

}
// demand for sinks

else{
for(i=0; i<Vertex NolIn(vertex); i++){
arc = &Network Arcs(n) [Vertex In(vertex) [i]][Vertex Index(vertex)];
sum += (Arc Lower (arc) + ((Arc Upper(arc) Arc Lower(arc))*h));

}

return(sum) ;

/** Sets the linear (a0 and quadratic (b) coefficient of cost.
* @param maxl maximum value for the linear coefficient

* @param randl int to decide the value of the linear coefficient,

* in the range [0O<=a<=maxl]

* @param max2 maximum value for the quadratic coefficient

* @param rand2 int to decide the value of the gquadratic coefficient
* in the range [0O<b<=max2]

* @param cost QuadFun to hold the coefficients a and b

*/

void TestGraphs Cost(int maxl, int randl, int max2, int rand2, QuadFun *cost) {
double a, b;
double factor = 3.05185; // correction to obtain upper limit as

RAND MAX=32767

if (max1==10 && max2==1) {

a = (((double)randl)/10000)*factor;
b = (((double)rand2)/100000)*factor;
}
else{
a = (((double)randl)/100000)*factor;
b = (((double)rand2)/10000)*factor;

}
cost >a = aj;
cost >b = b;

/* Based on the rand value, returns true if an arc should be created between
* two vertices.
* Returns true if rand <= max (= 0.1*RAND MAX), false otherwise.
* @param rand
* @return true or false
*/
bool TestGraphs_MkConnection(int rand) {

double max = RAND_MAX*0.1;

return (rand <= max);

112

