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Abstract

Proxio Optimizer is a software developed by Proxio AB and designed for
transportation buyers who want to reduce cost and environmental impact.
During the development phase of the software, mathematical optimization
techniques have, however, never been considered as a key tool. Hence, de-
veloping a mathematical optimization model in order to evaluate the perfor-
mance and efficiency of the software developed by Proxio is the aim of this
project.
The problem to be solved is modeled by two optimization models. The first
model is called the column generation model; it is utilized to generate paths
for transporting goods from the origins to the respective destinations. The
second model is called the main optimization model; it uses the generated
paths and optimizes the total cost over these paths.
The results from tests of the mathematical model show that Proxio Optimizer
is an efficient optimization engine, since the results from the optimization
model and Proxio Optimizer are very similar. Additionally, the column gen-
eration model appears to be a very effective tool for decreasing the size of the
mathematical model, which in turn reduces the computation time required
to solve the problem.
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1 Introduction

To be successful in today’s highly competitive marketplaces, companies must strive
for greatest efficiency in all of their activities and completely utilize any possible
opportunity to gain a competitive advantage over other firms. Among many possible
activities, cost reduction in logistics is regarded as one of the core areas presenting
enormous opportunities.

Jonsson [1] separates the costs of logistics into two: direct and indirect costs. Di-
rect costs include physical handling, transportation, and storage of goods in the flow
of materials together with the administration costs, whereas capacity and shortage
costs are indirect costs. He further asserts that direct logistics costs roughly vary
between 10% and 30% of the turnover depending on the type of industry [1]. This
implies that the costs of logistics hold a large portion among all possible expenses
for companies. That is why any company being able to reduce this huge portion,
will definitely obtain a significant decrease in their total expenses.

In order to be able to reduce the portion of costs originating from logistics, one
should start by understanding and investigating the logistics management and envi-
ronment. G. Stefansson defines logistics management to be the process of planning,
implementing and controlling the efficient, effective flow and storage of raw materi-
als, in-process inventory, finished goods, services, and related information from the
point of origin to the point of consumption [3].

As the definition above points out, logistics management is initialized by the
planning period and is followed by implementation and monitoring phases. Thus,
a successful implementation of a logistics system is highly correlated to how good
logistics management plans are. In accordance with this, Dov, Tzvi and Shenhar
explain that a minimum level of planning is essential for success and further assert
that planning is a core subject for prospering implementation [4].

In such an environment, it is believed that implementing optimization techniques
to transportation of goods in order to schedule when and how much to send from
each origin origin to its respective destination over a certain time period is a possible
way to make improvements over the total cost of logistics.

1.1 About Proxio

This thesis has been conducted at the company Proxio AB, which is located in
Mölnlycke, outside Gothenburg [2]. Proxio has developed a software called Proxio
Optimizer to find solutions to the logistics problems of their customers. Their
customer portfolio includes companies from different industries.

Proxio Optimizer is a powerful, yet easy-to-use, software designed for trans-
portation buyers who want to reduce costs and environmental impact. Proxio first
helps the user to calculate, analyze and visualize the costs and environmental foot-
prints of the current transport setups. It then proposes a number of changes in the
transport setup, e.g. which carriers to use and how often to use them, in order to
significantly reduce both cost and emissions. Proxio performs these calculations by
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utilizing a heuristic method, defined and implemented in the software by the com-
pany. Based on the results of the Proxio Optimizer, a full fledged implementation
typically leads to a reduction in transportation cost by 10% to 30% and a significant
decrease in environmental impact [2].

However, during the development phase of this software, mathematical opti-
mization techniques has never been considered as a key tool. That is why the aim
of the project, which is made on behalf of Proxio, is to develop a mathematical
optimization model in order to evaluate the solutions computed by the software
developed by Proxio.

1.2 Aim of the Project

The goal of this thesis is to develop a mathematical optimization model, to imple-
ment this model into the mathematical modeling software AMPL [10] and to solve
it by the optimization solver CPLEX [11]. The aim is that the mathematical model
should find either the optimal solution or a solution that is at least as good as the
one computed by Proxio Optimizer along with lower bounds on the optimal solu-
tion for the instances provided by the company. Furthermore, findings will be used
to compare the results of the Proxio Optimizer to the results of the optimization
program that will be developed. As a result, it will be possible to evaluate the
solutions computed by the Proxio Optimizer.

The environmental impact analysis part of the Proxio Optimizer is not studied in
this project, since the company is largely interested in how effective their software
is, considering reduction of the total logistics costs. However, the environmental
objective can be modeled similar to the economical one studied in this work.

1.3 Methodology

In this project, several important tasks have been performed: from understanding
and defining the problem to constructing a mathematical model, decomposing the
model for solvability, performing relevant tests, and analyzing results.

The project was initialized by experimenting with the Proxio Optimizer. This
part was performed so as to observe and understand the capabilities of the software.
After that, several meetings were held with the employee of the company in order
to clarify the problem. At this stage, it was decided what to include and what not
to include in the mathematical model that should be developed. Having decided on
the scope of the program, several weeks were spent on developing the model. The
development phase was conducted iteratively between meetings with supervisors at
Chalmers and at the company so that the final model would be not only accurate
in terms of optimization modeling and solution techniques but also fulfilling the
expectations of the company. During this phase, it was obvious that the mathe-
matical model would be huge and computationally very hard to solve. Therefore,
it was decided that several optimization techniques to decompose the model should
be utilized.

Having developed an acceptable model, the second part of the project was ini-
tialized which was to implement the model into the mathematical modeling soft-
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ware called AMPL for solving by the optimization solver CPLEX. The very first
attempts to solve the mathematical model by including all the variables were futile,
since AMPL could not even load the huge model. Afterwards, several decomposing
techniques were utilized and the number of optimization variables was drastically
decreased, while retaining variables having large potentials for producing good so-
lutions. As a result, CPLEX managed to provide useful results for analysis and
discussions by using the restricted model.

1.4 Outline

In the next section, a comprehensive description of the problem is given together
with some illustrations. After that, several topics in mathematical optimization
theory which are related to the problem are introduced. In Section 4, the optimiza-
tion model together with its extensive definitions are introduced. In Section 5, test
instances together with their results are given and analyzed. Besides these, this
section includes comparisons of the results from Proxio Optimizer and the math-
ematical optimization model. In the final section, further developments of Proxio
Optimizer and the mathematical model are suggested.
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2 The Problem

Since the optimization program that will be developed is expected to be applicable
to different instances, this section starts with depicting the scope of the problem
which is followed by an extended description of the problem through a case provided
by the company.

2.1 Definition of the Problem

As discussed in Section 1, logistics management involves many different activities
such as flow, storage, and handling of goods. In order to be able to define a possibly
solvable problem out of such a huge system, some activities must be selected to be
the core of this study, while others are neglected.

Among many activities that are possible to plan by utilizing mathematical op-
timization techniques, effective flows together with several decisions related to this
activity are considered to be the problem focus. These decisions consist of

• selecting a transportation path for each origin-destination pair,

• the weekly frequency of each selected path,

• the departure days of the goods from their points of origins, and

• the amount of the goods to be transported in each departure from its respec-
tive origin.

In Proxio Optimizer, each of these decisions is constrained by several rules.
These rules are as follows:

• Among all possible paths, there should be only one active path for each origin-
destination pair, and this path is the same throughout planning period.

• Each path is assigned a weekly frequency. Once the weekly frequency of each
path is fixed, then it is the same throughout the planning period. That is, if
the frequency of a path is zero for Week 1, then the frequency of that path is
zero throughout the planning period.

• The number of departure days from the origin of a path is equal to the fre-
quency of that path, and this number is constant over all the weeks of the
planning period. Moreover, the departure days are the same for all different
weeks. That is, if Monday and Thursday are selected to be the departure days
of a path on Week 1, then these days are the departure days for all different
weeks of the planning period.

• The Proxio Optimizer is developed to distribute the weekly amount for each
origin-destination pair equally among the departure days. That is, if the
frequency of path k which connects a certain origin-destination pair, is two,
then half of the weekly demand for this origin-destination pair is transported
at each departure through that path.

In light of these rules, the problem is to find such a logistics network that the
total cost of the transportation system is minimized.

4



2.2 Description of the Problem

Even though the problem itself involves many inter-relations between the decision
points, the problem contains four major steps, as displayed in Figure 1, from select-
ing a path for each origin-destination pair to deciding how much of the goods to be
transported at each departure.

Figure 1: Problem flow

What makes these steps major is associated with how the problem is defined by
Proxio. The problem is initialized when the customer company decides to plan its
inbound flow of goods. This means that the company expects to know in advance,
when and how much of a certain freight will be received. Depending on this, several
input data is defined.

• Planning period : Since plans are established over a certain period of time,
it should be pre-determined. In the case studied in this work, the planning
period is 26 weeks.

• Weekly flows from each origin point to its destination: As the planning pe-
riod is defined to be 26 weeks, the company should estimate how much to
produce during this period. Since production requires materials, the com-
pany estimates how much of each material is demanded using statistics of
the estimated production. Therefore, the company forms a list, containing
from where and how much to convey. The problem instance provided by the
company, includes 31 origin-destination pairs and the weekly amount of flow
of goods between each of these pairs. This is visualized in Figure 2.

Figure 2: Origin-destination pairs and corresponding demands for the respective
weeks in the planning period

• Hubs : Hubs are defined to be the cross-docking points where several goods
coming from different locations can be consolidated as long as their next des-
tinations are the same. Hubs are essential for the reduction of transportation
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Figure 3: Examples of possible paths from an origin to a destination

costs, since cost per kg decreases as the magnitude of freight increases; see
the description of cost profiles below. Six different hubs appear in this study.

• Paths: Paths are the connections between each origin-destination pair. Each
path can include up to five hubs. Figure 3 exemplifies several possible paths
for an origin-destination pair.

Since the problem has 31 origin-destination pairs together with several possible
hubs, the system contains a vast number of paths in total. The number of
paths including k hubs is thus,

31 · 6!

(6− k)!
,

which yields a total of

31 ·
5∑

k=0

6!

(6− k)!
= 38317

possible paths, which should also be multiplied by the number of days in the
planning period.

• Cost Profiles : Every path consists of an origin-destination pair together with
a possibility to visit several hubs. Therefore, each path consists of several
links between cities. In accordance with this link-path structure, transporta-
tion costs are calculated with respect to the total amount of goods conveyed
through each of the links between these stations; these cost profiles are differ-
ent for each link. Figure 4 shows an example of the cost profile for the link
between Hub1 and Hub2 as a function of the amount of goods sent over the
link.
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Figure 4: Cost profile of the link between Hub1 and Hub2

As pointed out in Figure 4, the cost profile function of the link between Hub1
and Hub2 reaches its highest value at around 25 tons and is defined up to 26
tons, which defines the capacity of trucks on this link. If the magnitude of
goods is greater than 26 tons, more space has to be purchased from additional
trucks using the same cost function.

One other significant point about the cost function is that there is a fixed
cost for each interval. That is, if there exists an interval between 1000kg and
3000kg with a fixed cost of 500SEK, then transporting 1000kg or 2999kg costs
the same, which is 500SEK.

Having introduced all the data, the problem is to define one path for each origin-
destination pair so that the total cost of the transportation system will be minimized
while fulfilling all weekly demands. Additionally, while fulfilling the demands for
each origin-destination pair over a certain path, some days, which will be the same
every week throughout the planning period, have to be identified as the departure
days for each week and the demands should be evenly distributed among these days.
But, an even distribution of the demands among departure days will not be included
in optimization models, since it leads to non-linear relations which are out of the
scope of the type of mathematical models to be developed in this study.
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3 Theory

This section contains a comprehensive summary of some of the theory within the
area of mathematical optimization. The theory that is introduced, is required to
develop an efficient model for the problem described in the previous section. These
are linear programming, mixed integer linear programming, linear network flow
models, and column generation.

3.1 Linear Programming

Linear programming (LP) constitutes an essential part of this master thesis, since
many efficient algorithms exist to solve linear programming models. Thus, under-
standing the concepts of linear programming is very beneficial. Below is a short
introduction to linear programming. For an extended text on linear programming,
see e.g. [5] and [12].

The word linear indicates that linear programming problems are restrained by
linear constraints (i.e., equalities and/or inequalities), and the quality of the solution
is measured by a linear function of the considered quantities. A very simple example
of a linear programming model is given by

minimize z = x1 + x2,

subject to x1 + x2 ≥ 5,

x1 − 2x2 ≤ 2,

x1, x2 ≥ 0.

A linear program is often expressed by matrices and vectors as a system of
inequalities and/or equations. Considering that minimizing an objective function
cTx is equivalent to maximizing −cTx, each linear program can be modified and
expressed as to

minimize cTx,

subject to Ax = b,

x ≥ 0n ,

(1)

where A ∈ Rm×n is a real matrix, c ∈ Rn and b ∈ Rm are given vectors, and 0n

denotes a vector with n elements of 0.
Among all vectors x ∈ Rn that satisfy a given system of linear equations and

inequalities, finding a vector x∗ ∈ Rn that minimizes (or maximizes) the value of
a given linear function is the general aim of a linear program. The linear function
that is to be either minimized or maximized is called the objective function. The
linear equations and inequalities in the linear program which define the feasible set
of the problem are called the constraints.
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Any vector x ∈ Rn is called a feasible solution, as long as it satisfies all the
constraints of a given linear program. A solution x∗ satisfying the constraints is
called the optimal solution, if cTx∗ ≤ cTx for all x ≥ 0n such that Ax = b.

Despite having a single optimal solution in general, a linear program may have
infinitely many solutions or none at all.

• If an optimal solution exists to a linear program, at least one optimal solution
is located in an extreme point to the feasible set.

• If all points on the edge of the polyhedron defined by the constraints, Ax = b
and x ≥ 0, are optimal, then the linear program has infinitely many solutions.

• If a linear program lacks feasible solutions, then there is no optimal solution
to that problem. Such a linear program is called infeasible.

• Some linear programs with feasible solutions, might lack an optimal solution.
This happens, when the objective function can attain arbitrarily large values.
Such linear programs are called unbounded.

There are several different methods to solve linear programs. Among all, the
simplex method and interior point methods are the most famous ones. The simplex
method initializes by constructing a feasible solution at a vertex of the polyhedron,
and continues iteratively by visiting other vertices with non-increasing values of the
objective function until an optimum is reached. Contrary to the simplex method,
the interior point method is initialized at a point in the interior of the feasible
region, and reaches the optimum by searching inside this region rather than visiting
the vertices. Moreover, it is shown that the average number of iterations for the
simplex algorithm is bounded by O(min{(m − n)2,n2}) where m is the number of
constraints and n is the number of variables, while the interior point algorithm can
find the optimum in polynomial-time [12].

3.2 Mixed Integer Linear Programming

Having introduced the basic theory behind linear programming, its generalization
to Mixed Integer Linear Programming (MILP) requires further description. MILP
constitutes an important part of this master thesis, because of several restrictions
presented in the problem. Selecting a single path for each origin destination pair,
defining a weekly transport frequency for that path together with defining possible
departure days, require the use of either binary or integer variables. On the other
hand, the variables representing the amount to be transported at each departure
do not require integrality.

These all together point out that several integral variables have to be utilized to-
gether with some continuous ones. In such a case, the theory behind MILP becomes
very important in order to develop a model that can be efficiently solved. Therefore,
understanding the concept of MILP is valuable. Below is a short introduction to
MILP; for an extended description on MILP, see e.g. [6].

A MILP appears to be very similar to the linear program introduced in Sec-
tion 3.1 except for the restriction that certain variables must take integer values.
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Taking this exception into account, a general formulation of the MILP looks as
follows:

minimize cTx + hTy,

subject to Ax + Gy ≤ b,

x ≥ 0n ,

y ≥ 0p and integer,

(2)

where A ∈ Rm×n and G ∈ Rm×p are given real matrices, and c ∈ Rn , h ∈ Rp and
b ∈ Rm are given vectors of parameters.

If the MILP (2) involves only integer variables, then it is called an Integer
Problem (IP), and no one to date has found an efficient (polynomial) algorithm for
general integer problems [6]. It means that the complexity and the computational
time of the IP’s are much higher than that of an LP. Taking this difficulty into
account, it it clear that as the number of the integer and the binary variables
increase in a MILP model, the time it takes to solve a MILP to optimality is much
longer than that of a LP (at least higher than polynomial time). In some cases, it
is impossible to solve a MILP model to optimality, while this case is very rare for
LP models.

It is pointed out above that the majority of the variables are expected to require
integrality in the optimization problem introduced in Section 2.2. Therefore, the
optimization model to be solved in this thesis is expected to possess huge compu-
tational times unless a reduction in the integer variables is performed.

3.3 Network Flow Models

A road network that can be used for transporting goods from a source to a sink can
be modeled as a network. In the network, the cities are represented by nodes, and
each link represents a section of a road that connects a city to another. An example
network is shown in Figure 5. The link capacity is defined to be the maximum
amount of goods that can be conveyed through the corresponding arc (e.g., per
unit of time). Similarly, a network could as well represent a pipeline network for
transporting oil or a network of phone lines.

The instance provided by Proxio shows many similarities with the network flow
structure. The problem consists of many arcs which are used to form the paths
between origin-destination pairs. Additionally, the cost functions introduced in
Section 2.2 are defined for each arc in the problem. Therefore, the theory of network
flow models is an important part of this study. Below is a short introduction to the
mathematical modeling and solution of problems involving flows in networks. For
further reading, see e.g. [9].

The example in Figure 5 is defined by the following:

• N = {s,1,2,3,4,t} is the set of nodes.

• A = {(s,1),(s,3),(1,2),(2,4),(2,t),(3,1),(3,4),(4,t)} is the set of directed arcs.
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Figure 5: An example of a network with nodes and arcs connecting the nodes

• If s and t denote the source and the sink nodes, respectively ,of an origin desti-
nation pair then, then P = {(s,1,2,t),(s,3,4,t),(s,1,2,4,t),(s,3,1,2,t),(s,3,1,2,4,t)}
is the set of paths between this pair.

Assume that xij and cij denote the amount of flow and the capacity, respec-
tively, of arc (i,j). Then, any flow defined by {xij | (i,j) ∈ A}, and satisfying the
constraints

0 ≤ xij ≤ cij, (i,j) ∈ A,

∑
j∈N :(j,i)∈A

xji −
∑

j∈N :(i,j)∈A

xij =


−υ, i = s,

0, i ∈ N\{s, t},
υ, i = t,

is called a feasible flow from s to t of the total amount υ, where s and t are the
source and the sink nodes, respectively.

3.4 Column Generation and the Multicommodity Minimal
Cost Flow Problem

The total number of paths calculated in Section 2.2 shows that a vast model has to
be solved in order to find a feasible solution. In addition to that, the cost profiles of
links introduced in the same section are in a piece-wise linear form. Such a form, can
be handled in a MILP only by utilizing binary variables. All these requirements are
expected to cause the program’s computation time to increase drastically. Moreover,
it has been explained in Section 3.2 that MILPs are much harder to solve than LPs.
Therefore, developing a mathematical model that reduces the number of binary
variables before solving the main model is a must. For such a case, it is believed
that the column generation method is a good choice.

Having described the requirement to the column generation method and the net-
work flow modeling briefly, it is believed that introducing a general problem called
the Multicommodity Minimal Cost Flow Problem (MMCFP), which is somewhat
similar to the problem that is focused in this work, is highly beneficial. Below is a
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short introduction to the (MMCFP), followed by the application of column gener-
ation to this problem. For further reading on column generation, see e.g. [8]. For
further reading on the Multicommodity Minimal Cost Flow Problem, see e.g. [7].

MMCFP consists of t different commodities flowing in a network consisting
of m nodes and n arcs. Each commodity has its own upper flow limit on each
arc, while the system itself has an upper bound on the sum of the flow of all the
commodities. If the vector of upper limits for commodity i is defined by ui ∈ Rn ,
then uipq ∈ R represents the upper limit for the flow of commodity i through the
arc (p,q). Similarly, upq ∈ R defines the upper limit of the total flow through
the arc (p,q), while u ∈ Rn is the upper bound for the total flow in the system.
Furthermore, if the cost of flow of commodity i in arc (p,q) is cipq ∈ R, then the
vector ci ∈ Rn represents the cost vector of commodity i. If the vector of demands
for commodity i is defined by the vector bi ∈ Nm , then the MMCFP is formulated
as to

g∗ = minimize
t∑
i=1

cixi,

subject to
t∑
i=1

xi ≤ u,

Axi = bi, i = 1, . . . ,t,

0 ≤ xi ≤ ui, i = 1, . . . ,t,

(3)

where A ∈ Rm×n is the node-arc incidence matrix and xi ∈ Rn is the vector repre-
senting the flows of commodity i in the network. The rows of the node-arc incidence
matrix represent the nodes and its columns represent the arcs. It assigns 1 (-1) to an
element if the corresponding node is the beginning (end) of the corresponding arc.
All other elements possess the value 0. The node-arc incidence matrix corresponding
to the network in Figure 5 is given by



(s,1) (s,3) (1,2) (2,4) (2,t) (3,1) (3,4) (4,t)

s 1 1 0 0 0 0 0 0
1 −1 0 1 0 0 −1 0 0
2 0 0 −1 1 1 0 0 0
3 0 −1 0 0 0 1 1 0
4 0 0 0 −1 0 0 −1 1
t 0 0 0 0 −1 0 0 −1


Having introduced the MMCFP model (3), an application of the column gener-

ation principle to this problem is given by the following.
The equality constraint, Axi = bi, and the upper and lower limits on xi given

by 0 ≤ xi ≤ ui where ui is assumed to be bounded, define the convex set,

Xi = {xi : Axi = b,0 ≤ xi ≤ ui}, i = 1, . . . ,t.

Let xij , j = 1, . . . ,ki, denote the extreme points of the set Xi. Then, convex com-
binations of these extreme points can be used to express any xi ∈ Xi according
to

12



xi =

ki∑
j=1

λijxij, (4)

where

ki∑
j=1

λij = 1, λij ≥ 0, j = 1, . . . ,ki. (5)

If the slackness vector is denoted by s and xi is replaced by the convex combi-
nations defined by (4)-(5), then MMCFP (3) can be reformulated as the following
master problem, which is defined over the arcs and the paths of the network, to

g∗ = minimum
t∑
i=1

ki∑
j=1

(cTi xij)λij,

subject to
t∑
i=1

ki∑
j=1

xijλij + s = u,

ki∑
j=1

λij = 1, i = 1, . . . ,t,

λij ≥ 0, j = 1, . . . ,ki, i = 1, . . . ,t,

s ≥ 0.

(6)

In the master problem (6), the number of variables (λi,j) is huge and they
increase as the number of possible paths increase. Therefore, the following restricted
master problem (7), according to g∗ ≥ g∗, is formulated to have much fewer variables
by considerably decreasing the number of possible paths, but still taking feasibility
into consideration:

g∗ = minimize
t∑
i=1

ki∑
j=1

(cTi xij)λij, (7a)

subject to
t∑
i=1

ki∑
j=1

xijλij + s = u, (7b)

ki∑
j=1

λij = 1, i = 1, . . . ,t, (7c)

λij ≥ 0, j = 1, . . . ,ki, i = 1, . . . ,t, (7d)

s ≥ 0, (7e)

where 1 ≤ ki ≤ ki, and i = 1, . . . ,t.
Initializing the restricted master problem (7) with a basic feasible solution, new

and promising paths (that will yield a lower objective value of the problem (7)) are
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generated by solving a subproblem to the restricted master problem. The subprob-
lem, which separates over the commodities i = 1, . . . ,t, and is defined over the arcs
of the network, is to

hi(w,αi) = minimize (ci −w)Txi − αi,
subject to Axi = bi,

0 ≤ xi ≤ ui,

(8)

where w and αi denote the (vector of) dual variables corresponding to the first
(7b) and the second (7c) constraint group in the restricted master problem (7) in
an optimal solution of this problem. The generation of new columns and solution
of the resulting restricted master problem work iteratively until no new paths are
generated or the total costs of all subproblems (8) are positive which imply that
there is no possibility to decrease the total cost of the restricted master problem
(7).

The master problem (6) is generated from the MMCFP (3) and they have the
same optimal value, while the restricted master problem (7) is generated from the
master problem (6) by utilizing (possibly) fewer paths. Hence, the optimal value of
the restricted master problem (7) is an upper bound to the master problem (6) and
the MMCFP (3), i.e., g∗ ≥ g∗. Moreover, summing up the total costs calculated
by the subproblem (8) over each commodity, i.e., h∗(w,α) =

∑t
i=1 hi(w,αi), gives a

lower bound to the master problem (6) and the MMCFP (3), i.e., h∗(w,α) ≤ g∗.
The MMCFP (3), the master problem (6) and the restricted master problem

(7) are continuous problems. On the contrary, the comprehensive description of the
optimization problem in Section 2.2 points out that there should be integer variables
in the model because of the piece-wise linear cost functions for each link and the
restriction of selecting one path for each origin-destination pair. Since integrality
requirements cause a linear minimization problem’s total cost to increase, and the
restricted master problem (7) is the continuous (LP) relaxation of the optimization
problem at hand, an optimal solution to the restricted master problem (7) yields a
lower bound on the optimal value of the optimization problem to be solved.

To summarize, the column generation algorithm produces the bounds h∗(w,α) ≤
g∗ ≤ g∗ on the optimal value g∗ of the program 3. If the ”true” optimization model
has integral values, then g∗ is a lower bound on its optimal value.
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4 Optimization Model

In Section 2, the logistics problem has been introduced and described, while Sec-
tion 3 has been devoted to the theories applicable for modeling and solving the
problem. Utilizing the information from these two sections, a column generation
algorithm, which aims to find ”potentially better and promising” paths, and a main
optimization program, a so-called master program, which uses the paths generated
through the column generation phase, to find the global optimum, are developed.
This section is devoted to describing these models thoroughly.

4.1 Main Model

The properties of the logistics system can be modeled as a system of linear equalities
and inequalities together with a piece-wise linear cost function. It is believed that
introducing the sets, the parameters, and the variables in the model just before
describing the objective function and the constraints will be helpful for the reader
to understand the model.

4.1.1 Sets

Depending on the description of the problem, the origin locations, the destination
locations, the origin-destination pairs, the hubs, the arcs, all the paths that are
generated through column generation phase, the planning period in weeks, and the
days of each week define the sets in this problem.

• The set O = {1,. . . ,I} contains the origin locations of goods to be delivered.

• The set D = {1,. . . ,J} contains the destination locations of goods.

• The set OrgDes = {(oi1 ,di1), . . . ,(oik ,dik)} ⊆ O × D, where k is the total
number of origin-destination pairs, includes all the origin-destination pairs.

• The set H = {1,. . . ,M} represents the hubs, in which the goods can be con-
solidated.

• The set A = {(O∪H)×(H∪D)}\{(a,a)|a ∈ H} contains all possible directed
arcs in the transport system.

• The set Ki contains the indices for all paths from origin oi to its destination
such that (oi,di) ∈ OrgDes.

• The set P = {pi,k | k ∈ Ki and (oi,di) ∈ OrgDes} contains all paths pi,k
between origin oi ∈ O and its destination; pi,k is composed by a sequence of
locations, according to oi − hi1 − hi2 − · · · − di (see Figure 3).

• The set W = {1,. . . ,L} denotes the weeks of the planning period.

• The set G = {1,. . . ,7} contains week days (monday,. . . , sunday) denoted by
the numbers 1,. . . ,7.
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4.1.2 Parameters

The description of the problem shows that the amount to be transported from each
origin to its destination together with the cost profiles are the parameters of this
problem. Since the cost functions, which are defined over one truck, are piece-wise
linear, a few more parameters need to be introduced. These parameters are the
number of linear pieces in the cost functions, the cost and the capacity limit of each
piece of the cost functions, the capacities of the trucks, and the cost of renting a
full truck.

• Weighti ,l is the amount of goods (in kg’s) to be transported in week wl for all
(oi,di) ∈ OrgDes such that l ∈ W .

• Npiecea,b is the number of pieces in the cost function of link (a,b) ∈ A.

• Ratea,b,c is the cost associated with piece c ∈ {1, . . . ,Npiecea,b} in the cost
function of link (a,b) ∈ A.

• Limita,b,c is the upper capacity limit of piece c ∈ {1, . . . ,Npiecea,b} in the cost
function of link (a,b) ∈ A.

• Capacitya,b is the capacity of one truck on link (a,b) ∈ A.

• Pricea,b is the cost of renting one full truck on link (a,b) ∈ A.

4.1.3 Binary and Integer Variables

Considering the rules and the restrictions described in Section 2, the problem in-
volves many ”yes or no” decisions. These decisions involve the selection of a path
for each origin-destination pair over all generated paths, and indicating which piece
of each cost function that is utilized. Therefore, the binary variables

Xi,k,l =


1, if path k ∈ Ki is active (i.e., selected)

on week l ∈ W such that (oi,di) ∈ OrgDes,

0, otherwise,

and

Stepa,b,[7 (l−1 )+g],e =


1, if piece e ∈ {1, . . . ,Npiecea,b} of the cost function of

link (a,b) ∈ A is active on week l ∈ W , day g ∈ G,

0, otherwise,

are introduced.
These variables are subject to the constraints

Xi,k,l ∈ {0,1}, k ∈ Ki, (oi ,di) ∈ OrgDes, l ∈W ,

Stepa,b,[7 (l−1 )+g],e ∈ {0,1}, (a,b) ∈ A, l ∈W , g ∈ G , e ∈ {1, . . . ,Npiecea,b}.
As depicted in Section 2.2, each cost profile is defined over one truck. On the

other hand, in order to transport all goods, some links may require more than one
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truck for certain days. To be able to cope with such a case, the number of trucks
utilized for each link is defined to be an integer variable.

• Trucka,b,[7 (l−1 )+g] is the number of trucks used in link (a,b) ∈ A on week
l ∈ W , day g ∈ G. These variables are subject to the constrains

Trucka,b,[7 (l−1 )+g] ≥ 0, and integer, (a,b) ∈ A, l ∈W , g ∈ G .

4.1.4 Continuous Variables

Having introduced the binary and the integer variables, the complete model still
requires other variables. Since the total cost of the system is calculated depending
on the transported amounts, the amount to be transported from an origin to its
destination at each departure, and the amounts passing through the links of the
active paths should be modeled by continuous variables.

Moreover, it has been defined in Section 2.1 that the Proxio Optimizer divides
the amounts evenly between departures in a week, but it is not possible to model
the equal shares by using linear relations. Hence, evenly distributed shares are
out of the scope of this master thesis. Instead of the evenly distributed shares,
the share of each departure in a week from an origin to its destination is modeled
by a continuous variable, which actually enlarges the solution set of the problem,
meaning that an optimal solution may possess a lower value.

• Sharei ,k ,[7 (l−1 )+g] is the share of Weighti ,l that is transported through path
k ∈ Ki, where (oi,di) ∈ OrgDes, on week l ∈ W , day g ∈ G.

• Amounti ,k ,[7 (l−1 )+g] is the amount of goods to be transported through path
k ∈ Ki, where (oi,di) ∈ OrgDes, on week l ∈ W , day g ∈ G.

• Ya,b,[7(l−1)+g] is the amount of goods transported through link (a,b) ∈ A on
week l ∈ W , day g ∈ G.

These variables are subject to the constraints

Sharei ,k ,[7 (l−1 )+g] ∈ [0,1], k ∈ Ki , (oi ,di) ∈ OrgDes, l ∈W , g ∈ G ,

Amounti ,k ,[7 (l−1 )+g] ≥ 0, k ∈ Ki , (oi ,di) ∈ OrgDes, l ∈W , g ∈ G ,

and
Ya,b,[7(l−1)+g] ≥ 0, (a,b) ∈ A, l ∈ W, g ∈ G.

4.1.5 The Constraints and the Objective Function

It has been defined in Section 2.1 that there should be exactly one active path for
each origin-destination pair. In addition to that, this path is the same throughout
the planning period. These constraints are modeled according to

∑
k∈Ki

L∑
l=1

Xi,k,l = L, (oi,di) ∈ OrgDes, (9)
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and
Xi,k,l = Xi,k,(l+1) = 0, k ∈ Ki, (oi,di) ∈ OrgDes, l ∈W . (10)

The weekly frequency of the active paths for each origin-destination pair and the
departure days with respect to the weekly frequencies should be determined together
with the active paths. Besides these, the weekly amounts to be transported should
be distributed between the departure days. Even though it appears to be several
decisions to be taken at the same time, all these decisions are inter-related. That
is, if the portions of each day were known, then this information could be used to
calculate the weekly frequency and the departure days. Therefore, the constraints
(11) are introduced to cope with all these issues at once:

7∑
g=1

Sharei ,k ,[7 (l−1 )+g] = Xi ,k ,l , k ∈ Ki , (oi ,di) ∈ OrgDes, l ∈W . (11)

Since only one path is active for each origin destination pair, the right hand side
of the constraint group (11) is zero except for the active path. When the right hand
side of the equation is one, the model assigns numbers between zero and one to the
variables in the left hand side in order to determine the portions assigned to the
respective days in each week.

Moreover, it has been described in Section 2.1 that similar to having the same
active path throughout the planning period, the portions of the active days of a
certain path should be the same throughout the planning period. In order to apply
this restriction to the model, the constraints

Sharei ,k ,[7 (l−1 )+g] = Sharei ,k ,[7l+g], k ∈ Ki , (oi ,di) ∈ OrgDes, l ∈W , g ∈ G ,
(12)

are introduced. The portion transported on a certain path on each day is utilized
to calculate the actual amounts of goods being transported, according to

Weighti ,l · Sharei ,k ,[7 (l−1 )+g] = Amounti ,k ,[7 (l−1 )+g], (13)

k ∈ Ki, l ∈ W, (oi,di) ∈ OrgDes, g ∈ G.

Even though the active paths are determined and the amounts that are trans-
ported are distributed between the days, there is still one major problem to face.
The costs are calculated over the links and not over the paths. Therefore, the
amounts of goods transported on the paths should be transferred to the links while
keeping one important rule in mind: If several goods coming from different locations
hit a node at the same day, they must be consolidated as long as the following node
in their respective paths are the same. This actually is the heart of the optimization
model, since the more goods are transported on the same link on the same day the
less the cost per kg of the transported goods becomes.

Letting αa,k denote the number of days required to reach node a using path
k ∈ Ki such that (oi,di) ∈ OrgDes, this rule is modeled by the constraints
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Ya,b,[7(l−1)+g] =
∑

(oi,di) ∈ OrgDes

∑
k∈Ki : (a,b) ∈ pi,k

Amounti ,k ,[7 (l−1 )+g−αa,k ], (14)

(a,b) ∈ pi,k, l ∈W , g ∈ G , such that [7(l − 1) + g − αa,k] > 0.

Having calculated the amounts on each link on a certain day, this information
is used to determine the active pieces of the cost functions for each link, according
to the constraints

Npiecea,b∑
e=1

(
Limita,b,e ·Stepa,b,[7 (l−1 )+g],e+Capacitya,b·Trucka,b,[7 (l−1 )+g]

)
≥ Ya,b,[7 (l−1 )+g],

(15)
(a,b) ∈ A, l ∈ W, g ∈ G,

and

Npiecea,b∑
e=1

Stepa,b,[7 (l−1 )+g],e ≤ 1, (a,b) ∈ A, l ∈W , g ∈ G . (16)

The constraint group (16) states that there could be at most one active piece
for each link on a certain day. This is in accordance with the constraint group (15),
which determines the active pieces in each link on a certain day. If the total amount
transported on a certain link is above the limit of the capacity of the trucks for that
link, then the variable Trucka,b,[7 (l−1 )+g] becomes active, (i.e., is set to an integer
larger than 1) in order to satisfy the inequality system.

The objective function of the model is formed to minimize the total cost of the
transportation system. The function consists of two parts. The first part deals with
the costs of the flows in the links that are below the capacity of one truck. This
part is calculated by the cost functions for each link. The second part of the cost
function calculates the total cost of the number of trucks that are utilized. The
key issue is that this part of the cost function is zero, as long as the amount to be
transported in a certain link on a certain day is below the capacity of a truck on
that link. The objective is thus to

minimize
L∑

l=1

7∑
g=1

∑
(a,b)∈A

( Npiecea,b∑
e=1

Ratea,b,e · Stepa,b,[7 (l−1 )+g],e+

Pricea,b · Trucka,b,[7 (l−1 )+g]

)
.

(17)
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4.1.6 The Complete Model

The complete model is summarized as to

minimize
L∑

l=1

7∑
g=1

∑
(a,b)∈A

( Npiecea,b∑
e=1

Ratea,b,e · Stepa,b,[7 (l−1 )+g],e+

Pricea,b · Trucka,b,[7 (l−1 )+g]

)
,

subject to
∑
k∈Ki

L∑
l=1

Xi,k,l = L, (oi,di) ∈ OrgDes,

Xi,k,l = Xi,k,(l+1), k ∈ Ki, (oi,di) ∈ OrgDes, l ∈W ,
7∑
g=1

Sharei ,k ,[7 (l−1 )+g] = Xi ,k ,l , k ∈ Ki , (oi ,di) ∈ OrgDes, l ∈W ,

Sharei ,k ,[7 (l−1 )+g] = Sharei ,k ,[7l+g],

k ∈ Ki , (oi ,di) ∈ OrgDes, l ∈W , g ∈ G ,

Weighti ,l · Sharei ,k ,[7 (l−1 )+g] = Amounti ,k ,[7 (l−1 )+g],

k ∈ Ki, l ∈ W, (oi,di) ∈ OrgDes, g ∈ G,

Ya,b,[7(l−1)+g] =
∑

(oi,di) ∈ OrgDes

∑
k∈Ki : (a,b) ∈ pi,k

Amounti ,k ,[7 (l−1 )+g−αa,k ],

(a,b) ∈ pi,k, l ∈W , g ∈ G ,

such that [7(l − 1) + g − αa,k] > 0,

Ya,b,[7(l−1)+g] ≤
Npiecea,b∑
e=1

(
Limita,b,e · Stepa,b,[7 (l−1 )+g],e+

Capacitya,b · Trucka,b,[7 (l−1 )+g]

)
,

(a,b) ∈ A, l ∈ W, g ∈ G,
Npiecea,b∑
e=1

Stepa,b,[7 (l−1 )+g],e ≤ 1, (a,b) ∈ A, l ∈ W, g ∈ G,

Xi,k,l ∈ {0,1}, k ∈ Ki, (oi,di) ∈ OrgDes, l ∈W ,

Sharei ,k ,[7 (l−1 )+g] ∈ [0,1], k ∈ Ki, (oi,di) ∈ OrgDes, l ∈W , g ∈ G ,

Amounti ,k ,[7 (l−1 )+g] ≥ 0, k ∈ Ki, (oi,di) ∈ OrgDes, l ∈W , g ∈ G ,

Ya,b,[7(l−1)+g] ≥ 0, (a,b) ∈ A, l ∈ W, g ∈ G,
Stepa,b,[7 (l−1 )+g],e ∈ {0,1}, (a,b) ∈ A, l ∈ W, g ∈ G,

e ∈ {1, . . . ,Npiecea,b},
Trucka,b,[7 (l−1 )+g] ≥ 0, and integer, (a,b) ∈ A, l ∈ W, g ∈ G.
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4.2 Column Generation Model

This section includes the column generation model of the transport system consid-
ered and consists of two main parts, which works iteratively. The first part, called
the Master Problem, runs over the generated paths (i.e., columns) and provides
values to the second part, called the Sub-Problem, where the paths are actually
generated. Then, these generated paths are added to the set of paths that have
already been generated, and the Master Problem runs again over the extended set
of paths. This procedure continues, either until no new paths are generated by the
Sub-Problem, or until the iterations are stopped.

The values that are provided to the second part are optimal values of dual
variables corresponding to constraint groups (19)-(20) in the Master Problem. The
first group of values, the dual variables corresponding to each link in the model, are
retrieved from the constraint group (19), while the second group of values, the dual
variables with respect to each origin destination point in the model, are retrieved
from the constraint group (20). These values are utilized to update the cost function
in the Sub-Problem and the Sub-Problem phase runs over each origin-destination
pair separately.

Additionally, since the column generation method is defined for linear programs
and works iteratively, the cost functions are approximated by linear functions, so
that the Master Problem and Sub-Problem become linear and the total computation
time decrease. The linearization is performed by associating two linear functions
with each piece-wise linear cost function and defining a break-even point between
the linear functions so that the sum of the squares of the approximation errors made
is minimized. Figure 6 shows an example of how the cost functions are approximated
by two linear functions.

Figure 6: A piece-wise linear cost profile that is approximated by two linear func-
tions

After depicting a general frame of the column generation model, it is believed
that introducing the sets, the parameters, and the variables is beneficial for the
reader to understand the model thoroughly.
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4.2.1 Sets

Depending on the structure of the column generation model, the origins, the des-
tinations, the hubs, the planning period, the arcs, and the set that contains the
generated paths define the sets of the column generation model.

• The set List = O ∪D ∪H, define all the nodes in the system.

• The set P = {pi,k | k ∈ Ki, (oi,di) ∈ OrgDes} contains all generated paths
pi,k, where Ki is the index set of generated paths starting from origin oi ∈ O
to its destination di ∈ D.

4.2.2 Parameters

The column generation method requires the weekly demands, the arc-path incidence
matrix of the generated paths, the capacity of a truck in each link, the price of
renting a full truck for each link, the dual values from the constraint groups (19) and
(20) together with several data about the linear cost functions as input parameters.

Since the approximated cost functions consist of two different linear functions,
the break-even point (denoted by Limita,b) where the model changes from the first
linear cost function to the second is a parameter group to the model. Besides that,
the slopes and the initial costs of the functions are the other parameters.

• Weighti ,l is the amount of goods in kg’s to be transported on week wl for all
i such that (oi,di) ∈ OrgDes, and l ∈ W .

• ArcPatha,b,k is the arc-path incidence matrix for all paths pi,k such that k ∈
Ki, where (oi,di) ∈ OrgDes and (a,b) ∈ A. This matrix assigns 1 to the
corresponding element if link (a,b) is included in path k and 0 otherwise.

• Limita,b is the break-even point of cost function for the link (a,b) ∈ A. That
is the value where the model starts using the second linear cost function for
link (a,b).

• Capacitya,b is the capacity of one truck on (a,b) ∈ A.

• Rate1a,b is the slope of the first linear function of link (a,b) ∈ A.

• Rate2a,b is the slope of the second linear function of link (a,b) ∈ A.

• Initial1a,b is the initial cost of the first linear function of link (a,b) ∈ A.

• Initial2a,b is the initial cost of the second linear function of link (a,b) ∈ A.

• Pricea,b is the cost of renting one full truck on link (a,b) ∈ A.

• Dual1a,b,l is the dual variables retrieved from the constraint group (20) such
that (a,b) ∈ A and l ∈ W .

• Dual2i ,l is the dual variables retrieved from the constraint group (19) such
that oi ∈ O and l ∈ W .
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4.2.3 Binary and Integer Variables

The column generation method is formulated as a relaxation of the main model in
Section 4.1.6. Because of this relaxation, some of the rules and the restrictions in-
troduced in Sections 2.1 and 2.2 are neglected, while some new rules are introduced.

Similar to the main model in Section 4.1.6, the variable that keeps track of the
truck usage is introduced in the column generation phase. On the contrary, new
variables that determine the active linear cost function and the active initial cost
of the function are introduced for each link. Hence, the new binary and integer
variables are as follows:

Z1a,b,l =


1, if the first linear cost function of the link (a,b) ∈ A

during l ∈ W is active in the Master Problem,

0, otherwise,

Z2a,b,l =


1, if the second linear cost function of the link (a,b) ∈ A

during l ∈ W is active in the Master Problem,

0, otherwise,

Z1Subi,a,b,l =


1, if the first linear cost function of the link (a,b) ∈ A during

l ∈ W is active in the Sub-Problem i such that oi ∈ O,

0, otherwise,

Z2Subi,a,b,l =


1, if the second linear cost function of the link (a,b) ∈ A during

l ∈ W is active in the Sub-Problem i such that oi ∈ O,

0, otherwise,

• Trucka,b,l is the number of trucks utilized for link (a,b) ∈ A during week l ∈ W
in the Master Problem.

Trucka,b,l ≥ 0, and integer

• TruckSubi ,a,b,l is the number of trucks utilized for link (a,b) ∈ A during week
l ∈ W in the Sub-Problem i such that oi ∈ O.

TruckSubi,a,b,l ≥ 0, and integer

4.2.4 Continuous Variables

Having introduced the binary and the integer variables, the column generation
model still requires other variables. In the Master Problem, there is no restriction
on the number of paths used to transport the goods from an origin to its destination.
That is why, the Master Problem only requires the variable that keeps track of the
amounts transported through a path. On the other hand, the Sub-Problem phase

23



utilizes the links and tries to find paths that can be utilized to reduce the cost
for the transportation between each origin-destination pair over the links. Hence,
the Sub-Problem requires the variable that keeps track of the amounts transported
through each link. Additionally, since the total costs of the Master Problem and
the Sub-Problem are calculated depending on two linear functions for each link, the
amounts that are transported using each cost function must be continuous variables.

• AMasteri ,k ,l is the amount transported in the Master Problem from the origin
oi ∈ O through the path k ∈ Ki on week l ∈ W such that (oi,di) ∈ OrgDes.

AMasteri ,k ,l ≥ 0

• ASubi ,a,b,l is the amount transported in the Sub Problem i through the link
(a,b) ∈ A on week l ∈ W such that oi ∈ O.

ASubi ,a,b,l ≥ 0

• Piece1a,b,l is the amount transported in the Master Problem using the first
linear cost function of link (a,b) ∈ A on week l ∈ W .

Piece1a,b,l ≥ 0

• Piece2a,b,l is the amount transported in the Master Problem using the second
linear cost function of link (a,b) ∈ A on week l ∈ W .

Piece2a,b,l ≥ 0

• Piece1Subi ,a,b,l is the amount transported in the Sub-Problem i using the first
linear cost function of link (a,b) ∈ A on week l ∈ W , such that oi ∈ O.

Piece1Subi ,a,b,l ≥ 0

• Piece2Subi ,a,b,l is the amount transported in the Sub-Problem i using the
second linear cost function of link (a,b) ∈ A on week l ∈ W such that oi ∈ O.

Piece2Subi ,a,b,l ≥ 0

4.2.5 The Master Problem

The Master Problem seeks the cheapest way to transport the demanded amount
of goods using the paths generated so far, and calculates the dual values of the
constraint groups (19) and (20). These dual values are then utilized to update the
cost functions in the Sub-Problem. The Master Problem is initialized with a (basic)
feasible solution and this set of paths is updated every time the Master Problem
receives a new set of paths from the Sub-Problem phase.

The Master Problem consists of the following objective function and constraints.
The objective function is to minimize the total cost. The costs may occur either

by transporting the goods using the first or the second linear cost function of each
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link or by utilizing another truck if the transported amount is above the capacity
limit of a truck. When the first or second linear cost function is active, the respective
initial costs are triggered. Hence, the objective function is to

minimize
L∑
l=1

∑
(a,b)∈A

(
Piece1a,b,l · Rate1a,b + Piece2a,b,l · Rate2a,b

+ Z1a,b,l · Initial1a,b + Z2a,b,l · Initial2a,b + Trucka,b,l · Pricea,b

)
, l ∈W

(18)

The first constraint group of the Master Problem deals with the demands. The
generated set of paths should be utilized to satisfy the demands. Additionally, this
constraint group whose dual values are utilized to update the cost function in the
Sub-Problem, is in accordance with the constraints (7c) in the restricted master
problem (7) of MMCFP.∑

k∈Ki

AMasteri ,k ,l = Weighti ,l , oi ∈ O , l ∈W (19)

The second constraint group of the Master Problem copes with the capacity
of each link. Even though there is no limit on the capacities of links in practice,
virtual capacities at each link are formed by this constraint group. It is assumed
that the capacity of a link is equal to the amount conveyed through that link on
each week. Therefore, this constraint group becomes similar to the constraints (7b)
in the restricted master problem (7) of MMCFP.

∑
i:oi∈O

∑
k∈Ki

ArcPatha,b,k · AMasteri ,k ,l = Trucka,b,l · Capacitya,b

+ Piece1a,b,l + Piece2a,b,l , (a,b) ∈ A, l ∈W ,

(20)

The last two constraint groups of this part of the model are used to determine
whether the first or the second cost function of each link is active on week l.

Piece1a,b,l ≤ Limita,b · Z1a,b,l, (a,b) ∈ A, l ∈W (21)

Piece2a,b,l ≤ Capacitya,b · Z2a,b,l, (a,b) ∈ A, l ∈W (22)

4.2.6 The Sub-Problem

The Sub-Problem runs over each origin-destination pair and generates columns (i.e.,
paths) using the links in the model. It initializes, as it receives the dual values from
the Master Problem, and recalculates the costs in the objective function using these
values. The Sub-Problem includes an objective function and four constraint groups
for each origin.
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The objective function is very similar to the one in the Master Problem, (18),
except that the dual values affect the total cost and it is calculated over only one
origin. The objective function for each i such that oi ∈ O is to

minimize
L∑
l=1

∑
(a,b)∈A

(
Piece1Subi ,a,b,l · Rate1a,bPiece2Subi ,a,b,l · Rate2a,b

+ Z1Subi,a,b,l · Initial1a,b + Z2Suba,b,l · Initial2a,b

+ TruckSubi ,a,b,l · Pricea,b + ASubi ,a,b,l ·Dual1a,b,l −Dual2i ,l

) (23)

The first constraint group makes sure that the flow through the nodes is bal-
anced, i.e., the flow defines (a number of) paths for each origin-destination pair.

∑
b∈List:(a,b)∈A

ASubi ,a,b,l −
∑

b∈List:(b,a)∈A

ASubi ,b,a,l =


Weighti ,l , if a ∈ O,

−Weighti ,l , if a ∈ D,

0, if a ∈ List\(O ∪ D).

(24)

If the constraints (24) are applied to the network in Figure 5, assuming that one
unit is to be transported, then the constraints (24) appear as

xs1 + xs3 = 1,

x12 − xs1 − x31 = 0,

x24 + x2t − x12 = 0,

x31 + x34 − xs3 = 0,

x4t − x24 − x34 = 0,

−x2t − x4t = −1.

The second constraint group is very similar to the capacity constraint group,
(20), in the Master Problem. The virtual capacities of the links are calculated
by the amount of trucks utilized and the amounts transported using the first or
the second approximation function of the links. For each i such that oi ∈ O, the
constraints read

ASubi ,a,b,l =TruckSubi ,a,b,l · Capacitya,b + Piece1Subi ,a,b,l

+ Piece2Subi ,a,b,l , (a,b) ∈ A, l ∈W .
(25)

The last two constraint groups of this part of the model are used to determine
whether the first or the second cost function of each link is active on week l; they
read

Piece1Subi ,a,b,l ≤ Limita,b · Z1a,b,l, oi ∈ O , (a,b) ∈ A, l ∈W , (26)

Piece2Subi ,a,b,l ≤ Capacitya,b · Z2a,b,l, oi ∈ O , (a,b) ∈ A, l ∈W . (27)
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4.2.7 The Complete Column Generation Model

The column generation model is summarized below.
Master Problem

minimize
L∑
l=1

∑
(a,b)∈A

(
Piece1a,b,l · Rate1a,b + Piece2a,b,l · Rate2a,b

+Z1a,b,l · Initial1a,b + Z2a,b,l · Initial2a,b + Trucka,b,l · Pricea,b

)
,

subject to
∑
k∈Ki

AMasteri ,k ,l = Weighti ,l , oi ∈ O , l ∈W ,∑
i:oi∈O

∑
k∈Ki

ArcPatha,b,k · AMasteri ,k ,l = Trucka,b,l · Capacitya,b + Piece1a,b,l + Piece2a,b,l ,

(a,b) ∈ A, oi ∈ O, l ∈ W,
Piece1a,b,l ≤ Limita,b · Z1a,b,l, (a,b) ∈ A, l ∈W ,

Piece2a,b,l ≤ Capacitya,b · Z2a,b,l, (a,b) ∈ A, l ∈W ,

Piece1a,b,l ≥ 0, (a,b) ∈ A, l ∈W ,

Piece2a,b,l ≥ 0, (a,b) ∈ A, l ∈W ,

Z1a,b,l ∈ {0,1}, (a,b) ∈ A, l ∈W ,

Z2a,b,l ∈ {0,1}, (a,b) ∈ A, l ∈W ,

Trucka,b,l ≥ 0, and integer, (a,b) ∈ A, l ∈W ,

AMasteri ,k ,l ≥ 0, k ∈ Ki , oi ∈ O , l ∈W .
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Sub-Problem
For each oi ∈ O

minimize
L∑
l=1

∑
(a,b)∈A

(
Piece1Subi ,a,b,l · Rate1a,b + Piece2Subi ,a,b,l · Rate2a,b

+ Z1Subi,a,b,l · Initial1a,b + Z2Suba,b,l · Initial2a,b

+ TruckSubi ,a,b,l · Pricea,b + ASubi ,a,b,l ·Dual1a,b,l −Dual2i ,l

)
,

subject to ASubi ,a,b,l = TruckSubi ,a,b,l · Capacitya,b + Piece1Subi ,a,b,l + Piece2Subi ,a,b,l ,

(a,b) ∈ A, l ∈ W,
Piece1Subi ,a,b,l ≤ Limita,b · Z1a,b,l, (a,b) ∈ A, l ∈W ,

Piece2Subi ,a,b,l ≤ Capacitya,b · Z2a,b,l, (a,b) ∈ A, l ∈W ,

Piece1Subi ,a,b,l ≥ 0, (a,b) ∈ A, l ∈W ,

Piece2Subi ,a,b,l ≥ 0, (a,b) ∈ A, l ∈W ,

Z1Subi,a,b,l ∈ {0,1}, (a,b) ∈ A, l ∈W ,

Z2Suba,b,l ∈ {0,1}, (a,b) ∈ A, l ∈W ,

TruckSubi ,a,b,l ≥ 0, and integer, (a,b) ∈ A, l ∈W ,

ASubi ,a,b,l ≥ 0, k ∈ Ki , (a,b) ∈ A, l ∈W ,

∑
b∈List:(a,b)∈A

ASubi ,a,b,l−
∑

b∈List:(b,a)∈A

ASubi ,b,a,l =


Weighti ,l , if a ∈ O,

−Weighti ,l , if a ∈ D,

0, if a ∈ List\(O ∪ D).
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5 Tests and Results

This section consists of a presentation of the test cases, the tests performed, re-
sults retrieved from these, and analysis of the results. The model introduced in
Section 4.1 involves several different dimensions and a large amount of variables.
There is approximately one million binary variables required just to model the pieces
of the cost functions of all the links. Similarly, if one wants to solve the problem over
all possible paths, then approximately seven million binary variables are required to
model all possible paths. Moreover, the number of variables grow multiplicatively
depending on the planning period. Therefore, it is believed that establishing differ-
ent test cases by varying the planning period and the set of possible paths may help
to explain the results and express the effect of the number of variables thoroughly.

5.1 The Test Cases, Results and Analysis

This section consists of five subsections. Each subsection begins with introducing
a new group of tests which is followed by their results and analysis. All the results
presented in this section, apart from the results of the column generation model,
have been retrieved from CPLEX just before computer runs out of memory. Hence,
the results may not present the optimal solutions, but relatively good solutions
together with upper and lower bounds on the optimal solutions.

5.1.1 The Column Generation Model

The column generation model which is presented in Section 4.2.7 is solved and
analyzed in this section. The restricted master problem which is called the Master
Problem in Section 4.2.7 is initialized by utilizing the direct paths and the paths
that include one hub. Afterwards, the column generation model has been run five
times. Table 1 shows how many paths have been generated at each iteration.

Iteration Number of Optimal value of
no paths generated restricted master problem
0 171 122113
1 48 122014
2 23 121815
3 29 121760
4 37 121612
5 26 121470

Table 1: Number of generated paths at each iteration of the column generation
algorithm and the corresponding objective values.

As discussed in Section 4.2, the generated paths are added to the set of paths
that have already been generated, and the Master Problem runs over an extended
set of paths. Therefore, the total cost calculated in the Master Problem keeps
decreasing as the number of generated paths increase. Figure 7 depicts this change
in the total cost.

Table 1 shows that the column generation model has been iterated five times
and total of 163 paths have been generated. That is, a total of 334 paths have been
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Figure 7: Total cost of the optimal solution of the Master Problem at each iteration

generated, together with the initial paths which has been provided to the Master
Problem for initialization. This is approximately 0.87% of all possible paths. One
could assert that the column generation method should have been iterated many
more times and that many paths should have been generated.

On the contrary, Figure 7 shows that the decrease in the total cost of Master
Problem is only 0.5% after generating total of 334 paths. In general, the decrease
in the objective value is usually large at early stages of the column generation
models. After a number of iterations, the objective function value typically does
not decrease much [7]. Therefore, Figure 7 puts forward that the initial paths that
have been provided to the Master Problem includes a solution that is very close
to the optimum, since the slope of the function is not steep. Hence, iterating the
column generation model more and generating new columns would probably not
yield much improvement.

Moreover, the model presented in Section 4.1.6 becomes much harder to solve,
as the number of the paths increases. Therefore, as the amount of decrease in the
objective value indicates, it is possible to utilize these 334 paths to be able to find
a very good solution to the model in Section 4.1.6.

5.1.2 The Cost Function Approximations

Each cost function consists of many small pieces, varying from 60 to 83 pieces, so
it is believed that these functions could be further investigated by approximating
them from above and from below. In doing this approximation, the number of
pieces in each cost function is decreased by 50%. Figures 8 and 9 describe how the
approximations from above and below are made.

This test group involves two different cases, one for the cost functions that
approximate the actual cost functions from above, and one for the cost functions
that approximate the actual cost functions from below. These two tests have been
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Figure 8: An example of the approximation from above of two pieces of a cost
function

performed by utilizing the paths generated after five iterations in column generation
algorithm. Table 2 presents the total costs of each case together with the respective
lower bounds and optimality gaps.

Approximation Best solution Lower bound on the Optimality gap
found (SEK) optimal value (SEK)

From above 130754 111586 14.7 %
From below 123868 109873 11.3 %

Table 2: Results retrieved from the main model for different approximations of the
actual cost functions

These tests have been performed to explain the differences between the approx-
imated cost functions. The results show that the total cost of the best solution
found decreases by 7000SEK as the approximations from above are replaced by the
approximations from below. Since one function group approximates the cost from
above, while the other group approximates them below, the results show that the
optimal value lies in the interval [109873,130754].

One other interesting result is that when the cost functions are approximated
from below, the optimality gap decreases from 14.66% to 11.3%. Even though, this
result needs further investigation by utilizing different problem instances, one may
assert that the approximations from below should be utilized, if the optimality is
the ultimate goal.

5.1.3 Different Planning Periods

This test group focused on varying the planning period. The planning periods have
been defined to be 3,7,13,20 and 26 weeks, respectively, and these cases have been
solved by utilizing the paths that have been generated by the column generation
method in Section 5.1.1 and the cost functions that approximate the actual cost
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Figure 9: An example of the approximation from below of two pieces of a cost
function

functions from above (desrcibed in Section 5.1.2). Table 3 presents the total costs
for the best solutions of the different planning periods together with the respective
lower bounds and the optimality gaps.

Planning Best solution Lower bound on the Optimality Total cost
period found (SEK) optimal value (SEK) gap per week (SEK)

3 weeks 20232 18591 8.1 % 6744
7 weeks 47768 43259 9.2 % 6824
13 weeks 82838 73473 11.3 % 6372
20 weeks 103468 91248 12.0 % 5173
26 weeks 130754 111586 14.7 % 5029

Table 3: Results retrieved from the model presented in Section 4.1.6 for different
planning periods

Each origin-destination pair has only one active path. Figures 10 and 11 show
the solutions to 3 weeks of planning on a table and on a map, respectively. For the
solutions of the other planning periods, see Appendix A.

The tests which include different planning periods have been performed to de-
scribe the changes in the solution set. Additionally, these tests have been performed
in order to investigate whether a shorter and a longer planning period yield similar
results or not.

First of all, Table 3 presents that the optimality gap increases as the time-
span increases. This is a reasonable result, since the number of variables increase
multiplicatively, as the number of weeks increase, which makes the problem much
harder to solve.

In addition to that, if the solutions of the 20 weeks case are compared to those
of the 26 weeks case, there appears to be some similarities, especially in selecting
the hubs. Actually, 21 out of 31 origin points use the same paths for these two
different cases. On the other hand, none of these paths are utilized on the same
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Figure 10: Solution to the planning over three weeks. The destination for all the
origins is Helsinki.

day for the two cases. Moreover, if the solutions of the 7 weeks case are compared
to the 26 weeks case, 20 out of 31 origin points use the same paths, while none of
the departure days overlap for these two different cases. These results point out
that the results from a smaller time-span may, to some extent, describe the results
of a larger time-span. Therefore, if a case is very large, then the results from a
subset of the weeks could be utilized and these results could still yield a relatively
good solution. Similarly, results retrieved from a smaller time-span of a case could
as well be utilized as an initial basis to the main optimization model introduced in
Section 4.1.6 so that the main problem would start from a relatively good solution
and thus may find a very good solution in a shorter computational time.

One other interesting result is that the number of departure days per week and
origin-destination pair tend to one, as the total cost gets closer to the optimal value.
In order to further investigate this finding, the main model has been run one more
time with all the generated paths, but letting the number of departure days during
each week be at most one. In doing that, the total cost found was 134532SEK,
which is approximately 2000SEK more than the total cost found by utilizing all the
generated paths and the above approximations of the cost functions (see Table 4 in
Section 5.1.4). This shows that utilizing a smaller set of departure days could still
provide a relatively good result. This finding is actually very useful, if the problem
is very large to solve.

5.1.4 Changing the Set of Paths

This test group focused on varying the sets of possible paths and three different cases
have been defined. The first case has run over the direct paths, while the second
case have used the direct paths and the paths that include one hub. Besides these,
the last case has utilized all the paths generated by the column generation model
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Figure 11: A geographical picture of the paths that define the best solution found
to three weeks of planning on the map

(see Table 1). All of these cases have been solved by utilizing the cost functions
that approximate the actual cost functions from above. Table 4 presents the total
costs of the different sets together with the lower bounds and the optimality gaps.

Elements of Best solution Lower bound on the Optimality gap
the path set found (SEK) optimal value (SEK)

Direct relations 146042 125286 14.2 %
Direct relations + 132883 108938 18.0 %

relations with 1 hub
The paths generated

by the column 130754 111586 14.7 %
generation method

Table 4: Results retrieved from the main model for different sets of possible paths

The tests, which have been performed by changing the set of possible paths, are
aimed to describe the changes in the total cost. Table 4 depicts the results to these
cases. The most significant information that is retrieved from this table is that as
the amount of paths increase, the total cost of the main problem decreases. This
shows that the generated paths are of good quality with respect to the objective
function.

Besides that, the results underline the importance of the hubs, since the total
cost is reduced by approximately 9% when the relations with one hub are utilized.
In accordance with this reduction, the total cost is reduced by another 1.6% when all
the paths that have been generated by the column generation method are utilized.
This shows that enlarging the solution set by increasing the number of possible paths
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return better results. On the other hand, one should still be very careful about this
proposition, since it may become very hard to even compute a solution if too many
paths are utilized at the same time. Hence, analyzing the total cost retrieved from
the Master Problem after few iterations may be an effective way in order to balance
the size of the solution set and the size of the problem. This actually is reasonable,
because the behavior of the total cost retrieved from the Master Problem somewhat
explains the possible gain in the main model introduced in Section 4.1.6.

5.1.5 The Paths Generated by Proxio

In this test, the paths computed by Proxio that yield the lowest total cost, are
utilized as the set of possible paths in the main model introduced in Section 4.1.6
together with the actual cost functions introduced in Section 2.2. Figure 12 shows
this set of paths, and Table 5 shows the results retrieved from the optimization
model by utilizing these paths.

Figure 12: The paths (one path for each origin-destination pair) that have been
retrieved from Proxio

Best solution Lower bound on the Optimality gap
found (SEK) optimal value (SEK)

141121 119849 17.8 %
Table 5: Results retrieved from the optimization model by utilizing the paths

retrieved from Proxio

The company mentioned that the total cost for the 26 weeks case computed by
the Proxio Optimizer is 120200SEK. This objective value is approximately 17.4%
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(see Table 5) less than the total cost of the best solution found by the optimization
model before CPLEX runs out of memory. This shows that the optimization model
has not been able to produce a good upper bound by utilizing the paths retrieved
from Proxio. On the other hand, the lower bound calculated by the optimization
model shows that Proxio Optimizer calculates a feasible solution that is at most
0.3% (see Table 5) more expensive than the cheapest possible solution, utilizing
only the set of paths in Figure 12.

Moreover, the total cost calculated by Proxio is approximately 8.07% (see Ta-
ble 2) less than the total cost which has been calculated by utilizing the cost func-
tions that approximate the actual cost functions from above. Additionally, the
total cost calculated by Proxio is approximately 3% (see Table 2) less than the to-
tal cost which has been calculated by utilizing the cost functions that approximate
the actual cost functions from below.

On the other hand, one should as well keep in mind that the optimization model
has not been able to solve the problem to optimality, and the lower bounds for
the approximations from above and below are 111586.2 and 109873.6, respectively.
Hence, there still is a possibility to improve the results of the optimization model.
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6 Discussion and Future Work

This master thesis has been performed to evaluate the efficiency of the Proxio Op-
timizer by developing and testing a mathematical optimization model. The results
show that the company has developed a very effective optimization engine. The
Proxio Optimizer produces better feasible solutions than the optimization model.

Even though the Proxio Optimizer produces better results, the solution from
the optimization model may still be improved, since there is an optimality gap
larger than 10% for the cases investigated. Hence, any attempt to improve the
optimization algorithm should actually focus on reducing this gap. Besides that,
reducing the gap may help the company much to find out the capabilities of their
software.

Moreover, having developed a column generation algorithm is still regarded as
an important achievement, since the column generation algorithm may help the
company to deal with much larger cases easily and efficiently. On the contrary, one
may still work on the column generation model for further improvements, since this
algorithm utilizes approximations of the cost functions which may limit the accuracy
of the column generation phase. E.g., one may incorporate the column generation
scheme in a branch-and-bound algorithm for integer programs, a so called branch-
and-price algorithm, or one could employ so-called column dropping in order to
reduce the size of the master problem.

In addition to that, the company has several rules such as defining only one path
for each origin destination point. This rule may actually be much more flexible so
that customers can select from a group of paths. On the other hand, this may have
an adverse affect on the total cost, since the combination of several paths may cause
to the total cost to rise.
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Appendices

Appendix A Solutions for Different Planning Pe-

riods

Figure 13: Solution to the planning over seven weeks. The destination for all the
origins is Helsinki.
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Figure 14: Solution to the planning over thirteen weeks. The destination for all the
origins is Helsinki.

Figure 15: Solution to the planning over twenty weeks. The destination for all the
origins is Helsinki.
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Figure 16: Solution to the planning over twenty six weeks. The destination for all
the origins is Helsinki.
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