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Abstract

This thesis presents a variety of optimization models for opportunistic main-
tenance planning for a system of feed-water pumps in nuclear power plants.
The feed-water pumps form an essential part of a nuclear reactor and failures
can be very costly due to the consequence of production losses. Maintaining
them optimally is therefore important in order to maximize the availabil-
ity of the nuclear reactor. Different variations of the model are presented
and also studied with respect to solution times, stability, and total cost of
maintenance. A comparison between the opportunistic models and common
maintenance policies is made in order to examine the respective resulting
availability of production. Our calculations show that the opportunistic op-
timization model is stable with respect to changes in the cost of maintenance,
and that it is the preferred maintenance planning policy.
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Chapter 1

Introduction

1.1 Background

This masters thesis is focused on maintenance planning optimization and one
of its applications. Maintenance planning in industry is important to main-
tain a high availability of production and optimizing maintenance schedules
can substantially improve the availability as well as decreasing the total cost
for performing maintenance.

1.2 Maintenance in industry

A large part of the operating cost in industry comes from maintenance of
equipment and machines. The cost of maintenance in the United States was
estimated to rise from $600 billion in 1981 to $1.2 trillion in 2000 [1]. It is
estimated that one third of these costs are due to inefficient management
of maintenance. Therefore large savings can be made by increasing the
efficiency of maintenance operations in industry. Maintenance can also be
seen as an investment in availability and reliability of the equipment. This
will further increase the profit.

When optimizing a maintenance schedule over a time period the aim is
to minimize the number of maintenance occasions and spare parts needed
as well as the time the machine has to be taken out of use and thereby
minimizing the cost of maintenance and loss of production. An optimal
maintenance schedule can reduce the cost of keeping the machine running
as well as increasing its reliability and availability.

There are different principles for when and why maintenance is carried
out. Corrective maintenance is when a component is replaced or repaired
when a failure takes place. This simple method of maintenance is how-
ever the most expensive method to use. Preventive maintenance is when a
component is replaced before it fails using a predicted life. To make this
principle cost-effective, however, requires a sufficient amount of historical
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and/or measured data concerning the wear of a component to calculate an
expected life of the component. An advantage of preventive maintenance is
that the reliability and availability of the machine is improved. Opportunis-
tic maintenance is a combination of preventive and corrective maintenance.
When a component fails, a decision is taken on whether or not to perform
maintenance on other components while the machine is opened for mainte-
nance. This may increase the time until another component fails or needs
maintenance which can save the cost of extra maintenance occasions.

1.3 Feed water pumps in nuclear reactor cooling

systems

In 2008 nuclear power plants represented 42% of the electricity production
in Sweden [2]. Nuclear power is considered to be a renewable energy source
and does not contribute much to the carbon dioxide emissions. There are,
however, disadvantages with nuclear power, mainly concerning the final stor-
age of the waste. There are currently three nuclear power plants running in
Sweden with a total of ten reactors. The safety and reliability of a nuclear
reactor is very important since a failure can have major consequences in
terms of radioactive contamination.

Figure 1.1: A schematic picture of the cooling system of a Boiling Water
Reactor

The nuclear reactor at Forsmark 1 is a Boiling Water Reactor (BWR)
with two turbines; this type of reactor uses steam to produce electricity. A
schematic picture of the reactor is shown in Figure 1.1. Heat is generated
from the nuclear fission taking place in the uranium fuel and controlled by
the control rods that are pulled out of the core to start the fission. The
thermal energy in the core is then transferred to water which is boiled into
steam. A difference in pressure pushes the steam through the steam turbines.
A generator connected to the turbine by a shaft transfers the kinetic energy
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to electricity which is then connected to the electricity grid. When the steam
reaches the condenser it still contains large amounts of thermal energy and
water is used to cool it off. The cooling water is taken from the sea and is
then returned. The increase in temperature in the cooling water is around
10 degrees. The water in the turbine is contained in a closed system and it
never mixes with the cooling water thus avoiding radioactive contamination.
When the steam has cooled off to water in the condenser it is led through
feed-water pumps to be pressurized before it passes into the reactor again.
The flow of the feed-water is adjusted so that the water entering the reactor
replaces the amount of steam leaving it. It is very important to keep the
water level in the reactor constant at all times and the feed-water pumps
are essential for this process.

In this thesis we have studied the feed water pump system of the nuclear
reactor. At Forsmark 1 the turbines have three feed-water pumps each. For
the reactor to run at full capacity at least two of the three pumps connected
to each turbine must be in use. If only one pump is in use there is a loss of
50% of the production available in that turbine. The loss of production is
very costly and therefore it is important to keep enough pumps working to
avoid this. The failures on the feed-water pumps are mostly due to failures
on the shaft seals of which there are two in each pump. The shaft seals are
expensive components that are currently replaced when failure occurs and
no preventive maintenance is performed [3]. By optimizing the maintenance
schedule for the shaft seals of the reactor the cost of retaining the reliability
and availability of the reactor can be improved.

1.4 Outline and motivation

This thesis seeks to examine an opportunistic model combining corrective
and preventive maintenance, and to compare it with common maintenance
planning methods and policies with respect to the reliability of the turbine.
The mathematical models developed and described are based on Mixed Inte-
ger Linear Programming, MILP as described in [4]. In Section 2 an example
of a MILP is introduced along with a principal solution method. Section
3 presents a number of MILP models for somewhat differing maintenance
situations as well as a comparison of the models described with two common
maintenance policies. These models were solved using the numerical setup
and software which are described in Section 4. The results are presented in
Section 5 and discussed in Section 6.
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Chapter 2

Integer linear programming

Mixed integer linear programming is used to model and solve many types
of optimization problems that can be modelled using linear relations and
integer requirements, for example airline crew scheduling and how to cut
shapes from sheets of plastic with minimum waste. A general MILP-problem
is described as to

minimize dTx,

subject to Ax ≤ b,

x ≥ 0n, and integer

(2.1)

where x ∈ R
n is a vector of variables and d ∈ R

n, A ∈ R
m×n, and b ∈ R

m

are vectors and matrices, respectively, of parameters. A simple example of
an ILP is given by the problem to

minimize − 2x1 − 3x2,

subject to x1 + x2 ≤ 4.5,

−2.65x1 + x2 ≤ −0.3,

x ≥ 02, and integer

(2.2)

The set of feasible solutions to this program lies within the polyhedron
defined by the x1 and x2 axes and the constraint lines illustrated in Figure
2.1. For this example, the continuous solution is given by (x1, x2)=(1.15, 3.35),
(i.e., when the integrality constraints are relaxed), while the integer solution
is given by (x1, x2)=(2, 2); these are not very close. The continuous optimal
value is 12.35 and the integral optimal value is 10. To find a (feasible) solu-
tion to an ILP is much harder than finding a solution to the corresponding
continuous program. Since the ILP is very similar to an LP one might be
tempted to round the solution obtained to the LP to find a good solution to
the ILP. This is however not a generally good idea as the example shows.

If the variables in the ILP are binary a Binary Linear Program (BLP)
is to be solved. This type of problem arises when the variables are of type
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Figure 2.1: Illustration of the ILP described in example 2.2

on/off, as for example, whether or not maintenance should be performed at
a certain time or whether or not a salesman travels directly between two
specific cities. The maintenance problem in this thesis is analyzed using a
BLP.

There exists different methods for solving this type of problem. The
principal method used here is called “branch and bound” . In Figure 2.2 a
branch and bound search tree for solving the example problem (2.3).

minimize 7x1 + 11x2 + 4x3 + 13x4,

subject to 3x1 + 6x2 + 5x3 + 14x4 ≥ 7,

x ≥ 04, and binary

(2.3)

The search tree is examined by relaxing the integrality constraints on
the variables and recursively fixing the values of variables yielding fractional
values in the solution for the relaxed program. The solutions obtained at
the respective nodes decide in which direction the search should continue
and which directions that can yield no better solutions and thus can be
discarded.

The solution of the program (2.3) using the branch and bound algorithm
proceeds as follows. The search starts at node 0, in which the integrality
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Figure 2.2: Illustration of the branch and bound algorithm applied to the
program (2.3)

constraints on all variables are relaxed. The optimal value of the relaxed
problem forms a lower bound for the binary linear program. From node 0
we choose to branch on variable x4 since its value is fractional. By fixing
the value on x4 to one and zero, respectively, we define the nodes 1 and
2. At node 1 we solve the program (2.3) complemented with the constraint
x4 = 1. The solution reached turns out to be a feasible solution to the
original program (2.3) since all values of the variables are binary. This
branch of the search tree does not have to be examined further. Node 2
(defined by (2.3) and the constraint x4 = 0) on the other hand results in a
solution that is not binary. Here we branch on the variable x2. From here
we continue to node 3 which also results in a solution that is not binary.
Further branching on variable x3 from node 3 yields a solution at node 4
which, however, is not as good as the solution reached at node 1. At node 5
a solution is reached which has a value that exceeds the upper bound for the
feasible solution reached in node 1. These two branches from nodes 4 and 5
are terminated here and the search continues at node 6. Here we branch on
the variable x1. The two branches created lead to node 7 where branching
continues on the variable x1, and to node 10, which only yields an infeasible
solution. Branching from node 7 yields an infeasible solution at branch 9
and a feasible solution at node 8 which is better than the solution found
at node 1. The optimal solution to the problem is x = (1, 0, 1, 0) with the
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objective value 11. For a formal description of MILP and the “branch and
bound” method, see [6]. The complexity of general and specific MILP is
described in [4].
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Chapter 3

Mathematical models of

maintenance planning

optimization for feed-water

pump systems in nuclear

power plants

We model replacements of shaft seals during a finite time period with discrete
time steps. The life of a shaft seal is assumed to be deterministic and the
time required to replace a shaft seal is considered to be exactly one time step.
The optimization problems modelled and solved considers three scenarios:
One in which at least two pumps must be working at all points in time,
another in which the turbine can be kept running with only one working
pump at 50 % loss of the turbine capacity, and the last model for which the
shaft seals in the pumps suffer a reduction in remaining life or a cost each
time the pump is switched on or off.

3.1 Model 1: At least two of three pumps always

in use

This model considers three feed-water pumps with two shaft seals each. At
least two of the three pumps must be running at all points in time since the
turbine should be working at full effect.

The shaft seals are ageing when the pump is in use and thus need to be
replaced before their remaining life has expired. There is a cost associated
with the replacement of the shaft seals and a work cost for opening the pump
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to perform the maintenance. We define the following sets and parameters:

I = {1, 2, 3}, the set of pumps,
J = {1, 2}, the set of shaft seals per pump,
T = {1, .., T}, the set of time steps, and
U ∈ N, the life in number of time steps of a new shaft seal.

The model is a MILP with three sets of binary variables, two of which
concerns maintenance and replacement. They are defined as

xijt =

{

1, if shaft seal j in pump i is replaced at time t,

0, otherwise, i ∈ I , j ∈ J , t ∈ T .
(3.1)

and

yit =

{

1, if pump i is opened for maintenance at time t,
0, otherwise, i ∈ I, t ∈ T .

(3.2)

The third set of binary variables concerns whether the pumps are running
or not. These variables are defined as

qit =

{

1, if pump i is in use at time t,
0, otherwise, i ∈ I, t ∈ T .

(3.3)

The variables qit are used together with xijt and yit to calculate the remain-
ing life of the respective shaft seals since these are ageing only when the
pump is in use. The remaining lives, lijt, depend on the values of these
variables and are defined as

lijt = The remaining life of shaft seal j in pump i at time t,
i ∈ I , j ∈ J , t ∈ T .

(3.4)

The cost, a, for performing maintenance on a pump and the price, c, of a
new shaft seal are assumed to be constant over time. The objective is then
defined as that to

minimize
T

∑

t=1

3
∑

i=1



ayit + c

2
∑

j=1

xijt



 . (3.5)

No shaft seal can be replaced without the pump being opened for mainte-
nance, which is described by the constraints,

xijt ≤ yit, i ∈ I, j ∈ J , t ∈ T . (3.6)

A pump can not be running when maintenance is performed on it, i.e.,

yit + qit ≤ 1, i ∈ I, t ∈ T . (3.7)
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At each point in time there must be at least n pumps running for the turbine
to operate at full effect, i.e.,

3
∑

i=1

qit ≥ n, i ∈ I, t ∈ T . (3.8)

In Model 1 n = 2, i.e., at least two pumps must be running at the same
time. The remaining life, lijt, of shaft seal j in pump i at time t must be at
least equal to one for the pump to operate and it cannot exceed the life of
a new shaft seal, i.e.,

1 ≤ lijt ≤ U, i ∈ I, j ∈ J , t ∈ T . (3.9)

If shaft seal j of pump i is replaced at time t, the remaining life lijt equals
U , which is expressed by the constraints

lijt ≥ Uxijt, i ∈ I, j ∈ J , t ∈ T . (3.10)

The remaining life of a shaft seal is also dependent on whether the pump
is running or not. The following constraints express that the life of a shaft
seal may decrease from time t− 1 to time t only if the pump is running and
maintenance is not performed at time t:

lijt ≤ Uxijt + lij(t−1) − qit, i ∈ I, j ∈ J , t ∈ T \{1}. (3.11)

If the pump is running, i.e., if qit = 1, the remaining lives of the shaft seals
are decreased by one and when maintenance is performed the remaining lives
are increased to U . The remaining lives of the shaft seals may be decreased
by at most one unit between consecutive time steps since the wear of the
seal is constant when the pump is in use. This is modelled by the constraints

lij(t−1) − lijt ≤ 1, i ∈ I, j ∈ J , t ∈ T \{1}. (3.12)

Model 1 is thus defined as to minimize (3.5) subject to the constraints (3.6)–
(3.12) and

xijt, yit, qit ∈ {0, 1}, i ∈ I, j ∈ J , t ∈ T
lijt ≥ 0, i ∈ I, j ∈ J , t ∈ T .

(3.13)

If the remaining lives of all shaft seals are equal at time t = 1 the model,
(3.5)–(3.12), becomes symmetric, meaning that running pumps 1 and 2 at
time step 1 is equivalent to running pumps 1 and 3 or pumps 2 and 3
during time step 1. In order to decrease the number of feasible solutions
to the MILP (3.5)–(3.13) this symmetry should be erased. To break this
symmetry the model was forced to run pumps number one and two during
the first two time steps. The choice of two time steps was made to further
decrease the symmetry. The constraints describing this are given by:

qit = 1, i ∈ I, t = 1, 2. (3.14)

These constraints will reduce the number of feasible solutions without ex-
cluding all optimal solutions.
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3.1.1 Model 1a: Modelling with constant costs over time

Model 1a is described as to minimize (3.5) subject to the constraints (3.5)–
(3.13). The following models are based on this formulation of the optimiza-
tion problem.

3.1.2 Model 1b: Modelling with decreasing costs with re-

spect to time

The model (3.5)–(3.13), will typically possess several optimal solutions. In
practice, maintenance occasions are preferably placed as late as possible
within the time period considered. To shift the maintenance occasions to-
wards later but feasible points in time a small decrease in the maintenance
cost over time was included in the model, resulting in the objective function
to

minimize

T
∑

t=1

3
∑

i=1



ayit +
(

c + ε (T − t)
)

2
∑

j=1

xijt



 , (3.15)

where the value of ε > 0 was chosen small enough so as not to affect the
total numbers of maintenance occasions and shaft seal replacements during
the planning period. Model 1b is defined as to minimize (3.15) subject to
the constraints (3.6)–(3.13).

3.2 Model 2: Loss of capacity due to only one

pump being in use

Model 1 was modified to reflect the possibility to run only one of the pumps
but at a reduction of 50% of the capacity of the turbine. Running all three
pumps does not generate a higher capacity than running two pumps. Model
1 was complemented by the variables representing the efficiency of the sys-
tem of pumps and a set of constraints to consider this. The revenue from
the electricity produced by the plant was estimated to d = 200 SEK/MWh.
The maximum power output of the turbine is P = 500MW. The efficiency,
pt, of the pump system is dependent on the number of pumps in use, i.e,

pt ≤
1

2

∑

i∈I

qit, t ∈ T . (3.16)

The effect produced by the turbine is not higher when more than two pumps
are operating simultaneously and it cannot be negative, i.e.,

0 ≤ pt ≤ 1, t ∈ T . (3.17)

The constraints (3.8) were used with n = 1 instead of n = 2 as was the case
in Model 1. A cost is added when only one pump is running. This cost is
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due to the decreased power output of the turbine and it is dependent on
the electricity price. This cost was added to the objective function (3.5) in
Model 1. In this model the price of electricity is considered to be constant
over the planning period.

minimize
∑

t∈T



Pd (1 − pt) +
∑

i∈I



ayit + c
∑

j∈J

xijt







 (3.18)

Model 2 is then defined as to minimize (3.18) subject to the constraints
(3.6)–(3.13) and (3.16)–(3.17)

3.3 Model 3: Considering a cost for switching the

pumps on and off

Model 1 was modified by adding a cost associated with switching the pumps
on and off. Two cases were considered, one where the cost was added in
the objective function and one where the cost is represented by a decrease
in remaining life (a faster ageing) of the shaft seals. Two binary variables
were added to keep track of when the pumps were switched on or off. They
are described as

rit =

{

1, if pump i is switched on at time t,
0, otherwise, i ∈ I, t ∈ T .

(3.19)

and

sit =

{

1, if pump i is switched off at time t,
0, otherwise, i ∈ I, t ∈ T .

(3.20)

To the set of constraints (3.6)–(3.12) were added constraints concerning
these variables. They are described as

rit ≥ qit − qi(t−1), i ∈ I, j ∈ J , t ∈ T \{1}, (3.21)

sit ≥ qi(t−1) − qit, i ∈ I, j ∈ J , t ∈ T \{1}. (3.22)

This means that for t ≥ 2, qit and qi(t−1) are used to determine whether the
state of the pump has changed. If this is the case, one of the variables rit

and sit will receive the value one, and if not, both variables will receive the
value zero.

13



3.3.1 Model 3a: Cost for switching the pumps on and off

added in the objective function

Model 3a adds a cost in the objective function each time a pump is switched
on or off. This cost is associated with the work required for switching a
pump on or off. The costs used in the calculations were set to don = 500
SEK and doff = 500 SEK. The objective function 3.5 was modified to include
the new variables and their associated costs yielding the objective to

minimize

T
∑

t=1

3
∑

i=1



ayit + donrit + doffsit + c

2
∑

j=1

xijt



 (3.23)

Model 3a can thus be described by (3.23), (3.6)–(3.12) and

rit, sit ∈ {0, 1}, i ∈ I, t ∈ T . (3.24)

3.3.2 Model 3b: Loss of life due to extra wear on shaft seals

when switching pumps on and off

This model includes a decrease in remaining life of the shaft seals when a
pump is switched on or off. This decrease can be associated with the extra
wear the shaft seals are exposed to when the pumps are switched on or off.
The model is similar to Model 1 with the same objective function (3.5) but
with modified constraints. The loss of life for turning on and off the pumps
was set to gon = 1 and goff = 1 time units, respectively. The constraints
(3.11) and (3.12) were modified to take this into account. The remaining
life of a shaft seal at time t is dependent on not only whether the shaft seal
was replaced or whether the pump was running at time t − 1 but also on
whether or not the pump was switched on or off. The new constraints are
given by

lijt ≤ Uxijt + lij(t−1) − qit − ri(t−1)gon − si(t−1)goff ,

i ∈ I, j ∈ J , t ∈ T \{1}.
(3.25)

Between consecutive time steps the remaining life can be decreased by
at most one plus the eventual loss of life resulting from the pump being
switched on or off.

lij(t−1) − lijt ≤ 1 + ri(t−1)gon + si(t−1)goff ,

i ∈ I, j ∈ J , t ∈ T \{1}.
(3.26)

Model 3b can thus be described as to minimize (3.5) subject to the
constraints (3.6)–(3.10), (3.21)–(3.22) and (3.24)–(3.26).
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Chapter 4

Case study

4.1 A summary of the models and parameters con-

sidered

The models described in Section 3.1-3.3 were solved both with and without
the symmetry breaking constraints (3.14) in order to examine how the sym-
metry of the problem affects the solutions reached and the corresponding
solution time.

Description Parameter Value Unit

Number of pumps I 3
Number of shaft seals in each pump J 2
Number of time steps in the model T 55 Time steps
Life of a new shaft seal U 22 Time steps
Cost of opening a pump a 4800 SEK
Cost of a new shaft seal c 86000 SEK
Decrease of cost with each time step ε 0.5 SEK
Power of turbine P 500 MWh
Cost of production loss d 200 SEK/MWh
Cost for switching a pump on or off don 500 SEK
Cost for switching a pump off doff 500 SEK
Reduction of life when switching a pump on gon 1 Time steps
Reduction of life when switching a pump off goff 1 Time steps

Table 4.1: Data for different scenario setups

4.2 Software used to perform the tests

The models described in Section 3 were implemented in the AMPL modelling
language for mathematical programming and solved using the MILP solver
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Cplex. Cplex employs a branch and bound solution strategy as described in
Section 2. Matlab was used to process the output data from the solver and
for the computations made to compare Model 1a with other maintenance
planning policies (according to Section 3.4). The results from these tests
are reported in Section 5.

4.3 A simulation of the use of Model 2 in compar-

ison with two maintenance policies

A comparison between the maintenance planning described in Model 2 and
other common maintenance philosophies was made to examine how well the
models described in this thesis compare to other commonly used mainte-
nance policies with respect to production vailability and total cost of main-
tenance. Model 2 was used with n = 0 in the constraints (3.8), i.e. when
not running any pumps the turbine will not produce any electricity. The
maintenance policies used in the comparisons in which a corrective model
where shaft seals are replaced as they break and no opportunistic mainte-
nance is performed. The other model used is a so called ”replace all” model
where both shaft seals in a pump are replaced when one breaks. The com-
parison was performed using stochastic lives of the components according to
a gamma distribution. At each time step a new maintenance decision was
made depending on the remaining lives of the components and on whether
or not a shaft seal had broken during the previous time step.
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Chapter 5

Results

The models described in Section 3 were examined using AMPL with the
Cplex solver. Cplex found optimal feasible solutions to all the models with
the exception of some of the sensitivity analysis of Model 3b. These com-
putations were run for 6000 seconds to find a lower bound for the objective
value. The maintenance plans for the different models are very similar and
differed only on at which time step maintenance were performed while the
number of maintenance occasions and shaft seals replaced was the same for
all models and parameters, except Model 3b that resulted in more main-
tenance occasions when the loss of life when switching a pump on or off
was increased. To study the stability of the models the values of some pa-
rameters were varied and the difference in maintenance schedules and the
computation times were studied. The sensitivity studies showed that all
the models are stable with respect to the CPU time required to find an
optimal feasible solution and the maintenance schedules for the parameters
tested. By varying the price of performing maintenance in Model 1, the
price of electricity in Model 2, and the cost of switching a pump on and
off in Model 3a, it was concluded that the models are all reasonably stable
and that it takes large variations in these constants to make a difference in
the maintenance schedules. When comparing Model 1 with two common
types of maintenance planning policies it performed better than both of
these when the cost of performing maintenance is around the same level as
it is today, showing that this type of maintenance planning can improve the
reliability and availability of the pumps as well as decrease the total cost of
maintenance during the time period considered.

5.1 Model 1: At least two of three pumps must

always be in use

The model defined by (3.5)–(3.13) was solved with and without the con-
straints (3.14) to examine how the symmetry of the model affects the com-
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putation time. Figure 5.1 shows the maintenance schedules for the feasible
solutions found by Cplex using the branch and bound method described in
Section 2, with (♦) and without (◦) the constraints (3.14). The figure shows
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Figure 5.1: The feasible maintenance schedules for Model 1a found by Cplex
with (♦) and without (◦) the constraints (3.14).

the four and two feasible solutions found by Cplex for the respective models.
The inclusion of the constraints (3.14) yields a smaller number of feasible
solutions before reaching an optimum compared to the model without the
constraints (3.14). However, the CPU time spent to find an optimal solu-
tion is longer when including the constraints (3.14), as shown in Figure 5.2.
Figure 5.3 shows the number of shaft seals replaced and the number of
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Figure 5.2: Objective values for the feasible solutions to Model 1a with (♦)
and without (◦) the constraints (3.14), for the four and two, respectively,
feasible solutions found, which are illustrated in Figure 5.1.

maintenance occasions as a function of the CPU-time needed to reach the
respective solution. The numbers of maintenance occasions and shaft seals
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Figure 5.3: The number of maintenance occasions (- - -) and the number of
shaft seals replaced (—) for Model 1a with (♦) and without (◦) constraints
(3.14), for the four and two, respectively, feasible solutions found, which are
illustrated in Figure 5.1.

replaced are decreasing constantly but not equally. The ratio between the
number of shaft seals replaced and the number of maintenance occasion
approaches 2 as the solution approaches optimum. This is expected, since
the shaft seals possess the same remaining life at t = 1 and since they age
equally when the pump is in use, it is therefore optimal that either none or
both shaft seals of a pump are replaced at each maintenance occasion.

5.1.1 Model 1b: Adding a small cost that decreases with

time

Figure 5.4 shows maintenance schedules for Model 1b defined by (3.6)–(3.13)
and (3.15) with (♦) and without (◦) the cost terms ε(T − t), t ∈ T which
shifts the maintenance occasions towards later time points in the time spans
given by the constraints (3.9)–(3.11) defining the remaining lives of the shaft
seals. This makes sense since ε is the fictitious value by which the cost of
replacement is decreased between consecutive time steps. When ε > 0 the
maintenance occasions will move towards later time points the remaining
lives of the components stay non-negative at all time points. The number of
maintenance occasions and shaft seals replaced and hence the optimal total
cost of maintenance is exactly the same as for Model 1a.

A good feasible solution, with the same number of maintenance occasions
and shaft seals replaced, is reached in a CPU-time that is comparable to
the CPU-time taken to reach the optimal feasible solution in Model 1a, as
shown in Figure 5.5. All feasible solutions found, with the exception of
the first have the same number of maintenance occasions and shaft seals
replaced but differs in that the maintenance occasions are shifted towards
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Figure 5.4: The feasible maintenance schedules for Model 1b found by Cplex
with (♦) and without (◦) the cost terms ε (T − t) , t ∈ T , where ε = 0.5.

later time points. An optimal feasible solution is reached after almost 10
seconds which is ten times longer CPU-time than it took to find the optimal
feasible solution of Model 1a. Figure 5.6 shows the number of shaft seals
replaced and the number of maintenance occasions needed. When ε was set
to 0.5SEK more feasible solutions were found and an optimal solution was
reached were the number of maintenance occasions and shaft seals replaced
where the same as in the case when ε = 0. The CPU-time taken to reach the
optimal solution in this model was longer than the time needed for Model
1a but still not unreasonable.
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Figure 5.5: Objective values for the feasible solutions to Model 1b with (♦)
and without (◦) the cost terms ε (T − t) , t ∈ T , where ε = 0.5, for the
two and seven, respectively, feasible solutions found, which are illustrated
in Figure 5.4.
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Figure 5.6: The number of maintenance occasions (- - -) and the number
of shaft seals replaced (—)for Model 1b with (♦) and without (◦) the cost
terms ε (T − t) , t ∈ T , where ε = 0.5, for the two and seven, respectively,
feasible solutions found, which are illustrated in Figure 5.4
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5.1.2 Sensitivity of Model 1a

To check the sensitivity of Model 1a with respect to cost relations it was
solved for different values of the cost of a maintenance occasion a. The
numbers of maintenance occasions and shaft seals replaced were the same for
all values of a examined. There were a total of three maintenance occasions
at which both shaft seals of a pump were replaced. These values represent
the the minimum amount of maintenance that has to be performed for the
turbine to be running during the time period considered.

The maintenance schedules differed for the different values of a but since
the problem comprises symmetries there exists more than one optimal so-
lution for each value of a and, hence, this is not surprising. The CPU-time
required to reach an optimal solution to the model for the different values
of a did only vary between three and seven seconds and there is no obvi-
ous relation between the CPU-time and the value of a. This indicates that
Model 1a is stable and is not much affected by a change in the price of
performing a maintenance occasion. The different values of a employed in
the computations are given in Table 5.1.

a 1200 2400 4800 9600 19200 38400 76800

Table 5.1: The different values of a employed in the sensitivity calculations.

5.2 Model 2: Loss of capacity due to only one

pump being in use

The model solved was defined by (3.6)–(3.12) and (3.16)–(3.18). The main-
tenance schedules for this model, as shown in Figure 5.7, differs from the
other models. Both the model with (♦) and without(◦) the constraints (3.14)
reached a first feasible solution with only three maintenance occasions. Even
though this is the same number of maintenance occasions as in the optimal
solution of Model 1a, the cost of maintenance, as illustrated in Figure 5.8 is
considerably larger due to the loss of production capacity when the turbine
is run with only one working pump, i.e. at only half the production capac-
ity. This solution is still feasible since the turbine can operate with only one
pump in use.

The loss of effect when only one pump is in use yields a larger loss of
income than the cost for the additional maintenance occasions required to
keep two pumps running at all times. As seen in Figure 5.8 the loss of income
from the turbine when less than two pumps are running is added to the cost
of maintaining the pumps. This cost is increased rapidly when less than two
pumps are in use and it is therefore worth performing maintenance on the
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Figure 5.7: The feasible maintenance schedules for Model 2 found by Cplex
with (♦) and without (◦) the constraints (3.14).

pumps to keep at least two of them running at all times. In Figure 5.9 the
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Figure 5.8: Objective values for the feasible solutions to Model 2 with (♦)
and without (◦) the constraints (3.14) for the five feasible solutions illus-
trated in Figure 5.7.

number of maintenance occasions and shaft seals replaced are shown. In the
first solutions the numbers are low and not much maintenance is performed
since few of the pumps are running. The number of maintenance occasions
and shaft seals replaced then increase and peak before decreasing to the
minimum of maintenance occasions needed to keep two pumps running at
all times. At the optimal solution the number of maintenance occasions
and shaft seals replaced are the same as for Model 1a even though the
maintenance schedule differs.

The values of the Figures 5.7–5.8 are summarized in Table 5.2
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Figure 5.9: The number of maintenance occasions (- - -) and the number of
shaft seals replaced (—) for Model 2 with (♦) and without (◦) constraints
(3.14), for the five feasible solutions illustrated in Figure 5.7.

5.2.1 Sensitivity of Model 2

When varying the income per MWh the maintenance schedule does not
change much. This may be due to the maintenance schedule being already
optimized to keep two pumps running at all points in time, and that the
total cost for this is as small as possible even though the cost of production
loss varies. It also shows that it is almost always more economical to run
the turbines at full capacity even if this means that more maintenance has
to be performed on the pumps. For a sufficiently low price of electricity it
will not be economical to run two pumps at the same time. The reduction
in maintenance costs will then balance the income lost when only one pump
is running and only half the capacity of the turbine is available. The limit
when this happens is only a fraction of the current price of electricity and our
computations showed that the price has to be reduced to 0.05 SEK/MWh
before this happens. This can be compared to the current price of 200
SEK/MWh. There is thus little chance that the full power output of the
turbine will not be enough to cover the cost needed to maintain the full
capacity of the turbine.

5.3 Model 3: Considering a cost for switching the

pumps on and off

The two models both seek to minimize the number of times a pump is
switched on or off. Model 3b was considerably faster to solve than Model
3a. This can be due to that the added constraints did tighten the feasible
region while the model with a new objective function had a completely
new surface. Common for the two models were the fact that the added
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Model 2 w.o. constraints (3.14) 1 2 3 4 5

# time steps running one pump 14 2 0 0 0
# of shaft seals replaced 6 6 10 8 6
Cost of maintenance (MSEK) 0. 53 0.53 0.89 0.71 0.53
Cost of production loss (MSEK) 350 50 0 0 0
Total cost (MSEK) 350.53 50.53 0.89 0.71 0.53

Model 2 w. constraints (3.14) 1 2 3 4 5

# time steps running one pump 22 14 10 9 0
# of shaft seals replaced 4 4 4 6 6
Cost of maintenance (MSEK) 0.354 0.354 0.354 0.530 530
Cost of production loss (MSEK) 550 350 250 225 0
Total cost (MSEK) 550.35 350.35 250.35 225.53 0.53

Table 5.2: Data for different scenario setups without the constraints (3.14)

constraints (3.14) speeded up the solution procedure. This was not the case
with the previous models.

5.3.1 Model 3a: Cost for switching on and off a pump added

in the objective function

Model 3a is defined by (3.6)-(3.12) and (3.23). In Figure 5.10 the mainte-
nance schedules for solutions found with (♦) and without (◦) the constraints
(3.14) are shown as well as the number of times a pump was turned on or off
in the respective solutions. In this case more solutions were produced before
reaching an optimal solution when applying constraint (3.14). The CPU-
time required to reach an optimal solution was however shorter with these
constraints as seen in Figure 5.11. Figure 5.12 also shows that the minimum
number of shaft seals replaced and maintenance occasions performed were
reached sooner. In this case the added constraint led to an improved model.
This model, being more complex than Model 1 required more CPU-time to
reach an optimal solution.
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Figure 5.10: The feasible maintenance schedules for Model 3a found by
Cplex with (♦) and without (◦) constraints (3.14) and the number of times
a pump was turned on or off in the maintenance schedule for the model with
( ) and without ( ) the constraints (3.14).
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Figure 5.11: Objective values for Model 3a with (♦) and without (◦) con-
straints (3.14), for the five and four, respectively, feasible solutions illus-
trated in Figure 5.10.
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Figure 5.12: The number of maintenance occasions (- - -) and the number of
shaft seals replaced (—)for Model 3a with (♦) and without (◦) constraints
(3.14), for the five and four, respectively, feasible solutions illustrated in
Figure 5.10.
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5.3.2 Model 3b: Loss of life due to extra wear on shaft seals

when switching a pump on and off

The comparison was made over 100 scenarios and used stochastic lives of
components distributed according to gamma distributions. The mainte-
nance schedules of this model are shown in Figure 5.13, and as seen the
model with (♦) the constraints (3.14) did only reach two feasible solutions
within reasonable time compared to the six solutions reached by the model
without (◦) the constraints (3.14). The solution reached by the former model
was however better than the by the latter, as seen in Figure 5.14, and it was
also reached much faster. Figure 5.15 also shows the smaller number of
shaft seals replaced and maintenance occasions performed that the model
with the constraints (3.14) reached. The number of maintenance occasions
and shaft seals changed were the same as in the previous models and thus
the loss of life when switching a pumps on and off was not large enough
to affect the number of maintenance occasions needed to keep the pumps
running. This can also be seen when comparing the number of times a pump
is switched on and off in Model 3a compared to Model 3b. In Model 3a a
pump is switched off or on a total of eight times in the optimal solutions
for the model both with and without the constraints (3.14) as seen in Fig-
ure 5.10 while in Model 3b the optimal solutions for the model both with
and without the constraints (3.14) the pumps are turned on or off a total of
twelve times. This is due to the extra wear on the pumps when turning them
on or off. The wear is not large enough to require extra maintenance but
the pumps running have to be interchanged to avoid the extra maintenance
since the remaining lives of the shaft seals at the end of the planning period
is smaller than in Model 3a.
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Figure 5.13: The feasible maintenance schedules for Model 3b found by
Cplex with (♦) and without (◦) constraints (3.14) and the number of times
a pump was turned on or off in the maintenance schedule for the model with
( ) and without ( ) the constraints (3.14).
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Figure 5.14: Objective values for Model 3b with (♦) and without (◦) con-
straints (3.14), for the six and four, respectively, feasible solutions illustrated
in Figure 5.10.
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Figure 5.15: The number of maintenance occasions (- - -) and the number of
shaft seals replaced (—) for Model 3b with (♦) and without (◦) constraints
(3.14), for the six and four, respectively, feasible solutions illustrated in
Figure 5.10.

5.3.3 Sensitivity of Model 3a

When varying the cost of switching pump on and off it may be expected
that the number of occasions a pump is switched on or off will decrease with
increasing associated prices, don and doff . However, the number of times
a pump was switched on or off remained constant when varying the price.
This number of switching pumps on or off, 8, is the smallest number of
times that pumps has to be switched on or off to enable maintenance to be
performed. The CPU-time taken to solve Model 3a with different values of
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don and doff did not vary much and since an optimal solution was reached
for all values of don and doff the model is considered stable.

5.3.4 Sensitivity of Model 3b
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Figure 5.16: Cost of maintenance and number of times a pump is switched
on or off for different loss of life when turning a pump on or off. Where
no optimal solution was reached the best solution found was compared with
the lower bound found by Cplex after 6000 seconds.

When the loss of life when switching a pump on or off is decreasing
the number of times this can occur without affecting the number of times
maintenance has to be performed on the shaft seals during the planning
period is increasing.When the loss of life when switching a pump on or off
the total cost of maintenance will increase due to the increased number of
shaft seals that need to be replaced. This will also lead to an increase in the
number of times a pump is turned on or off.

This is illustrated in Figure 5.16 where the total cost of maintenance for
different values of gon and goff as well as the number of times a pump is
switched on or off is shown. When the loss off life when switching on or off
a pump, gon and goff , was increased to 4 or more the model did not reach
an optimal solution and the lower bound calculated by Cplex is seen as ∗ in
the graph. To find this bound the model was run for 6000 seconds. To the
right in Figure 5.16 the number of times a pump is switched on or off for
different values of gon and goff is shown. When gon = goff = 2 the number of
times is reduced to 8 while larger or smaller values show a larger number of
times a pump is turned on or off. In the first case this is due to that the loss
of life is big enough to affect the number of maintenance occasions needed
and in the latter case the loss is not big enough to affect the maintenance
schedule and therefore no minimization of the number of times a pump is
switched on or off is needed.
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5.4 A simulation of the use of Model 2 in compar-

ison with two maintenance policies

Model 2 describes an opportunistic maintenance policy that makes a decision
on whether or not to replace one or two shaft seals in a pump depending on
the cost of performing maintenance as well as on the condition of the shaft
seals of the other two pumps. This model was compared to two different
policies described in Section 4.3 in order to examine the availability and
cost of maintenance for the different maintenance policies. The different
maintenance policies used in the comparison are described as follows: in the
first policy no opportunistic maintenance is performed and the shaft seals are
replaced only when they break, and in the second policy (the “replace all”
policy) both shaft seals in a pump are replaced when one shaft seal breaks.
The third policy in the comparison is the opportunistic maintenance policy.
The maintenance policies were modelled over 100 scenarios with 55 time
steps each using Matlab, and the lives of the shaft seals were modelled by
a Gamma(20000,4)-distribution which corresponds to 20 time steps as the
maximum life of a shaft seal. With this modelling the shaft seals possess an
expected life when they are new but they can break unexpectedly before that
and the maintenance schedule has to be re-modelled accordingly. The mean
of the cost of maintenance from these computations were used in order to
calculate the availability and the total cost of maintenance for the different
maintenance policies. The maintenance schedule when using each of the
three policies was computed using Algorithm 1.

Algorithm 1 Maintenance cost of using a policy
t = 0, cost = 0
give all shaft seals the life of a new shaft seal
while t ≤ T do

check if any shaft seal is broke
use the policy to determine which shaft seals to replace at time t

if maintenance performed at time t then

cost = cost + cost of maintenance + cost of replaced shaft seals
end if

t = t + 1
uppdate the lives of the shaft seals at time t

end while

return cost

The availability and total cost of maintenance for the different main-
tenance policies were compared for the different values of the cost a for
performing maintenance shown in Table 5.1 and the results were compared.
The availability of the turbine, i.e. how often the turbine is running at full
capacity was constant when using the corrective and the replace all main-
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tenance philosophies, at 84% and 90.5%, respectively. The availability of
these maintenance policies are thus not dependent on the cost a for per-
forming maintenance. The reliability of the opportunistic model, however,
varied with the cost a as shown in Figure 5.17. When the cost a is small the
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Figure 5.17: The availability of the turbine for the different maintenance
policies.

opportunistic model will act more like the corrective model and shaft seal
are only replaced when they break since the cost for each maintenance occa-
sion is only a small share of the total cost of maintenance. In this case the
most reliable maintenance policy is the opportunistic optimization model.
When the cost a is large the availability of the turbine when using the op-
portunistic maintenance model will approach the reliability of the replace
all model, since a large cost for performing maintenance makes it cheaper to
minimize the number of maintenance occasions and thus replace both shaft
seals of a pump at the same time. When the cost a is in the medium range,
between 2400 and 19200 SEK, the opportunistic model is the maintenance
policy with the highest availability of the turbine and hence the lowest total
cost of maintenance when the cost for production loss is included. This can
be due to that the opportunistic maintenance model can predict how many
shaft seals will break during the next time step and thus replace shaft seals
before they fail to avoid that two pumps are being shut down for mainte-
nance at the same time. The corrective maintenance model did with its low
availability prove to be the maintenance policy that resulted in the lowest
reliability of the three models compared at all costs a of performing main-
tenance.
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Chapter 6

Discussion

The availability of the production is very important in nuclear power plants,
hence choosing a proper maintenance principle is important in order to
achieve a high reliability. When comparing the different maintenance sched-
ules it is clear that the opportunistic maintenance optimization model leads
to a more reliable production as well as lower maintenance costs. The size of
the problems solved depends very much on the number of parts that require
maintenance. In this model, where only six components are considered, it
is possible to reach an optimal solution for each problem. With a growing
model size this might not longer be the case. The lenght of the time steps
used in the models described here (1000h) makes it quite inaccurate since a
replacement of a shaft seal most likely will take less time than this to com-
plete. However, the size of the problem grows very fast with the number of
time steps used and when choosing the length of the time steps this has to be
taken into account. Other causes for production stops in the nuclear reactor
that could give opportunities for maintenance on the feed-water pumps are
not taken into account. The use of those opportunities can further decrease
the risk of pumps breaking and causing production losses.
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Chapter 7

Conclusion

In this thesis different philosophies of maintenance have been compared with
respect to reliability of production and cost of maintenance. The calcula-
tions performed show that with the current price of performing maintenance
the opportunistic maintenance optimization model is the most cost efficient
decision principle since it results in a higher availability of the turbine com-
pared to the other maintenance policies tested. The corrective maintenance
model used today proved to be the least reliable in all cases while the “re-
place all” model is the best when the cost for each maintenance occasion is
low. According to our experiments using the opportunistic model instead of
the corrective model may deacrese the production losses due to failures of
shaft seals in the feed-water pumps by 50%.

35



36



Bibliography

[1] R. K. Mobley, Maintenance Fundamentals, Elsevier, 2004

[2] www.svenskenergi.se

[3] J. Nilsson, A. Wojciechowski, A.-B. Strömberg, M. Patriks-
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