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Abstract

We study a basic mathematical model for opportunistic maintenance planning. Two
new classes of facets are derived, based on combinatorial implications and zero-half
Chvátal-Gomory cuts, and it is indicated how these generalize to extended replace-
ment models. Furthermore a dynamic programming scheme for solving the model
is presented and shown to in some cases have superior performance to plain vanilla
branch-and-cut solver.

Sammanfattning

Vi studerar en enkel matematisk modell för opportunistisk underhållsplanering.
Två nya klasser av fasetter presenteras, baserade på kombinatoriska implikationer samt
speciella Chvátal-Gomory olikheter. Vidare indikeras hurdessa fasetter kan generalis-
eras till utvidgade modeller. En dynamisk programmeringsalgoritm ges även för att
lösa den givna modellen, och demonstreras i vissa fall ha överlägsen prestanda jämfört
med en standard branch-and-cut-lösare.
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Introduction

The problem of planning maintenance is a continuously growing subject. As our soci-
ety grows ever more technologically advanced, with more andmore tasks being done
by machines, there are simply many components that can fail.As a natural conse-
quence, the costs of performing maintenance is growing, andwill likely continue to
do so for many years to come. Therefore, the importance of performing maintenance
operations well seems hard to overestimate. It is estimatedin a recent study (by Fo-
rum Vision Instandhaltung, Germany) that in the European Union maintenance costs
in the manufacturing industry alone is as high as $2 trillionannually, while another
source [RKM04] states that in the US, roughly one third of thecost of maintenance
is wasted by inefficient management methods. This could meanthat maintenance in
the EU amounts to roughly twice the GDP of Italy, and the GDP ofthe Netherlands is
wasted in inefficiency.

The scope of this thesis is to study the mathematical aspectsof the concept of
opportunistic maintenance planning. The idea is to use somemathematical model to
decide whether or not to perform maintenance that is not strictly neccessary when an
opportunity arises. That is, we anticipe a future need for maintenance, and ask the
question whether or not the cost of replacing a part that is not yet broken outweighs the
cost of having to perform maintenance again later. An example would be to replace all
the tires of a car when it gets a flat, because we interpret the flat as a sign that all the
tires are worn out.

This thesis is divided into five main chapters. Chapter 1 discusses some brief the-
oretical results, and serves mainly to fix notation and references for later chapters.
For a more thorough introduction to combinatoral optimization we refer the reader to
[NW88]. Chapters 2 through 4 contains the main body of this thesis, in that they dis-
cuss the facial structure of a maintenance polytope, and efficient algorithms for solving
the replacement problem. Numerical results are then provided in chapter 5.
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Chapter 1

Basic theory of combinatorial
optimization

This chapter serves to collect some basic results of combinatorial optimization as well
as to fix notation. Much of this text follows the treatment on the subject in [NW88].

1.1 Basic premises

By a combinatorial problem we shall understand a problem of the form

minimizecTx, (1.1a)

subject to Ax ≤ b, (1.1b)

x ∈ X, (1.1c)

wherec,x ∈ R
n, A ∈ R

m×n, b ∈ R
m, andX is some finite set. We will throughout

assume thatX = {0, 1}n. Let us denote the feasible set of (1.1) byS. It is a well-
known fact from linear programming theory that if an optimumto a linear programming
problem exists, it can be taken as an extreme point of the feasible polyhedron. Further-
more, the representation theorem for convex polyhedra establishes that any extreme
point of the convex hull ofS is feasible inS, and thatconv(S) is a bounded polytope.
Thus, we can if we so wish in (1.1) replaceS with conv(S), transforming the problem
into a linear programming one. Let us write this problem as that to

minimizecTx, (1.2a)

subject toA′x ≤ b′, (1.2b)

whereA′, b′ are such thatconv(S) = {x ∈ Rn|A′x ≤ b′}. An approch to solving
(1.1) could therefore be to solve (1.2). However, this wouldrequire a complete de-
scription of the matrixA′, which in practice is generally undoable. Instead one is often
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CHAPTER 1. BASIC THEORY OF COMBINATORIAL OPTIMIZATION

forced to work with approximations ofconv(S). The canonical approximation would
be to in (1.2) replaceA′ by A from (1.1). A tighter approximation may be obtained if
one is able to somehow find some subset of rows of the matrixA′. Hopefully, as the
approximation ofconv(S) gets tighter, the solutions to therelaxedversion of (1.2) can
be used to guide us towards a solution of (1.1).

1.2 A brief primer of polyhedral theory

In this section we list some useful theorems for use in the rest of this thesis. We begin
by defining the notion of afacetof a polyhedronP . To do this we first need a concept
of faces and their dimensions.

Definition 1 (Face). A face of a polyhedronP = {x ∈ R
n | Ax ≤ b} is a setF ⊆ P

of the formF = {x ∈ P |πT x = π0}, where(π, π0) is such thatπT x ≤ π0 for all
x ∈ P . We say that(π, π0) representsthe faceF . It is calledproper if F 6= ∅ and
F 6= P .

Hence, a face is the intersection ofP and a hyperplane described by a valid in-
equality forP . From this definition it can be seen that a face of a polyhedronis itself a
polyhedron, and we can define a common notion of dimension.

Definition 2 (Polyhedral dimension). A polyhedronP = {x ∈ R
n | Ax ≤ b} is said

to be of dimensionk if the maximum number of affinely independent points ofP is
k + 1. The codimension ofF is defined ascodim(F ) = n − dim(F ).

As the maximum number of affinely independent points ofR
n is n + 1, it fol-

lows that no polyhedron inRn can have dimension greater thann. If the dimension
is exactlyn we call the polyhedronfulldimensional. In the context of combinatorial
optimization, fulldimensionality can be understood as there being no redundancies in
the modelling. That is, it is not possible to immediately conclude from the constraints
that some variable must be set to a fixed value. It can thus be interpreted as there being
no hidden equality constraints in the matrixA of (1.1). It also follows from this defini-
tion that polyhedral dimension is the same as the vector space dimension of the tangent
vectors ofF .

We are now ready to define a facet ofP .

Definition 3 (Facet). A face of a polyhedronP of dimensionk is called a facet if it is
of dimensionk − 1.

A facet represented by(π, π0) is thus the tightest possible valid inequality forP ,
in the sense that it cannot be translated nor tilted into another valid inequality that is
not implied byx ∈ P, πT x ≤ π0. Hence, when searching for rows of the matrixA′

in (1.2) it is desirable to find facets ofconv S. To be able check whether rows define
facets, we need a less abstract characterization than is given in Definition 3, which the
following theorem gives us.

Theorem 4(characterization of facets). LetP be a fulldimensional polyhedron inRn

and letF = {x ∈ P |πT x = π0} be a proper face ofP . The following statements are
equivalent:
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1.3. INTEGRAL POLYHEDRA

1. F is a facet ofP ,

2. If λT x = λ0 for all x ∈ F , then(λ, λ0) = α(π, π0) for someα ∈ R,

3. codim F = 1.

Furthermore, the equivalence between2 and3 remains true even if the assumption on
the fulldimensionality ofP is dropped.

Proof. The equivalence between1 and2 is established in [NW88]. The equivalence
between1 and3 follows immediately from the definition of a facet of a fulldimensional
polyhedron, which completes the proof whenP is fulldimensional. Let us now drop
the assumption onP being fulldimensional, and show that2 ⇔ 3. Let x0 ∈ F . Then
it holds that

λT (x − x0) = 0, ∀x ∈ F (1.3)

and hence also that

λT y = 0, ∀y ∈ Span(F − x0). (1.4)

In other words,λ ∈ Span(F − x0)⊥. From basic linear algebra we now obtain

dim(λ|λT x = λ0,∀x ∈ F ) + dim(F ) = dim(Rn), (1.5)

from which the equivalence of2 and3 immediately follows.

That is, to show that a valid inequality forP yields a facet, we check that the vector
space dimension of the orthogonal complement of the tangentvectors ofF has a low
enough dimension.

1.3 Integral polyhedra

A polyhedronP is said to beintegral if all of its extreme points are integral, and a
matrixA such that any submatrix ofA has determinant−1, 0 or 1 is calledtotally uni-
modular(TU). We have the following theorem, which can be viewed as a consequence
of Cramer’s rule.

Theorem 5. If A is TU, then the polyhedronP = {x ∈ R
n | Ax ≤ b} is integral for

all b ∈ Z
n.

This theorem can be very useful, since if we know that a matrixin (1.1) is TU, we
can immediately replace the condition thatx ∈ {0, 1}n with x ∈ [0, 1]n. Furthermore,
some ways exist in which a matrix can checked for TU, which in many cases are based
on network properties on the matrix. A treatment of this theory lies beyond the scope
of this thesis and we refer the interested reader to [NW88].
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CHAPTER 1. BASIC THEORY OF COMBINATORIAL OPTIMIZATION

1.4 Chvátal-Gomory rounding

Generating rows ofA′ in (1.2) is not a trivial problem. However some general methods
to do this exist, and Chvátal-Gomory Rounding is such an approach that will prove to
be fruitful in Chapter 3. We assume without loss of generality that in (1.1),A ∈ Z

m×n

andb ∈ Z
m. Then we may obtain a new valid inequality forS1 by taking a non-

negative linear combination of the rows ofA.
Let ui, i ∈ {1, . . . ,m} be non-negative real numbers. Then

n
∑

j=1

(

m
∑

i=1

uiaij

)

xj ≤
m
∑

i=1

uibi (1.6)

is a valid inequality forS. We may round the left hand side down yielding

n
∑

j=1

⌊

m
∑

i=1

uiaij

⌋

xj ≤
m
∑

i=1

uibi (1.7)

as another valid inequality forS. Now the left hand side is an integer, asxj ∈ {0, 1},
and hence we may round the right hand side down as well, yielding

n
∑

j=1

⌊

m
∑

i=1

uiaij

⌋

xj ≤

⌊

m
∑

i=1

uibi

⌋

(1.8)

as a new valid inequality forS. The procedure above is calledChvátal-Gomory Round-
ing and the obtained inequality is called a Chvátal-Gomory (CG)inequality.

The procedure may of course be applied recursively, also using previously obtained
Chvátal-Gomory inequalities as the basis for new CG inequalities. The class of CG
inequalities can then be defined as any inequality obtained after a finite number of
applications of the CG procedure, as well as any valid inequality that is implied by the
CG inequalities. These implied inequalities are then said to be dominated by the CG
inequalities.

Given the inequalities of (1.1), it follows that the inequalities (1.6) and (1.7) are
redundant in the description ofconv(S). The natural question arises whether (1.8) can
be nonredundant. The following theorem establishes this and more.

Theorem 6 (Theorem 2.8 [NW88]). Let πT x ≤ π0 with (π, π0) ∈ Z
n+1 be a valid

inequality forS = P ∩ Z
n with P = {x ∈ R

n
+|Ax ≤ b,x ≤ 1}. ThenπT x ≤ π0 is

dominated by a Chvátal-Gomory inequality forS.

This theorem tells us that, in principle, to solve any combinatorial problem, all we
need to do is to find all the Chvátal-Gomory inequalities and solve the linear program-
ming problem (1.2). Another theorem in [NW88] tells us that this generation of CG
inequalities can be done in a finite, but likely intractable,number of steps. Furthermore,
the linear programming problem (1.2) may also become too large to handle.

1That is, a row ofA′ in (1.2).
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1.5. AUTOMATED FACET GENERATION

1.5 Automated facet generation

When hunting for facets of a polytope, it is very helpful to have a computer program
capable of generating all facets for some small instance of the problem at hand. One
way of doing this is complete enumeration coupled with Fourier-Motzkin elimination.

Given a combinatorial optimization problem, it is in principle easy to enumerate the
feasible set, as it is finite. Suppose we have such an enumeration: {v1, v2, . . . , vN}.
Then we may describe the convex hull of those points as the setof x ∈ [0, 1]n satisfying

x =
N
∑

i=1

λivi, (1.9a)

1 =

N
∑

i=1

λi, (1.9b)

0 ≤ λi, i = 1, . . . , N (1.9c)

for someλi, i = 1, . . . , N . The idea is to project out the variablesλi, to yield a
system of equations and inequalities containing onlyx. This can be done by means of
Fourier-Motzkin elimination. To project outλ1, we write the system (1.9) as

λ1 ≥ A(x, λj), j ≥ 2 (1.10a)

λ1 ≤ B(x, λj), j ≥ 2, (1.10b)

where we can interpret the matricesA andB as setting variable dependent upper and
lower bounds on the variableλ1, respectively. It then follows that given(x, λi), i ∈
{2, . . . , N}, (x, λ) is feasible in (1.9) if and only if

max A(x, λj) ≤ λ1 ≤ min B(x, λj). (1.11)

Thus, there exists someλ1 such that(x, λ) is feasible in (1.9) if and only if

max A(x, λj) ≤ min B(x, λj). (1.12)

Hence (1.12) is a system not containingλ1 such that the solution set is equal to the
solution set of (1.9) projected onλ1 = 0. By repeating this we may project out all
the variablesλi, i ∈ {1, . . . , N} and obtain a facial representation of the polytope in
question.

Unfortunately, this projection can be a very slow algorithm. Let nA, nB be the
number of rows ofA andB, respectively. Then the modelling of (1.12) with linear
inequalities requires in the worst case scenarionAnB rows. Hence the number of
inequalities may grow very large, and using redundancy checks to remove inequalities
is very important. Even so, this procedure is not applicablebut for the smallest of
problems. However, studies of the facets of small instancesof a class of problems may
lead to insights into more general structures that apply to all instances of that class.
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Chapter 2

Basic replacement model

An instance of the Basic Replacement Problem (BRP) is definedas follows. Consider a
setN of components,N := |N |, and a setT = {1, . . . , T}, T ∈ N being the planning
horizon. A componenti ∈ N is assigned a life limit ofTi timesteps, and a cost of
replacementcit. There is also a fixed costdt associated with performing maintenance
for any component at timet. The objective is to minimize the cost of a maintenance
schedule, keeping the system running without failure during the planning period. This
is encoded in a problem with the variables:

zt =

{

1, maintenance is performed at timet,

0, otherwise,
t ∈ T ,

xit =

{

1, parti is replaced at timet,

0, otherwise,
i ∈ N , t ∈ T ,

yielding the BRP as

minimize
∑

t∈T

∑

i∈N

citxit +
∑

t∈T

dtzt, , (2.1a)

subject to
l+Ti
∑

t=l+1

xit ≥ 1, l = 0, . . . , T − Ti, i ∈ N , (2.1b)

xit ≤ zt, t ∈ T , i ∈ N , (2.1c)

xit, zt ∈ {0, 1}, t ∈ T . (2.1d)

The constraints are straightforward to understand. Constraint (2.1b) states that for
all components and any window of time the size of the life of that component, it has to
be replaced at least once. The constraint (2.1c) ensures that if we repair some compo-
nent at a timet, a maintenance occasion has occured, and the maintenance costdt must
be paid. Let us henceforth denote the set of feasible points of (2.1) byS. The convex
hull of S will be called the replacement polytope.
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CHAPTER 2. BASIC REPLACEMENT MODEL

This model for the opportunistic replacement problem was first proposed by Dick-
man et al [DEW91] in 1991, and seems to have been largely forgotten since. However,
in a recent case study [APS08] and a survey [PSW09], results were demonstrated that
indicate that this model and variations thereof can have superior performance compared
to simpler policies as can be found in for example [RKM04].

2.1 Properties of the replacement polytope

We begin this section by collecting some known properties ofthe replacement polytope
that were proven in a recent article [PSW09]. The first property is that when the main-
tenance occasions are fixed, that is, for a subsetT ′ ⊂ T , we letzt = 1, t ∈ T ′, zt =
0, t ∈ T \T ′, the result is an integrality property.

Proposition 7. The polyhedron defined by(2.1b)and

xit ≤ 1, t ∈ T ′, (2.2a)

xit ≤ 0, t ∈ T \T ′, (2.2b)

for i ∈ N is TU.

This property allows us to relax the integrality requirements on the variablesxit. Fur-
thermore, this shows that ifTi = 1 for somei ∈ N , forcingzt = 1, t ∈ T , then BRP
is very easy to solve. Hence, from now on we will assume thatTi ≥ 2, i ∈ N .

Finally, the following two propositions were also proved inthe article [PSW09].

Proposition 8. If Ti ≥ 2, i ∈ N , the replacement polytope is fulldimensional.

Proposition 9. If Ti ≥ 2, i ∈ N , the inequalities(2.1b)-(2.1c)define facets of the
replacement polytope. The lower and upper bounds onxit, zt, respectively, define
facets ifTi ≥ 3, i ∈ N .

2.2 Properties of optimal solutions

In [PSW09], the following proposition was shown.

Proposition 10. If cit, dt, t ∈ T , are non-increasing int, there exists an optimal
solution such that ifzt = 1, thent =

∑

i kiTi for someki ∈ N.

This proposition shows that some preprocessing variable reduction is possible. We
elaborate on this result, showing that a more general construction is possible.

Proposition 11(No maintenance until failure, 1). If cit, dt, t ∈ T , are non-increasing
in t, then there exists an optimal solution that satisfies

zt ≤
∑

i∈N

zt−Ti
(2.3)
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2.2. PROPERTIES OF OPTIMAL SOLUTIONS

where we have defined auxiliary parameters

zt =

{

0, t ≤ −1,

1, t = 0.
(2.4)

Proof. Suppose that(x, z) is optimal in BRP not satisfying (2.3), and lets = min{t|zt >
∑

i∈N zt−Ti
}. It follows that no part requires replacement att = s. Hence the main-

tenance occasion may be postponed until the failure of some part. As all costs are
non-decreasing, it follows that doing so will not increase the objective value.

Yet another version of this proposition is available.

Proposition 12 (No maintenance without failure, 2). If cit, dt, t ∈ T , are non-
increasing int, then there exists an optimal solution that satisfies

zt ≤
∑

i∈N

xi,t−Ti
(2.5)

where we have defined auxiliary parameters

xit =

{

0, t ≤ −1

1, t = 0
i ∈ N . (2.6)

This follows as in the proof of Proposition 11. The careful reader will notice that (2.3)
is implied by (2.5) whenTi, i ∈ N , are distinct. We define a modified replacement
polytope using the inequalities (2.5):

S′ = {x ∈ S|(2.5) holds fort ∈ T , t > max Ti}. (2.7)

The assumption thatt > max Ti is purely technical to retain fulldimensionality ofS′,
which is shown in Proposition 14. If we were to incorporate inequalities fort < max Ti

this would forcexit = 0 at some times. This is of course practically useful, howeverit
would make the following exposition more technical.

The above propositions can now be summarized as:

S′ ⊂ S, (2.8)

and

min
x∈S







∑

i∈N ,t∈T

citxit +
∑

t∈T

dtzt







= min
x∈S′







∑

i∈N ,t∈T

citxit +
∑

t∈T

dtzt







(2.9)

for cit, dt non-increasing int. We also obtain the following proposition, showing that
(2.5) is a strong inequality.

Proposition 13. If Ti ≥ 3, i ∈ N , |N | ≥ 2, andTi, i ∈ N , are distinct, then the face
of conv S′ defined by(2.5)defines a facet ofconv S′.
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CHAPTER 2. BASIC REPLACEMENT MODEL

Proof. We use Theorem 4. To do this, we should first prove thatconv S′ is fulldimen-
sional. For now, we assume that this is true, and postpone a proof until Proposition 14.
Let s ∈ T , s > maxi Ti, and defineFs = {(x, z) ∈ convS ′, zs =

∑

i xs,i−Ti
}. Let

λ, µ, ρ be such that

∑

i∈N ,t∈T

λitxit +
∑

t∈T

µtzt = ρ, ∀(x, z) ∈ Fs. (2.10)

We wish to show thatλit = αχt=s−Ti
, µt = −αχt=s andρ = 0. We begin by defining

(xA, zA) asxA
it = 1−χt=s−Ti,t=s, whereχU denotes the indicator function of the set

U , andzA
t = 1−χt=s. It follows that(xA, zA) ∈ Fs. Forj ∈ N , τ ∈ T \{s, s−Tj},

define(xB , zB) asxB
it = xA

it − χi=j,t=τ , zB
t = zA

t . It follows that(xB , zB) ∈ Fs,
and insertion relative to(xA, zA) into (2.10) yieldsλjτ = 0. For τ ∈ T \{s}, define
(xC , zC) aszC

t = zA
t − χt=τ , xC

it = 0, t = τ , xC
it = xA

it otherwise. It follows that
(xC , zC) ∈ Fs, and insertion into (2.10) yieldsµτ = 0. For j ∈ N , define(xD, zD)
asxD

it = xA
it + χi=j,t=s−Tj

, zD
t = zA

t + χt=s. It follows that (xD, zD) ∈ Fs, and
insertion into (2.10) yieldsλj,s−Tj

+ µs = 0. Henceλj,s−Tj
= α andµs = −α

for some constantα. The proposition now follows since insertion of any of the above
vectors into (2.10) yieldsρ = 0.

We now show thatconv S′ is fulldimensional.

Proposition 14. conv S′ is fulldimensional.

Proof. The proof of Proposition 13 shows thatcodim(Fs) = 1, by virtue of Theorem
4, and the proposition follows ifconv S′ 6= Fs. Define for somej ∈ N , (x, z) aszt =
1, t ∈ T , xit = 1−χi=j,t=s−Tj

. It follows that(x, z) ∈ conv S′, but(x, z) /∈ Fs.

We wish to point out that Propositions 11 and 12 still hold if we replace sums by
max. However, the resulting inequality will then be nonlinear which may be handled
through the use of disjunctive inequalities [NW88], or they may be used to implement
custom branching rules for a branch-and-bound scheme. We also want to alert the
reader to the obvious fact that if we in Propositions 11 and 12enforce costs to be
strictly decreasing, then inequalities (2.3) and (2.5) holds foranyoptimal solution.

2.3 Inducing separability

The causal nature of the problem begs the question if there issome subproblem struc-
ture that can be exploited in a dynamic programming scheme, or a relaxation scheme.
The basic idea is that given that(x, z) is optimal in an instance of BRP with time hori-
zon T , we expect it to yield near-optimal solutions for problem instances where the
planning horizon is changed. To formalize this, consider aninstance of BRP with, for
simplicity, an odd planning horizonT = 2T0 + 1. We may then Lagrangian relax all
constraints that contain variables atT0+1, with multipliersuj , yielding the Lagrangian
subproblem

min
∑

citxit + dtzt +
∑

j

uj

∑

i,t

(λj
itxit + µj

tzt) (2.11a)

12
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s.t.
l+Ti
∑

t=l+1

xit ≥ 1, i ∈ N , T0 + 1 /∈ {l + 1, . . . , l + Ti}, (2.11b)

zt ≥ xit, i ∈ N , t ∈ T \{T0 + 1}, (2.11c)

xit, zt ∈ {0, 1}, i ∈ N , t ∈ T . (2.11d)

It follows that this problem separates into two smaller BRP problems, as relaxing all
constraints containing variables atT0+1 yields a problem where no constraint contains
variables to the right and the left ofT0+1 simultaneously. These subproblems can then
hopefully be solved much faster than the original problem. It should also be clear that
we may divide the problem into more parts, yielding a potentially large set of smaller
subproblems. By finding good multipliers with some algorithm, such as subgradient
optimization or bundle methods, one may be able to obtain stronger lower bounds on
the integer optimum than is obtainable through the linear relaxation. This method also
gives us an indication of what defines difficult instances of BRP; if lives are large, it
follows that we need to relax more constraints above, which heuristically may lead to
weaker bounds. This relaxation is also a very natural one, inthat it partitions the prob-
lem into two parts, and modifies the costs near the splitting to emulate the full problem,
making us expect a tight duality gap. However, due to time constraints, the author has
not investigated the strength and computational efficiencyof such relaxations.

2.4 Uniqueness of optimal solutions

The solution to BRP may be highly degenerate, especially if the costs are constant in
time. As an example, consider a simple instance of BRP with only one component,
n = 1, and constant costs. It follows that the optimal solutions are exactly those

which replace the component exactly
⌊

T
T1

⌋

times. Particularly, ifT1 = T there areT1

distinct optimal solutions. However, appealing to our intuitive view of maintenance,
not all these solutions should be treated as being optimal, in the sense that we should
not repair parts before they break. In this section we construct a way of perturbing
the objective function of constant cost BRP in a way that breaks degeneracy, and such
that the modified objective function has decreasing costs. The results of Section 2.2
provide a partial result towards this end, in that if we discount costs by a small amount,
yielding strictly decreasing costs, the optimal solution will satisfy a quite constrictive
inequality, breaking some degeneracy.

LetP be either the polytope of BRP or its continuous relaxation for some instance.
Define the setX as

X = argmin
x∈P





∑

i∈N ,t∈T

cixit +
∑

t∈T

dzt



 . (2.12)

Now, for 0 < ǫx
it, ǫ

z
t < ǫ, we define

13



CHAPTER 2. BASIC REPLACEMENT MODEL

Xǫ = argmin
x∈P





∑

i∈N ,t∈T

ci(1 − ǫx
it)xit +

∑

t∈T

d(1 − ǫz
t )zt



 . (2.13)

The theory of linear programming yields that forǫ small enough,Xǫ ⊂ X. It follows
that forǫ > 0 small enough,

Xǫ = argmax
(xk,zk),k∈1,...,p







∑

i∈N ,t∈T

ciǫ
x
itx

k
it +

∑

t∈T

dǫz
t z

k
t







. (2.14)

We now describe a strategy for choosingǫx
it, ǫ

z
t such thatXǫ is a singleton set. Suppose

that ǫ has been chosen such that the above proposition holds. Firstwe pick ǫz
t in an

recursive manner: let0 < ǫz
T < ǫ. DefineKT = {1, . . . , p} and let

MT = max
k∈KT

{zk
T }, (2.15a)

mT = max
k∈KT |zk

T
<MT

{zk
T }. (2.15b)

If mT = −∞ it follows that zk
T = MT ,∀k ∈ KT , and we defineKT−1 = KT .

Otherwise we wish to arrange so that

dǫz
T >

1

MT − mt





∑

i∈N ,t∈T

ciǫ
x
it +

T−1
∑

t=1

dǫz
t



 , (2.16)

which can be guaranteed by forcing an upper boundδT on all ǫ exceptǫz
T . In (2.16)

we require that0 < δT < αdǫz
T (MT − mT ), whereα is the remaining number of

undefinedǫ. It follows that(xk, zk) ∈ Xǫ, k ∈ KT only if zk
T = MT . Thus we define

KT−1 = {k ∈ KT |z
k
T = MT }, yieldingXǫ ⊂ KT−1, with a slight abuse of notation.

Recursively define

Mt = max
k∈Kt

{zk
t }, (2.17a)

mt = max
k∈Kt|zk

t <Mt

{zk
t }. (2.17b)

By setting bounds onǫ as in (2.16) we can guarantee that(xk, zk) ∈ Xǫ only if zk
t =

Mt, from which we may defineXǫ ⊂ Kt = {k ∈ Kt+1|z
k
t = Mt}. It follows that

∅ 6= K1 and(xi, zi) ∈ K1 if and only if zk
t = Mt, t ∈ T . By repeating this procedure

for eachi ∈ N , we obtain a singleton setK such that

∅ 6= Xǫ ⊂ K = {(xk, zk)|zk
t = Mt, x

k
it = M i

t} (2.18)

from which it follows thatXǫ is also a singleton set.
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2.4. UNIQUENESS OF OPTIMAL SOLUTIONS

It should be noted that the above procedure of setting boundson ǫ is not compu-
tationally implementable, due to finite precision and rapidly decreasing bounds. How-
ever, in practice it usually suffices to letǫz

it = ǫz
t = δ t

T
for some smallδ to break alot

of degeneracy, even though there is no guarantee that optimabecome unique.
The main advantage of using these discounts yielding less degeneracy is that it

significantly speeds up the cutting plane methods that will be discussed later in this
thesis.
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Chapter 3

The facial structure of the
replacement polytope

In this chapter we derive two large partially overlapping classes of facets of the re-
placement polytope. For the first class, a full description,as well as proofs of validity
and the facet property of the entire class, will not be presented in this chapter, as such
a presentation is near impossible to understand on its own. Instead we will start with a
simple subclass of facets, and give a full proof of validity and the facet property for this
subclass. Then we demonstrate extensions and generalizations of this subclass, build-
ing up the entire class step by step. Full proofs of each step are not given here, instead
we concentrate on the simplest cases and appeal to the reader’s pattern recognition as
well as introduce a pictorial representation1 of how to construct proofs. Throughout
we implicitly assume that for all componentsTi ≥ 2.

We start by proving a simple lemma, which will be referred to throughout this
section.

Lemma 15(Killing Lemma). Let

∑

i∈N ,t∈T

λitxit +
∑

t∈T

µtzt ≥ ρ (3.1)

be a valid inequality for the replacement polytope. LetF be the face of the replacement
polytope defined by(3.1), and assume thatF is proper. Let

∑

i∈N ,t∈T

λ′
itxit +

∑

t∈T

µ′
tzt = ρ′ (3.2)

be an equation that is satisfied for all(x, z) ∈ F . Then ifµs = 0 and there exists an
(x, z) ∈ F such thatzs = 0, thenµ′

s = 0. Alternatively, ifλjs = 0 and there exists an
(x, z) ∈ F such thatzs = 1, xjs = 0, thenλ′

js = 0.

1The saying ”A picture speaks more than a thousands words” has rarely been more true.
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CHAPTER 3. THE FACIAL STRUCTURE OF THE REPLACEMENT POLYTOPE

Proof. We prove this forµs = 0; the other case follows similarly. Let(x, z) ∈ F be
such thatzs = 0. Sinceµs = 0, it follows that(x′, z′) satisfies (3.1), wherex′ = x and
z′t = zt + χ{t=s}, and hence(x′, z′) ∈ F . Insertion into (3.2) then yields the desired
result.

3.1 Combinatorial facets

This section deals with a class of facets ofconv(S) which are obtained through various
combinatorial implications. It is not clear if or how these constructions may generalize
to more general maintenance models, and as such, we will not go into an excessive
amount of detail for all the constructions.

3.1.1 Simple facets

We start by taking a simple example of a facet, having just enough structure to encom-
pass the crucial construction. Suppose we have an instance of (2.1), and pickp, q ∈ N
such thatTq < Tp, and, forl ∈ {0, . . . , T −Tp} ands ∈ {1, . . . , l+Tp−Tq}, consider
the inequality

l+s−1
∑

t=l+1

xpt +
∑

t∈{l+s,l+s+Tq}

zt +

l+s+Tq−1
∑

t=l+s+1

(xpt + xqt) +

l+Tp
∑

t=l+s+Tq+1

xpt ≥ 2. (3.3)

The inequality is illustrated in Figure 3.1. Each node represents a point of time, and
the variable name under it represents the variables to be added to the inequality at that
point of time. Black nodes are nodes at whichzt is present in the inequality.

Figure 3.1: Pictorial representation of an inequality according to (3.3), withTp = 9,
Tq = 4, s = 3. Here the inequality represented isxp1 + xp2 + z3 +

∑6
4(xpt + xqt) +

z7 + xp8 + xp9 ≥ 2.

We also take this opportunity to fix some terminology. We callthe componentp en-
veloping component, whilstq is called a packing component, where we expect the
etymology to be clear.

Proposition 16. (3.3) is valid forS.
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3.1. COMBINATORIAL FACETS

Proof. The conclusion is trivial ifzl+s = zl+s+Tq
= 1; assume thatzl+s = 0. Then,

by (2.1c),xi,l+s = 0, and it follows from (2.1b) that
∑l+s+Tq−1

t=l+s xqt ≥ 1. The remain-
ing terms of the left hand side of (3.3) can, asxp,l+s = 0, be written as

l+Tp
∑

t=l+1

xpt +
(

zl+s+Tq
− xp,l+s+Tq

)

− xp,l+s ≥

t=l+Tp
∑

t=l+1

xpt + 0 + 0 ≥ 1,

yielding that (3.3) is valid whenzl+s = 0. The case whenzl+s+Tq
= 0 follows

similarly.

One might hope that this inequality is not only valid, but also strong, and the fol-
lowing proposition shows that this is indeed the case.

Proposition 17. (3.3)defines a facet ofconv(S).

Proof. To avoid cluttering the proof with indices, we assume thatl = 0; the general
case follows similarly. We use the characterization of Theorem 4, which is applicable
sinceconv(S) is fulldimensional. LetF = {(x, z) = conv(S)|(3.3) holds with equality}.
Let λ, µ, ρ be such that

∑

i∈N ,t∈T

λitxit +
∑

t∈T

µtzt = ρ ∀(x, z) ∈ F. (3.4)

The first objective is to show that all coefficientsλit, µt that are not included in (3.3)
must be zero. To this end, define(xA, zA) aszA

t = 1, t ∈ T , andxA
it maximally on

F , that isxA
it = 0 if i = q, t ∈ {s + 1, . . . , s + Tq − 1} or i = p, t ∈ {1, . . . , s −

1, s + 1, . . . , s + Tq − 1, s + Tq + 1, . . . , Tp}, andxA
it = 1 otherwise. It follows

that (xA, zA) ∈ F . Varying xA
it, i /∈ {p, q}, and inserting into (3.4) yieldsλit = 0,

i /∈ {p, q} or i = p, t ∈ {1, . . . , s − 1, s + 1, . . . , s + Tq − 1, s + Tq + 1, . . . , Tp} or
i = q, t ∈ {s + 1, . . . , s + Tq − 1}. Also by varyingzt, t /∈ {s, s + Tq} while varying
xit to keep it maximal onF we get thatµt = 0, t /∈ {s, s + Tq}. Hence (3.4) can be
written as

l+s−1
∑

t=l+1

λptxpt+
∑

t∈{l+s,l+s+Tq}

µtzt+

l+s+Tq−1
∑

t=l+s+1

(λptxpt + λqtxqt)+

l+Tp
∑

t=l+s+Tq+1

λptxpt = ρ.

(3.5)
By modifying (xA, zA) such thatzs = 0, xpt = 1 for somet ∈ {1, . . . , s − 1, s +
1, . . . , s + Tq − 1, s + Tq + 1, . . . , Tp} we get thatµs = λpt := α, t ∈ {1, . . . , s −
1, s + 1, . . . , s + Tq − 1, s + Tq + 1, . . . , Tp}, and in the same wayµs+Tq

= µs = α.
In a similar manner, we can modify(xA, zA) in a way such that we get from (3.4) that
λqt = µs = α. A final insertion of(xA, zA) into (3.4) yieldsρ = 2α.

The rest of this section will be spent showing how generalizations of the facets (3.3)
can be constructed. There are three basic extensions. In (3.3) the inequality contains
Tq − 1 q-component variables, which can generalized torTq − 1, for integersr ≥ 1. It
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Figure 3.2: Pictorial representation of the jumping procedure, withTp = 9, Tq = 2,
r = 2.

is also possible to pack more than one component into a singleenveloping component.
Finally, we may also proceed recursively, taking an obtained inequality and packing it
into an even larger component.

3.1.2 Simple extension

The first extension is fairly straightforward. Let the situation be as in (3.3), and let
r ≥ 1 be an integer, and lets ∈ {1, . . . , Tp − rTq}. Consider the inequality

l+s−1
∑

t=l+1

xpt +
∑

t∈{l+s,l+s+Tq}

zt +

l+s+rTq−1
∑

t=l+s+1

(xpt + xqt) +

l+Tp
∑

t=l+s+rTq+1

xpt ≥ r + 1.

(3.6)
We can immediately see that with minor modifications the proof of Proposition 16 can
be used to show that (3.6) is a valid inequality. Furthermore, the proof of Proposition
17 can easily be repeated to show that (3.6) is facet except for showingλqt = µs,
t ∈ {s + 1, . . . , s + rTq − 1}. This can however be shown by using what we will refer
to as a jumping procedure, that we illustrate pictorially.

Figure 3.2 represents a sequence of feasible points on the face defined by (3.6). A
vertical arrow indicates which relevant variables are set to 1, and a horizontal arrow
represents a jump2. That is, the variable corresponding to the source of an arrow is
set to0, while the target variable is set to1. The number above an arrow indicates
in which order the jumps are performed. In figure 3.2 we jump through three points
(xk, zk), k = 1, 2, 3. These arex1

qt = 1, t ∈ {l + s, l + s + Tq, . . . , l + s + rTq},
z1
t = 1, t ∈ {l + s, l + rTq}, andz2

t = z3
t = 1, t = l + s, x2

qt = 1, t ∈ {l +
s, l + Tq, . . . , l + (r − 1)Tq, l + (r − 1)Tq + Tq − 1}, x3

qt = 1, t ∈ {l + s, l +
s + 1, l + s + 1 + Tq, . . . , l + s + 1 + (r − 1)Tq}. An equality under a horizontal
arrow shows what making the jump implies when inserting into(3.4). In Figure 3.2 the
equality under arrow1 means thatµl+s+rTq

= λq,l+s+rTq−1, and under arrow2 that
λq,l+Tq

= λq,l+Tq−1. Using this pictorial representation it follows that if we can find
pictures connecting all points of time containing anxq variable, we have shown that

2While, as usual, all other variables are defined maximally on theface.
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λqt = λqt′ for t, t′ ∈ {l + s + 1, . . . , l + s + rTq − 1}. For the situation depicted in
Figure 3.2 we need only use the one depicted and its time reflection3. A more general
situation is depicted in figure 3.3, and we appeal to the reader to understand that this
example can be generalized to arbitrary instances.

Figure 3.3:Tq = 3, r = 3, Tp = 13

3.1.3 Multiple packing components

The next, and significantly harder, step is to introduce morethan one packing com-
ponent into a single enveloping component. This is done as a partial superposition of
constraints of the simpler form above, which from now on willbe referred to as ba-
sic inequalities. Givenm inequalities of the form (3.6), with the samep, l such that
the packing component and the window of time are the same, which are written as
∑

λ
(k)
it xit +

∑

µ
(k)
t zt ≥ ρ(k) for k = 1, . . . ,m, we define a new inequality by letting

∑

i,t

λit +
∑

t

µtzt ≥ ρ, (3.7a)

λit =
∑

k

λ
(k)
it , i ∈ N\{p}, t ∈ T (3.7b)

λpt = min
k

{λ
(k)
it }, t ∈ T (3.7c)

µt = max
k

{µ
(k)
t }, t ∈ T (3.7d)

ρ = 1 +
∑

k

(

ρ(k) − 1
)

. (3.7e)

Let τ
(k)
1 = min{t|µ

(k)
t = 1} andτ

(k)
2 = max{t|µ

(k)
t = 1}. We will assume that

we have ordered such thatτ
(1)
1 ≤ τ

(2)
1 ≤ . . . ≤ τ

(m)
1 , where ties are broken with

τ
(1)
2 ≤ τ

(2)
2 ≤ . . . ≤ τ

(m)
2 .

Example 1. Let T1 = 3, T2 = 4, T3 = 8. Define two inequalities of the form (3.3)
by letting l = 0, q(1) = 1, s(1) = 1 andq(2) = 2, s(2) = 4. The valid inequalities
become

3That is, the diagram that is obtained by flipping the diagram from left to right
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z1 +

3
∑

t=2

(x1t + x3t) + z4 +

8
∑

t=5

x3t ≥ 2,

3
∑

t=1

x3t + z4 +

7
∑

t=5

(x2t + x3t) + z8 ≥ 2.

Using (3.7) we obtain the inequality

z1 +
3
∑

t=2

(x1t + x3t) + z4 +
7
∑

t=5

(x2t + x3t) + z8 ≥ 3.

In this example we obtainτ (1)
1 = 1, τ

(1)
2 = 4, τ

(2)
1 = 4, τ

(2)
2 = 8.

We now seek to find some conditions under which (3.7) is valid,and some condi-
tions under which it defines a facet. We will from now use the shorthand(λ, µ, ρ) to
denote an inequality of the form (3.7a).

Proposition 18. An inequality of the form(3.7) such that ifτ (k)
1 = τ

(k′)
1 for some

k 6= k′, thenτ
(k)
2 6= τ

(k′′)
2 for anyk′′ = 1, . . . ,m, k′′ 6= k, is valid.

Proof. We prove this using induction on the number of basic inequalities, m. Let
(x, z) ∈ S. Proposition 16 and its extension yields the result form = 1. Assume that
the statement is true for any inequality withm ≤ L − 1, and let(λ, µ, ρ) be such that
m = L. Then the inequality(λ′, µ′, ρ′) consisting of the firstL − 1 basic inequalites
is valid according to the induction assumption.

Suppose that the packing component of the basic inequalityL is q. Then it holds
by (2.1b) that

∑

t λ
(L)
qt xqt ≥ ρ(k) − 2. If this is strict the conclusion is trivial. It

is also trivial if (λ′, µ′, ρ′) is strict, assume otherwise. It then follows from (2.1b)
that

∑

t µ
(L)
t zt = 2, and from the assumptions onτ (k)

j , j = 1, 2 it follows that
∑

t (µt − µ′
t) zt ≥ 1. If this inequality is strict the conclusion is trivial, assume other-

wise.
It remains to show that

∑

t

(

λpt − λ′
pt

)

xpt ≥ 0. This is however true, since the
assumptions above imply

∑

t µ′
tzt ≥ 1. As we assumed that(λ′, µ′, ρ′) was satisfied

with equality,
∑

t λ′
ptxpt = 0 follows.

It turns out that it is hard to characterize exactly when the inequalities of Proposition
18 define facets of the replacement polytope, and we will not treat this in any great
detail. A partial result is given later in Proposition 21. Instead we move on, generating
more valid inequalities.

3.1.4 Layered inequalities

Assume that we are given an inequality of the form in Proposition 18 (λ, µ, ρ) with
packing componentp at the window of time{l + 1, . . . , l + Tp}. We also assume
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thatµl+1 = 0, for reasons that will become clear in Proposisition 19. Choose a new
packing componentp′ such thatTp′ ≥ Tp + 1 andl′ ∈ {l + Tp + 1 − T ′

p, . . . , l}. We
define a new inequality(λ′, µ′, ρ′) by

∑

i,t

λ′
itxit +

∑

t

µ′
tzt ≥ ρ′, (3.8a)

λ′
it = λit, i ∈ N\{p′, p}, t ∈ T , (3.8b)

λ′
pt = λpt − χ{l+1}, (3.8c)

λ′
p′t = χ{l′+1,...,l′+Tp′}\{l+1,l+Tp+1}, (3.8d)

µ′
t = µt + χ{l+1,l+Tp+1}, (3.8e)

ρ′ = ρ + 1. (3.8f)

An illustrative example is shown in Figure 3.4.

Figure 3.4: Example of how to envelop an existing contsraintinto a larger one. Here
T1 = 5, T2 = 7, T3 = 12. Note that the packing inequality splits into two variants
in the enveloped inequality. Looking at the nodes4 − 10, ignoringx3, the original
packed inequality is dominated by these coefficients. Looking at nodes5−11, ignoring
x3, there is a variant of the original packed inequality that isobtained by lettingl →
l + 1, s → s − 1.

Showing that this procedure defines new valid inequalities for S is similar to prov-
ing Proposition 16. This should perhaps not come as a surprise as the construction
is recursive in nature, in the sense that we perform the same operation on the packed
inequalities that we did with the original inequalities when constructing the simple
packings.

Proposition 19. The inequality defined by(3.8) is valid forS.
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Proof. We show that the inequality is valid forS = S0 ∪ S1, whereSδ = {(x, z) ∈
S|zl+1 = δ}, δ ∈ {0, 1}. Whenzl+1 = 0 the conclusion follows immediately from
(λ, µ, ρ) being valid and the life constraint (2.1b) forp′. Whenzl+1 = 1, there is
a packing inequality situated atl + 1, s − 1 that is dominated by the coefficients of
(λ′, µ′, ρ′), as in Figure 3.4, and the conclusion follows for this case aswell.

The above proof indicates why we assumed thatµl + 1 = 0 above: whenzl+1 = 1
we had to identify a new packing inequality to reach the conclusion, and this was done
by lettings → s − 1. This can not be done unlessµl+1 = 0, or equivalently,s ≥ 2 in
the original packing inequality. This should also make it clear that could instead have
assumed thatµl+Tq

= 0. We also claim that Proposition 19 can be extended so that
this new inequality can be embedded into yet another larger componentp′′ in the same
fashion, ifµ′

l+1 = 0.
It can also be shown that the embedding defines a facet ofconv S if the embedded

constraint does, under the simplifying assumption that theconditions of the Killing
Lemma are satisfied.

Proposition 20. Let (λ, µ, ρ) be a facet ofconv S of one of the types discussed in this
section, which is embedded intop′ according to(3.8)yielding the inequality(λ′, µ′, ρ′).
Then(λ′, µ′, ρ′) defines a facet ofconv S, if the conditions of the Killing Lemma are
satisfied.

Proof. We only outline the proof. Letα, β, γ be as in Theorem 4. Proving that the
inequality yields a facet can then be broken down into three steps:

1. eliminate all coefficients that are not present,

2. show that all embedded coefficients are equal, and

3. show that all enveloping coefficients are equal.

That all relevant coefficients are equal then follows as the embedded coefficients and
the enveloping coefficients overlap.

The first step is established through the Killing Lemma. The second step follows by
fixing zt = xp′t = xit = 1 on one of the links between the embedding and eveloping
coefficients, and referring to the fact that the embedded constraint defined a facet. The
last step follows by defining a feasible point where no embedded variables use the
links between the embedding and the enveloping variables, from which it follows that
the maintenance occasion forp′ may be placed anywhere.

We will refer to this as alayered inequality. That an inequality is referred to as
being of thek:th layer indicates how many times we have packed inequalities into
bigger components. The first layer inequalities are then simply (2.1b) and the simple
facets of (3.3) are of the second layer. By enveloping an inequality of thek:th layer we
then obtain an inequality of the(k + 1):th layer.
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3.1.5 Partial characterization of facial properties of multiple pack-
ings

It follows that all that is left to do to characterize which ofthe valid inequalities are
facets amounts to determining what types of multiple packing components that are
facets. The author has not been able to do this in full generality, but will here present a
partial result.

Proposition 21. In the notation of Proposition 18, assume thatτ
(k)
2 = τ

(k+1)
1 , k ∈

1, . . . ,m − 1}. Then the inequality defined by(3.7)defines a facet ofconv S.

Proof. We prove this in the same way that we proved this for the first extension with
a jumping procedure. That is, we use Theorem 4, letF be the face ofconvS and let
α, β, γ be such that

∑

i∈N ,t∈T

αitxit +
∑

t∈T

βtzt = γ, ∀(x, z) ∈ F. (3.9)

We claim that it is similar to other proofs already given to show that all coefficients not
present in (3.7) are zero, and to show thatαpt = βs otherwise. The crucial point is to
show that the coefficients of the packed components are equal. This can however be
accomplished using the same jumping procedure as before. Define a feasible solution
on the faceF (xA, zA) aszA

t = 1, t ∈ T , andxA
it = 1− λit, i ∈ N , t ∈ T . Then we

proceed with the jumping procedure as illustrated in Figure3.5 and its time reflection.

Figure 3.5: Illustration of the jumping procedure when using multiple packing compo-
nents.

If we let τ
(k)
2 < τ

(k+1)
1 it seems we still obtain facets in many cases if we require

Ti ≥ 3, i ∈ N , and in some cases withT1 = 2 as well. The issue is to show that
all irrelevant coefficients have to be zero, and the author has not been able to find any
reasonable characterization.

3.2 Chvátal-Gomory facets

In this section we outline a method of generating facets as first order Chvátal-Gomory
inequalities. Numerical results based on automated facet generation suggest that many
facets can be generated as simple Chvátal-Gomory inequalities using only1

2 as a mul-
tiplier from some subset of constraints, and we seek a classification of when such in-
equalities define facets of the replacement polytope. When using ui ∈ {0, 1/2} there
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CHAPTER 3. THE FACIAL STRUCTURE OF THE REPLACEMENT POLYTOPE

are two major benefits. The first is that the algebra is considerably simpler to work
with than for generalui. The other is that following an article by Caprara and Fischetti
[CF93], in which suchzero-half cutswere first discussed, modern general MIP solvers
such as CPLEX have built-in features that generate zero-half cuts heuristically.

As we will only use multipliers1
2 it follows that we must use an odd number of

inequalities (2.1b) for the Chvátal-Gomory procedure to yield anything non-trivial.
Furthermore, for anything non-trivial to occur, the constraints must mix together before
rounding. For two inequalities from (2.1b) this may happen in two ways. Either the
inequalities come from the same component and correspond tovalues ofl such that they
overlap in time, or we have constraints from different components that overlap in time,
for which we may add multiples of (2.1c) for the different components, transforming
1
2 (xit + xjt) ≥ zt. Hence our basic construction for Chvátal-Gomory inequalities will
be to pick an odd number of inequalities (2.1b) that overlap in time, and mixing them
together using (2.1c). The inequalities picked from (2.1b)will henceforth be called
constituent inequalities.

3.2.1 The basic construction

We start by treating the case where all the constituent inequalities come from different
components. That is, we have picked an odd numberk ≥ 3 of inequalities spanning
over setsTi, i ∈ 1, . . . , k, i.e. Ti = {li + 1, . . . , li + Ti}. To simplify, we assume
thatk = n andT1 ≤ T2 ≤ . . . ≤ Tk. The assumption thatk = n might affect the
application of the Killing Lemma negatively, however we disregard that as cases where
it has any significance seem to be pathological. Furthermore, this will never cause any
obtained inequality to be invalid.

We assume that for anyi ∈ {1, . . . , k} there existj1, j2 ∈ {1, . . . , k}\{i}, j1 6= j2
such thatTi ∩ Tj1 6= ∅ andTi ∩ Tj2 6= ∅. If Ti ∩ Tj 6= ∅ let tij ∈ Ti ∩ Tj , and pick
a distinct subsetIJ , |IJ | = k, of these. Now we are ready to execute the Chvátal-
Gomory procedure. By a linear combination of the above inequalities we get a new
valid inequality

1

2





k
∑

i=1

∑

t∈Ti

xit +
∑

(i,j)∈IJ

(

2ztij
− xitij

− xjtij

)



 ≥
k

2
(3.10)

By first rounding the left hand side and then the right hand side we obtain, ask is odd,

k
∑

i=1

∑

t∈Ti\{tij ,(i,j)∈IJ}

xit +
∑

(i,j)∈IJ

ztij
≥

k + 1

2
(3.11)

as a valid inequality.

Example 2. We consider the simplest possible case,k = 3, T1 = 3, T2 = 4, T3 = 5,
li = 0, i = 1, 2, 3, T = 5, and the procedure is illustrated in figure 3.6. The valid
inequality here becomes

(z1 + x31) + (z2 + x22) + (x13 + x23 + x33) + z4 + x35 ≥ 2.
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3.2. CHVÁTAL-GOMORY FACETS

Figure 3.6: Example of a Chvátal-Gomory inequality. Horizontal rectangles indicate
the constituent inequalities, while vertical groupings indicate the choice ofIJ . Num-
bers indicate the coefficients of the inequality. Coefficients inside circles indicate the
coefficient forzt at that time, and the number at rowi columnt is the coefficient for
xit.
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CHAPTER 3. THE FACIAL STRUCTURE OF THE REPLACEMENT POLYTOPE

Now we search for conditions such that the inequalities obtained define facets of the
replacement polytope. To this end we define a graphG = (V,E), and state conditions
in terms of this graph. LetV = {1, . . . , k}, and leteij ∈ E iff (i, j) ∈ IJ . The
interpretation of this graph is that nodes correspond to constituent inequalities, while
an edge between two nodes state that the two constituent inequalities corresponding
to those nodes have been mixed, and can thus be satisfied by letting ztij

= xi,tij
=

xjtij
= 1. Note that this is satisfied by using only one variable of the left hand side of

(3.11), due to the mixing. Furthermore we defineGi = (Vi, Ei) to be restricted graph
when deleting nodei.

We also define a notion of crossing for reasons that will become apparent in Propo-
sition 23.

Definition 22. An edgeeij of G is said tocrossa nodek if mint∈Tk
{|t − tij |} ≤ 1.

Example 3 (Example 2 continued). The graph corresponding to Example 2 is shown
in Figure 3.7.

Figure 3.7: The graph corresponding to example 2. Numbers next to edges indicate
which non-trivial nodes it crosses.

Now we are ready to state and prove the following proposition.

Proposition 23. The inequality(3.11) defines a facet of the replacement polytope if
for all i ∈ {1, . . . , k} we can partitionGi into connected subgraphsGj

i = (V j
i , Ej

i ),
|V j

i | = 2 such that

Êi = Ei\

(

∪
2

k−1

j=1 Ej
i

)

(3.12)

does not contain any edges crossingi, and the conditions of the Killing Lemma hold.

Before moving on to the proof, we interpret the formulation of the proposition. An
edge in the graphG indicate that both the constituent inequalities it links share a com-
mon variable. Furthermore, due to the conditions on how the graph was constructed, it
is possible to satisfy both the constituent contraints by letting exactly one variable that
is contained in the associated inequality be1. A partitioning as in the proposition can
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3.2. CHVÁTAL-GOMORY FACETS

then be interpreted as satisfying the constituent constraints in pairs, using one variable
from the inequality in each pair. By the requirements on the crossings, we have a large
degree of freedom in how we choose to satisfy the last remaining constituent inequal-
ity. This allows us to find many affinely independent points satisfying our inequality
with equality, which leads to the conclusion that it is a facet.

Proof of Proposition 23.The definitions that go into it make the proposition neat to
prove. We use Theorem 4, and letF be the face defined by (3.11). Let(λ, µ, ρ) be
such that

∑

i∈N ,t∈T

λitxit +
∑

t∈T

µtzt = ρ, ∀(x, z) ∈ F. (3.13)

The Killing Lemma removes all coefficients not part of (3.11), and the above equa-
tion reduces to

n
∑

i=1

∑

t∈Ti\{tij |(i,j)∈IJ}

λitxit +
∑

(i,j)∈IJ

ztij
= ρ (3.14)

Note that the conditions imply thatG is connected. Hence it suffices to show that
λit = µs for t ∈ Ti\{tij |(i, j) ∈ IJ } ands ∈ {tij |(i, j) ∈ IJ }. Then the co-
efficient inequalities will propagate through the graph, asby construction two nodes
sharing an edge has at least one coefficient in common. Inspired by this we consider
the constituent inequalitym, and pick a partition ofGm corresponding to the assump-
tions. Define(xm, zm) aszm

t = 1, t ∈ T \ (∪Ti) andzm
t = 1 for t = tij and some

(i, j) ∈ E\Êi, zm
t = 0 otherwise. Also, fori ∈ N\{m} let xm

it = zm
t , t ∈ T \Ti,

xm
it = 1 for t = tij and some(i, j) ∈ E\Êi, xm

it = 0 otherwise. Finally letxm
mt = zm

t

for t ∈ T \Ti, xm
mt = 0 otherwise. We can now see that(xm, zm) is almost feasible in

BRP, as the only constraint it does not satisfy is (2.1b) forTm. Furthermore, plugging
(xm, zm) into the left hand side of (3.11) yieldsLHS(xm, zm) = k−1

2 . That is, to be
feasible in BRP and satisfy (3.13) we must add a maintenance occasion form at exactly
one point inTi. As all edges crossingm by assumption are inEj

m for somej4, it fol-
lows that we may pick any maintenance occasion withinTi, from which insertion into
(3.14) yieldsλit = µs for t ∈ Ti\{tij |(i, j) ∈ IJ } ands ∈ {tij |(i, j) ∈ IJ }.

The natural structure of the above proof is somewhat obscured by the details, and we
demonstrate with a simple example.

Example 4 (Example 2 continued). In this example it is fairly easy to see that the
Killing Lemma holds, and in the graph 3.7 we easily see that the conditions of Propo-
sition 23 hold. Let us show that all coefficients of constituent inequality 2 are equal,
that is, thatµ1 = λ22 = λ23 = µ4. The partitioning ofV2 is trivial, and we see that
we retain only the edgee13, which corresponds to settingz2

2 = x2
12 = x2

32 = 1 in the
proof above. We then see that the constituent inequalities1 and3 are satisfied in Figure
3.6. We may now perform maintenance of component2 at any point in the constituent
inequality2 at the cost of increasing the right hand side of (3.11), as we have already

4And hence the value of the correspondingzt equals1.
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setz2 = 1, which after insertion into (3.14) yieldsµ1 = λ22 = λ23 = µ4. Similarly
we may for constituent inequality1 show thatµ1 = µ2 = λ13, and we see that both
constituent inequalities shareµ1 as a coefficient, yieldingµ2 = λ13 = µ1 = λ22 =
λ23 = µ4. The incorporation of the coefficients for constituent inequality 3 follows
analogously.

We also want to alert the reader to that the assumption on the Killing Lemma seems
to be very weak, and it mainly serves to avoid the unpleasantness of handling the details
that become neccessary to lift it. The cases where the conditions of the Killing Lemma
do not hold are typically of form where some component life isTi = 2, which can be
viewed as a pathological case.

3.2.2 Extensions

We now discuss two extensions of the above proposition. Firstly, Proposition 23 was
stated completely in terms of the associated graph, and fromnow on we will talk about
zero-half cuts in terms of their graphs. The assumptions on how the inequalities were
generated (in terms oftij) forced the associated graph to be simple (i.e. two nodes are
joined by at most one edge). This restriction can in fact be lifted by only requiring that
tij are distinct, and the proof goes through with some technicalmodifications.

Secondly, we can extend the above results to inequalities where the constituent in-
equalities do not have distinct components. For each componenti ∈ N pick a number
ki of constraints atlij , j = 1, . . . , ki such that

li2 ≤ li1 + Ti − 1, (3.15a)

lij+2 = lij + Ti, j = 2, . . . , ki (3.15b)

and
∑

i ki is odd. Now we wish to pick inequalities from (2.1c) following certain
rules, such that we link together the constraints picked above. For everyi ∈ N such
thatki ≥ 2, we pick inequalitieszli

2

− xi,li
2

≥ 0 andzlki−1+1 − xi,lki
+1 from (2.1c),

and require that we pick other inequalities from (2.1c) for the same times, with different
components. Fori ∈ N such thatki = 1 the same rules apply as before.

Example 5. In Figure 3.8 we demonstrate an inequality of the above mentioned type.

We now define a graph for this inequality as before, with the addition that we also
let there be an edge between two nodes if the constituent inequalities come from the
same component and overlap. In total, it now follows that twonodes of the inequality
graph share an edge if and only if it is possible to satisfy theconstituent inequalities by
only using one variable of the generated inequality, if we disregard the crossings. This
was the essential property that facilitated Proposition 23, and it still goes through with
some modifications.

3.2.3 Lifting crossings

In Proposition 23, we had to assume some structure on the crossings, otherwise the as-
sociated inequalities would not define facets of the replacement polytope. We indicate
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3.2. CHVÁTAL-GOMORY FACETS

Figure 3.8: A CG inequality generating without distinct constituent inequalities. Note
that this inequality is also of the simple combinatorial type.
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how some of these crossed inequalities can be lifted to facets. Consider an inequality
as in Proposition 23, except that for one node in the graph, there is one edge crossing
that node which can not be included in the partition. Let the crossed node come from
componenti ∈ N , and the crossing occur att ∈ Ti. It follows that the coefficients for
xit andzt are1 in this inequality. We wish to show that a modified inequality, where
we let the coefficient ofxit be 0, is valid. Then the proof of Proposition 23 will go
through for this new inequality, as the only hindrance was the crossing.

Denote the original inequality byπT (x, z) ≥ π0, and the modified byπ′T (x, z) ≥
π′

0. It is immediately clear that the primed inequality is validwhenzt = 0, since then
xit = 0, and the primed and unprimed inequality are equivalent. We must show that
primed inequality is valid whenzt = 1. The result follows if we can show that ifzt = 1
andπT (x, z) = π0, thenxit = 0. But if πT (x, z) = π0, then(x, z) corresponds to
a partitioning of the graphV into subgraphs of size2 and one subgraph of size1. By
assumption no such partitiong exists that contains the edgecorresponding tozt = 1
andxit = 1 and the result follows.

The careful reader may have noticed that the graphs representing the inequalities
above share a striking similarity toodd cycle inequalities without chordsfor set cover-
ing/packing polyhedra [Pad73]. In fact, if we were to perform the above construction
for a set covering instance, proving similar propositions,we would get exactly the odd
cycle inequalities. This should perhaps not come as a surprise, as the constraints (2.1b)
of the replacement problem are of the set covering type. However, using only these
to try and generate odd cycle inequalities is futile, due to the total unimodularity of
this submatrix from Proposition 7. What we are doing above canthen be viewed as a
perturbed version of the odd cycle inequalities that occur due the nature of constraints
(2.1c). This observation begs the question of whether othercutting planes for set cov-
ering polytopes can be perturbed in such a way as to be applicable for the replacement
problem.

We conclude this section by noting that the characterizations of when zero-half
cuts become facets, or even valid, seem badly adapted for inclusion in a computer
program. The characterizations are indirect and abstract,and the author has not been
able to formulate even a good heuristic algorithm for generation5. Hence the separation
problem of finding the most violated zero-half cut may very well be hard to solve.
Instead we take the results to mean that zero-half cuts can bea powerful tool for BRP,
and as such an efficient solver will likely benefit from an aggressive heuristic zero-half
cut generation. However the abstract characterization is adouble-edged sword; this is
also what makes it likely that the methodology of identifying facets may be generalized
to other replacement models.

3.3 Extended models

It was previously mentioned that some of the facets derived were of the odd cycle in-
equality type, that could be utilized since the problem had aset covering substructure.

5The facets of this section seem to behave nicely when the associated graphs are simple. However,
preliminary numerical results indicate that graphs corresponding to useful inequalities are very far from
being simple.
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We may then ask ourselves whether the work done generalizes to more realistic mod-
els for opportunistic maintenance, if they possess a set covering substructure. In this
section we give an example of such a generalization, and argue that many of the results
above generalize to other models as well.

3.3.1 Deterministic individual components

Underlying BRP is the implicit assumption that for each component that needs replace-
ment, there is an infinite pool of identical component individuals to choose from. In
a more realistic setting this may not be the case. Let us consider the setN as a set of
tasks that must be performed, and let us define a setRi, i ∈ N of components that can
perform that task. We can then model an opportunistic maintenance problem with the
variables

xr
it =

{

1, individual r of componenti is replaced att

0, otherwise
(3.16a)

zt =

{

1, maintenance performed at timet

0, otherwise
(3.16b)

where i ∈ N , t ∈ T and r ∈ {1, . . . , ni} = Ri, and define theUncapacitated
Individual Replacement Problem(UIRP) as

min
∑

i∈N ,t∈T

∑

r∈Ri

cr
itx

r
it +

∑

t∈T

dtzt (3.17a)

s.t.
∑

r∈Ri

l
∑

t=min(l−T r
i
+1,1)

xr
it ≥ 1, i ∈ N , l ∈ {Si, . . . , T}, (3.17b)

∑

r∈Ri

Si
∑

t=1

xit ≥ 1, i ∈ N , (3.17c)

xr
it ≤ zt i ∈ N , t ∈ T , r ∈ Ri (3.17d)

zt, x
r
it ∈ {0, 1} i ∈ N , t ∈ T , r ∈ Ri (3.17e)

whereT r
it is the lifetime of indidualr of componenti at timet andSi is the remaining

life of componenti at the start of the planning horizon. The structure is very similar
to that of BRP: the objective is to minimize the cost of keeping the system running
over the planning period. The canonical example of such a model would be a repair
versus replace scenario. That is, given some component failure, we have the option of
replacing the component by a brand new one, or to repair it. Repairs are probably less
costly, but the next component failure may occur earlier. Inthis case|Ri| = 2.
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3.3.2 Varying lives

The assumption in BRP that all components have lives that areconstant may not be
satisfied in several real-world applications. An example where this is not the case could
be a cooling or heating system that carries a different load depending on the weather
conditions. We therefore modify the BRP by considering eachcomponent as having a
maximum total usage capacityLi, and associating with each unit of time a usage load
uit. We assume that a component breaks if its total usage since its last replacement
exceedsLi, and to keep the system running we must replace components before they
break. We may model this by defining

Ti(l) = max

{

t |
l+t
∑

l+1

uit ≤ Li, l + t ≤ T

}

, l ∈ T (3.18)

yielding the Varying Lifelength Replacement Problem (VLRP) as

min
(x,z)

∑

i∈N ,t∈T

citxit +
∑

t∈T

dtzt (3.19a)

s.t.
l+Ti(l)
∑

l+1

xit ≥ 1, i ∈ N , 0 ≤ l ≤ T − Ti(l), (3.19b)

xit ≤ zt, i ∈ N , t ∈ T , (3.19c)

xit, zt ∈ {0, 1}, i ∈ N , t ∈ T . (3.19d)

3.3.3 Conjectures for general models

We can see in both the above proposed models that they containa set covering sub-
structure, coupled with mixing constraints. Although a detailed inspection of previous
constructions will not be given, the author is confident thatmany previous results hold
for these models as well. In particular, Proposition 23, which is quite abstract to its
nature, should fairly easily generalize to these models as well. Furthermore, results
on decreasing cost instances and the breaking of degeneracyshould also generalize.
This leads to writing out two conjectures for replacement models with set covering
substructure.

Metaproposition 24. If costs are non-increasing, maintenance may be postponed until
the failure of some component.

This metaproposition states that the fundamental propertythat facilitates the shortest
path solver of Section 4.2 is satisfied. However it is not entirely clear how theá priori
reductions on the number of possibly optimal maintenance decisions that are given for
the basic model may extend to other models.

Metaproposition 25. Zero-half cuts generated as in Section 3.2 will often define facets.

It is outside the scope of this thesis to define general conditions under which these
metapropositions become actual propositions, or even to define what is meant by a
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general replacement model. However we expect that the reader is able to follow the
Chapters 2 and 3 for UIRP and VLRP, and perform the modifications that are necces-
sary.
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Chapter 4

Algorithms

We propose a polynomial time separation algorithm, as well as a shortest path based
algorithm for solving BRP.

4.1 Constraint generation using graphs

The resulting linear programming problem that is obtained by adding all the facets
obtained in Chapter 3 to the problem (1.2) can be seen to have avery large number of
constraints, and an explicit treatment of all facets soon becomes intractable. However,
some of the inequalitites have sufficient structure to allowfor a constraint generation
approach. This is done by constructing several graphs of a reasonable size, which will
allow the separation problem to be solved as shortest path problems in these graphs.
The algorithm will also in some cases produce valid inequalities that are not facets.
Not all the inequalities derived in Chapter 3 will be generated, and what follows below
is an algorithm for solving the restricted separation problem of generating some of the
layered facets of Section 3.1.4 in polynomial time.

We will start by restricting the problem to generating facets of the second layer. We
will also assume thatmin Ti ≥ 3, and thatT1 < T2 < . . . < Tn, which are simplifying
conditions that we expect the reader to understand how they can be lifted. Let us fix a
packing componentp, and construct a weighted digraph onpT nodes:

V = {(s, k)|s ∈ T , k ∈ {1, . . . , p − 1}}, (4.1a)

E = {e(s,k),(s′,k′)}, (4.1b)

wheree(s,k),(s′,k′) ∈ E if s − s′ ≥ 1, s, s′ ∈ T , and

{

s − s′ = mTk′ , k = p, k′ ≤ p − 1, m ≥ 1,

s ≤ s′, k′ = p.
(4.2)
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Given a solution(xLP , zLP ) to an LP-relaxed version of (2.1), the weights of the edges
w(s,k),(s′,k′) are defined as

s′−1
∑

t=s+1

(xLP
k′t + xLP

pt ) + zLP
s′ − m, s − s′ = mT ′

k, k, k′ ≤ p − 1, m ≥ 1

(4.3a)

s′−1
∑

t=s+1

(xLP
k′t + xLP

pt ) + zLP
s + zLP

s′ − xLP
ps − m, s − s′ = mTk′ , k = p, k′ ≤ p − 1, m ≥ 1

(4.3b)

s′

∑

t=s+1

xLP
pt , s ≤ s′, k′ = p.

(4.3c)

We claim that a pathP through this graph from(l + 1, p) to (l + Tp, p) for somel
corresponds to a second layer inequalityg(x, z) ≥ r with the packing componentp
of the type in Proposition 21. Furthermore,g(xLP , zLP ) − r = L(P) − 1 where
L(P) is the weighted length of that path. Hence ifL(P) < 1 we have identified
an inequality that is violated in the LP-relaxed solution. This can be understood if
we interpret (4.3) properly. An inequality of the type we arediscussing lives on the
timest ∈ {l + 1, l + Tp}, for somel. The edges represent feasible ways in which we
can ’fill’ this timeframe with coefficients in a way corresponding to a valid inequality.
The weights (4.3a)-(4.3b) respresent the addition of a packed inequality: (4.3a) adds
a packing such thatτ (k)

2 = τ
(k+1)
1 , while (4.3b) yields a packing where theτ :s are

distinct. The exact expressions for how this is done are derived from (3.7).
To prove these statements we begin by defining a mappingf : X → R

nT+T , where
X is the space of paths in(V,E). The inequality corresponding to the pathP will then
be given asf(P)T (x, z, 1) ≥ 1.

Example 6. We give an example of a path through a graph such as above. Letp = 3,
andT1 = 4, T2 = 6, T3 = 11. Figure 4.1 shows an inequality that is generated as a
path. The resulting inequality becomes

z1 + z5 + z11 +

4
∑

t=2

(x1t + x3t) +

10
∑

t=6

(x2t + x3t) ≥ 3 (4.4)

Definition 26. The mappingf : X → R
nT+1 is defined asf(P) =

∑

e∈P f(e), and
f(e(s,k),(s′,k′)) is defined as in (4.3) wherexLP

it , zLP
it are replaced by the corresponding

unit vectors, and constantsm are replaced with the unit vector(0, 0, . . . , 0,m)T .

We can now prove the following proposition.

Proposition 27. If P is a path in(V,E) from (l + 1, p) to (l + Tp, p) for somel ∈
{0, . . . , T − Tp}, then
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Figure 4.1: Pictorial representation of the a path through agraph according to (4.3),
with T3 = 11, T1 = 4, T2 = 6. The first row shows the initial (empty) situation, the
second rows the coefficients that are added after traversingthe first edge, and so on.
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f(P)T (x, z, 1) ≥ 1 (4.5)

is a valid inequality of the type(3.7) with the properties of Proposition 21 of the re-
placement polytope.

Proof. We prove this using induction over|P|, where|P| is the number of nodes in
the path. If|P| = 2, the statement is trivial, since then clearly (4.5) is an inequality of
the form (2.1b). If|P| = 3 and the last node ofP is (l + Tp, p), the statement is also
trivial. Now assume that the statement is true for allQ such that|Q| ≤ u, u ≥ 2, and
all Q such that|Q| = u+1 where the last node ofQ is (l+Tp, p), and let|P| = u+1.
Then,(s, k) ∈ P for somes ∈ {l + 1, . . . , l + Tp}, k ≤ p − 1, or (4.5) is trivially of
the form (2.1b). Lets be the last such node. Then, removing the node(s, k) from P
and collapsing its inward and outward edge1 to an edge to(l + Tp, p) yields a path of
the form in the induction assumption, which yields a valid inequality of the type (3.7).
FurthermoreP can then be viewed as this valid inequality with the additionof (s, k)
defining a new basic inequality. Hence, by (3.7), it follows thatf(P)T (x, z, 1) ≥ 1 is
also a valid inequality of the replacement polytope of type (3.7). The final case where
|P| = u + 2 with the last node being(l + Tp, p) is treated similarly.

It is also clear from Definition 26 and (4.3) thatf(P)T (xLP , zLP , 1) = L(P).
From the preceding discussion it now follows that the restricted separation problem

can be solved byn many-to-many shortest path problems, and hence that this restricted
problem can be solved in polynomial time. However, as noted above, not all inequali-
ties of Chapter 3 are generated in this fashion. The approachof viewing the separation
problem as shortest problems through graphs may be extendedto higher layer facets:
recursively we solve the separation problem for thek-th layer and use the solution to
update the weigths for layerk + 1. We also point out that the graph can be made sig-
nificantly smaller than is described above: we may replace thepT nodes with only3T
nodes, however such a description becomes more involved. The crucial observation is
that we need only keep track of whether the last node hadk = p or not, however the
weights must be defined differently. The issue that is harderto solve is generating in-
equalities where packing components overlap, and there is currently no known efficient
algorithm for generating the zero-half cuts.

4.2 Dynamic search algorithms

In this section we propose and discuss a shortest path based algorithm in Markov state
space for computing solutions to BRP, under natural assumptions on the costscit and
dt.

4.2.1 Non-increasing costs

We consider instances of BRP wherecit anddt are decreasing int for all ∈ N . Con-
sider the weighted digraphD = (V,E,W ) where

1with a trivial modification if the node has no outward edge
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V = {(t, τ1, . . . , τn), τi ∈ {0, . . . , Ti − 1} ∪ {(0, T1, . . . , Tn), (T + 1)}, (4.6)

i.e. a node inV represents a possible state of the maintenance system, in the sense that
it tracks to what point time the system has survived during a maintenance schedule,
and the remaining lives of each component, as well as auxiliary initial and final states
for t = 0, T + 1. We define the edges of this digraph ase ∈ E if e goes from a node
s1 to a nodes2 such thatt2 − t1 ≤ mini Ti andt2 − t1 = τ1

i for somei ∈ N such that
τi 6= 0, or t2 − t1 = mini Ti. We also require that

τ2
i =

{

τ1
i − (t2 − t1), if τ1

i − (t2 − t1) ≥ 0,

Ti − (t2 − t1), othwerwise.
(4.7)

These edges can interpreted as linking together two maintenance states if there exists a
maintenance decision att1 such that we can advance time tot2 without system failure.
Furthermore the remaining life of the components at the new state will evolve according
to 4.7.

We also define extra edgese ∈ E from s1 to s2 if t2 = T +1 andt2−t1 ≤ mini Ti.
It follows that the outward degree of each vertex inD is less thann. The weigths of
the edgesw ∈ W from states att1 to states att2 are defined as

w = dt2 +
∑

j

cjt1 , (4.8)

where the sum runs over all indicesj such thatτj − (t2 − t1) < 0. The weights of
edges connected to states wheret = 0 is dt, and edges reachingt = T +1 have weight
∑

j cjt, with j running as before. One should think of this graph as describing states of
the maintenance and connecting states if there exists a maintenance decision att1 such
that we reach the state att2, while keeping the system running untilt2 whilst satisfying
(2.3). The weights are given as the costs to perform those maintenance decisions. Let
X be the space of paths inD from (t, T1, . . . , Tn) to (T+1), and the define the mapping
f : X → {0, 1}nT+T , asf(P) =

∑

e∈P g(e), whereg : E → {0, 1}nT+T by letting

(g(e))(i−1)+t =

{

1, t = t1, τ1
i − (t2 − t1) < 0,

0, otherwise
i ∈ N , t ∈ T , (4.9)

(g(e))nT+t =

{

1, t = t2 ≤ T + 1,

0, otherwise.
t ∈ T . (4.10)

Note that the definition ofg yields that the range off really is{0, 1}nT+T , due to the
structure ofD. We will from now understand the binary stringy ∈ {0, 1}nT+T as
corresponding to(x, z) in BRP throughxit = y(i−1)T+t, zt = ynT+T for i ∈ N , t ∈
T , and simply denotef(P) = (xP , zP ). Also note thatw(xP , zP ) = (c, d)T (xP , zP ),
wherew is the pathlength function.

Proposition 28. (xP , zP ) is feasible in BRP, and satisfies(2.3).
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Proof. We need to show that(xP , zP ) satisfies (2.1b) and (2.1c), as the rest is trivial.
We begin with (2.1c). Letj, s be such thatxP

js = 1, and we must show thatzP
s = 1.

But then, according to the definition ofg, there must exist ane ∈ P leaving a state
with te = s, and asP is a path neither starting nor ending in a state witht = s there
exists an edge entering this state,e′. But then, from the definition ofg, it follows that
zP
s = 1.

Now let j ∈ N and l ∈ {0, . . . , T − Tj}. We wish to show that
∑l+Tj

t=l+1 xP
jt ≥

1. By definition,E only contains an edge fromt1 ≥ 1 to t2 if t2 − t1 ≤ mini Ti.
Hence the pathP passes through a statev ∈ V with tv ∈ {l + 1, . . . , l + Ti}, and
from the definition ofE it follows that for some edge to such a state, it must hold
that τj − (t2 − t1) < 0, asτj < Tj . The definition ofg then yields that for some
t ∈ {l + 1, . . . , l + Tj}, xP

jt = 1.

Proposition 29. Let (x∗, z∗) be an optimal solution to BRP with non-increasing costs.
Then there exists a pathP ∈ X such thatw(xP , zP ) = (c, d)T (x∗, z∗)

Proof. As the costs are non-increasing we may assume that(x∗, z∗) satisfies (2.5), by
Proposition 12. We prove the proposition by explicitly constructing the pathP. Let
t1 < t2 < . . . < tm be the times wherez∗t = 1, and lett0 = 0. It follows that if we can
find P = {e1, . . . , em+1} such that it yields(x∗, z∗), the statement is true. By (2.3) it
follows thatt1 = mini Ti, and we lete1 = (0, T1, . . . , Tn) → (T1, 0, T2−T1, . . . , Tn−
T1) ∈ E. Now assume that forj = 2, . . . ,m, the edgese1, . . . , ej−1 have been defined
such that

∑j−1
i=1 g(e) agrees with(x∗, z∗) for all timest < tj , and look for an edge from

the state attj−1 to some state attj . By (2.3) and the defining properties ofE, such
an edge exists, and it only remains to show thatxP

itj−1
= x∗

itj−1
for i ∈ N for some

such edge. To this end, definesi = max (t|x∗
it = 1, t < tj−1) for i ∈ N . Trivially,

si ∈ {t0, t1, . . . , tj−2}. Equation (2.1b) now yields thattj−1 ∈ {si + 1, . . . , si + Ti},
and decreasing costs then imply that

x∗
itj−1

=

{

1, tj /∈ {si + 1, . . . , si + Ti}

0, otherwise
(4.11)

However this statement is the same as that definingg, and it follows that the edges
e1, . . . , em can be chosen in the desired way. All that remains is to conclude that
em+1 = (tm, τ1, . . . , τn) → (T + 1), which completes the construction.

What we have managed to show is now that BRP with decreasing costs can be
solved as shortest path problem in the weighted digraphD.

4.2.2 Complexity analysis

The natural question arises how difficult it is to solve the shortest path problem defined
above. We assume that the reader is familiar with the most common shortest path
solvers and the standard notation2. A well known worst case runtime for Dijkstra’s

2Otherwise, a primer can be found on Wikipedia
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algorithm isO(|V |log|V |+ |E|), and the number of expanded nodes isO(|V |+ |E|).
For the above problem we have|V | = O(TΠiTi) and |E| ≤ n|V |, and it follows
for large instances of BRP, the runtime may grow very large. However in practice we
expect the runtime to be much smaller, as the digraphD is not connected, and it suffices
to use estimates of the size of the connected component of thesource state. Consider
instances of BRP where we fixn, T , and are allowed to varyTi, i ∈ N . As we increase
Ti, it follows that|V | grows very rapidly, and in the extreme caseTi = T, i ∈ N , the
size of the state graph is|V | = Tn+1. However the connected component of the initial
node has|V0| = 3, that is the intitial node, the goal node and an intermediarynode
at (T, 0, . . . , 0). Continuing with this line of reasoning, we heuristically expect the
number of expanded nodes to depend not onT directly, but rather on T

mini Ti
. We

partially formalize this in a proposition.

Proposition 30. Let an instanceP of BRP with constant costs be given byn, T, Ti, ci, d,i ∈
N . Define thek-discretized,k ∈ Z

+, modification of this asP k with T ′ = kT , n′ = n,
T ′

i = kTi, c
′
i = ci, d

′ = d, i ∈ N . Then the associated shortest path problems forP
andP k are equivalent.

Proof. We prove this by showing that the connected component of the initial node in
both problems induce the same digraph. Without loss of generality, we assume that
the least common divisorLCD(T, T1, . . . , Tn) = 1. Let us denote the connected
components of the initial nodes of the digraphs asDc, Dk

c . We begin by mapping all
nodes ofDc into Dk

c by letting (t, τ1, . . . , τn) 7→ (kt, kτ1, . . . , kτn). It then suffices
to show that this mapping is surjective. However it follows from the definition of
the edges that for any node inDk

c , v = (t′, τ ′
1, . . . , τ

′
n) we have thatt′ ≡ 0mod k,

τ ′
i ≡ 0mod k, and the proposition follows.

The proposition shows that in a sense the time discretization of a given problem
does not make the problem harder to solve, something which iscertainly not true for a
general MIP.

4.2.3 Improvements

To have any chance of efficiently solving large problems, it is not possible to use Dijk-
stra’s algorithm, but rather the guided A*-algorithm [WiA], which functions in exactly
the same way as Dijkstra’s algorithm, but on a graph with modified edge weights

w′
ij = wij − h(i) + h(j), (4.12)

whereh(i) denotes an optimistic heuristic of the shortest path distance from nodei
to the goal node. Hence, where Dijkstra ranks nodes according the distance from the
source to those nodes, A* ranks them according to distance from source to nodeand
an estimate of distance from node to goal. We then also need tosupply the algorithm
with a heuristic for computing the remaining distance to thegoal state, and we will in
this section discuss different ways to do this. There are essentially four different ap-
proaches: simple estimates, LP-relaxation estimates, strengthened LP-relaxation esti-
mates, and partitioning heuristics. We begin by discussingLP-relaxation estimates, and
then derive simple estimates from this, as well as some strengthened LP-relaxations.
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Consider a state in the digraphDc, v = (t, τ1, . . . , τn). By construction the partial
solution of BRP that corresponds to a path leading to this state keeps the maintenance
system working until timet. It follows that an admissible heuristic for computing the
remaining path length is given by solving a modified version of the LP-relaxation with
the variables corresponding to the current path fixed. A strenghtened LP-relaxation
can then be obtained by adding some cutting planes to the subproblem, or by running a
branch & cut scheme with a few nodes. It should be noted that the A*-algorithm then
reduces to a branch & cut algorithm for the entire problem, with an adapted branch-
ing rule. We expect this choice of a heuristic to be a good general heuristic for a
wide range of problems, as it yields a balanced tradeoff between heuristic accuracy
and heuristic computation time. We may also choose to improve this relaxation by for
example requiring that the total number of maintenance occasions/component replace-
ments should be integral.

For smaller problems, where the number of expanded nodes maynot be a concern,
we will instead want a faster, but perhaps less accurate heuristic. This can be obtained
by computing lower bounds on the optimal value of the LP-relaxed subproblem above.
We can easily do this by computing lower bounds on the number of replacements of
each part, as well as a lower bound on the number of maintenance occcasions, which
can be obtained directly as linear combinations of (2.1b). We get that

T
∑

t=s

xit ≥ 1 + ⌊
T − s − τi + 1

Ti

⌋ (4.13)

T
∑

t=s+1

zt ≥ ⌊
T − s + 1 − mini{τi|τ > 0}

mini Ti

⌋. (4.14)

We now reach the most involved heuristic, which we expect to have to use for
very large problems. This is motivated by the intuitive observation that for largeT ,
i.e. T

mini Ti
is large, the solution to BRP should be periodical3, and the separability

property discussed in Chapter 2. That is, we wish to use the optimal values for smaller
instances as an estimate of the optimal value of larger problems. Consider instances of
BRP wheren, Ti, i ∈ N are fixed, and we are allowed to letT vary. Letf∗(T ) be the
optimal value of the problem with planning horizonT .

Proposition 31. For fixedn, Ti, i ∈ N , if cit, dt are decreasing int, thenf∗ is super-
additive, that is

f∗(T1 + T2) ≥ f∗(T1) + f∗(T2). (4.15)

Furthermore,

f∗(T1 + T2) ≤ f∗(T1) + f∗(T2) + d +
∑

i∈N

ci. (4.16)

3Or rather, there exists a near-optimal solution that is periodical
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Proof. Let (x∗, z∗) be an optimal solution to BRP with planning horizonT . Define
(xj , zj), j = 1, 2 as

x1
it = x∗

it, t ∈ {1, . . . , T1}, (4.17a)

z1
t = z∗t , t ∈ {1, . . . , T1}, (4.17b)

x2
i,t = x∗

i,t+T1
, t ∈ {1, . . . , T2}, (4.17c)

z2
t = z∗t+T1

, t ∈ {1, . . . , T2}. (4.17d)

It follows that(xj , zj) are feasible in BRP with planning horizonsTj , respectively,
and consequentlyf(xj , zj) ≥ f∗(Tj), j = 1, 2. Finally

f∗(T1 + T2) = f(x1, z1) + f(x2, z2) ≥ f∗(T1) + f∗(T2). (4.18)

Conversely if we let(xj , zj), j = 1, 2, be optimal solutions to the problems with
planning horizonsTj , j = 1, 2, respectively, we can define a feasible solution to the
problem with planning horizonT1 + T2 using (4.17), and addingxiT1

= zT1
= 1 for

i ∈ N , finishing the proof.

We also point out that the same result holds for the LP-relaxed optima. We wish
to alert the reader to that the main usage of the partitioningheuristic is not to produce
good quality solutions to the BRP, but to provide stronger lower bounds than are ob-
tainable by linear relaxation methods. Also note that the partitioning is very similar to
the Lagrangian relaxation with multipliers0 that was discussed in Chapter 2. Finally
we note that there exists in a sense a dual version of the partitiong, where we instead
of partitiong the planning horizon partition the components into subgroups. It is then
easily seen that the inequalities corresponding to Proposition 31 for component parti-
tionings hold when the inequalities are reversed, which maythen be used to construct
a primal heuristic.

4.2.4 Heuristics

For large instances, the method above may not be able to terminate within a reasonable
timeframe, and we may need to use some heuristics to speed things up. A basis for
this comes from Proposition 31, which loosely speaking is anindication that the linear
relaxation gap grows asymptotically linearly for a fixed instance when increasingT . A
further motivation of this is that for very largeT we expect the solution to both BRP
and its linear relaxation to be periodical. This yields thatthe heuristic estimates of
remaining cost are less sharp for states at early times, and that this should be linearly
related. We may then motivate the heuristic to introduce a memory horizon for the
A*-algorithm, that is, we delete all the open states that aresome fixed distance away
from the latest expanded state. That is, if we have found a state att with an estimated
cost offt, and there are states ats < t with the same score4, we guess that the state

4Note that it cannot be smaller ast was an expanded node
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at s is worse than the one att, and that we are fooled into believing that it is good
merely because the heuristic bound is bad. Note that for thisheuristic to perform well,
the remaining distance heuristic has to behave monotonically. It is controlled through
the use of2 parameters, MEM_PURGE_FREQ and MEM_HORIZON, which control
how often the memory is purged, and how far back to purge, respectively. It is natural
to estimate that a natural time-scale for the problem at handis given by its minimal life
limit, and hence MEM_HORIZON is defined in terms of multiplesof this.

Another heuristic speedup is to limit the number of open nodes at any given instant
of time. That is, we define a parameter MAX_NODES_AT_T, whichdefines how many
open states we allow that are at the samet. If a new state is added to the open set with
the samet, we simply remove the state att with the worst score. This heuristic will
then work well if the heuristic is monotone for states att, in the sense that we assume
that the ordering of heuristic scores are a good estimate of the ordering of actual scores.
This heuristic has the added benefit of keeping the memory usage of the algorithm low.
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Numerical results

In this chapter we present some basic numerical tests on implementations of the theo-
retical results obtained in this thesis. This chapter is notmeant as as extensive numeri-
cal study, but should rather be read as a guideline to when thetheory is applicable. The
reason for this is mainly that, as the problem at hand has not previously been exten-
sively studied, there exist no resource for benchmark problems. Furthermore the author
does not have access to large amounts of data from real world industry applications.

There are two main investigations that we wish to perform in this chapter. These are
a study of the power of the facet-generating shortest path based separation algorithm of
Section 4.1, and the dynamic programming scheme of Section 4.2. For the separation
algorithm, we are mainly interested in how much the linear programming relaxation
gap of BRP can be reduced, and for which instances it performswell.

The dynamic programming scheme is granted a bit more attention, as there are
more things of interest to test. The tests we perform include:

1. Performance of the exact solver.

2. Dependence on choice of heuristic.

3. Solution quality and performance when using heuristic speedups.

4. Comparisons with commercial grade MIP solvers.

The reference MIP solver that is used is CPLEX 12.1. Algorithms implemented by the
author are written in MATLAB R2008b, with some parts writtenin C, being called with
MATLAB’s MEX-interface. All numerical experiments are performed on a dedicated
Linux desktop workstation.

5.1 Separation problem

It is interesting to study how much the constraint generation scheme is able to reduce
the gap of the continuous relaxation in relation to the optimal integer solution. The
first test we perform is to solve many instances of a medium-sized problem, so that
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the true optimum is obtainable. The instances are chosen such that the number of
componentsn and the horizonT is fixed. The component costsci are fixed random
numbersci ∈ U(1, 2), and the fixed costd is varied.

We test using the simplest version of the separation problemof Section 4.1. The
implemented algorithm version is capable of generating facets of the second layer only.
The authors experience indicate that gap reduction is essentially dependent on one fac-
tor, which is the minimal life of the components. In Figures 5.1 and 5.2, we graph the
relaxation gaps before and after the cutting plane algorithm for problems with short-
lived components are longlived components, respectively.
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Figure 5.1: Relative gaps between integer and continuous optima, varying d, problem
1. This problem contains several components with short lives, as far down asTi = 3.

We note that the facet generation performs very well on this problem.
We also give an instance for which this approach performs poorly. The instance is

constructed such thatmin Ti is larger; such a problem is problem 2, and the results are
depicted in Figure 5.2.

The poor performance can be explained somewhat. What the given subclass of
facets does is to superposition slightly more than, for simplicity, two inequalities from
(2.1b), yielding for both fractional and integer solutionsan inequality that is probably
not satisfied strictly. However in fractional solutions, the mixing with (2.1c) allows
us to exchange for examplex21 = 1/2, x22 = 1/2 with z2 = 1/2 in the inequality.
Heuristically, it follows that the morex-variable content we exchange withz-variable
content, the more violation we obtain. For this subclass of facets, we maximally sub-
stitute4 x-variables for2 z variables. It, again heuristically, follows that the amount of
violation of constraints is determined by the typical size of the values of the variables
in the fractional solution. Now, finally, we expect that the typical size of the variables
in the optimal fractional solution is(mini Ti)

−1, for obvious reasons, and hence that
the subclass of facets generated above is stronger for problem with shorter lives than
for larger lives.
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Figure 5.2: Relative gaps between integer and continuous optima, varying d, problem
2. This instance contains components with lives spanning fromTi = 13 to Ti = 40.

If we now consider the zero-half cuts of Section 3.2, they were allowed to use
many more mixing constraints from (2.1c). As the lives of thecomponents increase,
causing the violation gain from one mixing to decrease, the number of possible mixings
increase as well. Therefore we expect the zero-half cuts to be more robust for problems
with longer lives. Unfortunately, it seems to be much harderto add facets with a large
number of mixings as they are very time-consuming to identify, which is why this has
not yet been implemented.

5.2 Dynamic search algorithms

We also wish to test the performance of the proposed A*-algorithm of Section 4.2 for
different heuristics, as well as comparing to commercial general MIP solvers. Again,
implementations are written in MATLAB with linear programssolved in CPLEX 12.1,
which is also the MIP solver that is used for comparison. As a cutting plane generation
has not yet been implemented to work within this algorithm, we take advantage of
CPLEX’s built-in zero-half cut generation to emulate the results of section 3.2. These
implementation details may have a significant impact on timing results. MATLAB’s
scripting language, being uncompiled, is typically very slow for applications containing
many loops. Hence the A*-algorithm is severely penalized inrealtime comparisons1.

The tests are performed on the problems of Table 5.2.1. The relevant data that is
measured is the computation time in real time, and the numberof nodes that are pro-
cessed for each algorithm. The algorithms that are tested are denoted CPLEX, Simple,

1It can be mentioned that in the shortest path algorithm for theseparation problem, early versions were
coded in MATLAB. When switching to C, a speedup factor of roughly 50-100 was obtained.
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Problem n T min Ti max Ti

1 10 50 2 11
2 4 100 9 22
3 2 500 15 23
4 2 13 3 5

LP and LPCUT, where the names of the last three indicate the heuristic estimate of
remaining distance that is used.

5.2.1 Problem testbed

Throughout this section we will variations of six problems as a benchmark. Two prob-
lems, HPT and LPT, are real-world instances obtained from Volvo Aero, while prob-
lems1 through4 are invented by the author to be fairly illustrative examples of different
classes of problems. For the four invented problems, basic data is given in Table 5.2.1.

The problems of Table 5.2.1 were chosen to represent different classes of instances.
Problem1 is a dense problem, in the sense that it contains components with similar
lives, which makes optimal solution contain many maintenance occasions. Problem
2 is intented to be a more realistic problem. Problem3 is chosen to investigate the
effects of a long planning horizon, while problem4 is a very simple problem intended
to investigate whether there exists some overhead when running the algorithms.

5.2.2 Time dependence of relaxation gaps

It was hypothesised earlier that the gaps of the heuristic estimates for fixed instances
grew as the planning horizon grew. We test this hypothesis bycomputing both integer
and continous optima for some problems when varying the planning horizon. To test
this we let CPLEX solve modifications of problem 2, forT = 25, . . . , 125. The result
is shown in Figure 5.3, from which we can see that for this problem, the hypothesis
that both the integral and the continuous optimas grow approximately linearly is fairly
accurate. Furthermore the gap seems to follow the same pattern. This result provides
strong support for the memory horizon heuristic for the A*-algorithm.

Simple tests

In this section we let the exact A*-algorithm solve the testbed of instances in Table
5.2.1. The results are presented in Table 5.1

We see that in real time comparisons, CPLEX seems to win on most instances.
However it should be noted that real time may not the most relevant basis of compar-
ison, as this should be favoring CPLEX with its efficient implementation as opposed
to the fairly slow implementation of the A*-algorithm in MATLAB. It should also
be noted that CPLEX is parallellised, and uses 2 processors,while the A*-algorithm
does not. More interesting is the number of expanded nodes, that should be compared
with the number of branching nodes of CPLEX, where the A*-algorithm seems to per-
form significantly better than CPLEX, especially for long-horizon instances. However
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Figure 5.3: Integer and continuous optima for problem2 when varying the planning
horizonT . Both objective values appear to increase approximately linearly.

CPLEX Simple LP LPCUT
Time(s) Nodes Time(s) Iterations Time(s) Iterations Time(s) Iterations

1 0.94 187 578 46457 873 18484 30 146
2 1.70 503 3.5 2995 6.6 81 14 51
3 ∗ 326947 7.2 10384 530 3683 2327 3543
4 0.04 0 0.007 8 0.4 6 0.4 6

Table 5.1: Timing results when solving a testbed of instances. If the runtime exceeds
one hour, the algorithm is considered to have failed, and this is marked by a∗. Other-
wise the problem is solved to optimality.
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Simple LP LPCUT
Time(s) Iter. Obj.Val. Time(s) Iter. Obj.Val. Time(s) Iterations Obj.Val.

1 2 1329 131 12.4 58 131 9.4 125 131
2 0.28 225 54 4.0 30 54 11.8 47 54
3 0.52 603 120 35.3 106 120 106 146 120

Table 5.2: Performance of the memory horizon heuristic on the testbed of problems.
All variants obtain the true optimum.

for dense instances, that is instances with a large number ofcomponents and many
maintenance occasions, such as problem 1, CPLEX still performs better. This is not
surprising, as many maintenance occasions implies a large number of edges in the op-
timal solution in the shortest path formulation, while a large number of components
significantly increases the number of edges, both increasing the computational time.
However, the strong LP version still performs fairly well onthis problem, which indi-
cates the importance of choosing a proper remaining distance heuristic.

In conclusion, the A*-algorithm can beat a general MIP solver for some instances,
however there is not a distinct advantage.

Heuristics

We test the heuristic version of the A*-algorithm with different parameter settings, and
study the effects on solution time and quality. For the SIMPLE heuristic we use the
parameters MEM_PURGE_FREQ= 200 and for the LP and LPCUT
MEM_PURGE_FREQ= 20. For all algorithms MEM_HORIZON = 2. In this initial
test we use MAX_NODES_AT_T= ∞.

We can see in Table 5.2 that for all problems the optimal solution is obtained.
Futhermore the solution times are significantly decreased.The effect is most dramatic
for the Simple heuristic on problem 1. This is easily understood, as this problem is
very dense, which makes the Simple heuristic very bad. This causes the long running
time for the exact solution. However the simple heuristic isstill consistent on this
problem, in the monotone sense, making the memory horizon heuristic powerful. It
is also interesting to note that we no longer neccessarily expand less nodes with the
LPCUT solver.

We also study the effects when doubling the planning horizonto investigate the
scaling properties of the heuristic.

The known true optima for the problems in Table 5.3 are265, 113, 242, as obtained
by CPLEX2. We can then see for these fairly large problems, with planning horizons
of up toT = 1000, the objective value is either optimal or very close to optimal, with
the deviation being at most1.5%, and with very short runtimes in comparison to a
traditional branch & cut. It should be noted that the worst performance is obtained
on problem 1 containing a component with lifeTi = 2. This should not come as a

2Obtaining the optimum for problem 2 with CPLEX took over36 hours.

52



5.2. DYNAMIC SEARCH ALGORITHMS

Simple LP LPCUT
Time(s) Iter. Obj.Val. Time(s) Iter. Obj.Val. Time(s) Iter. Obj.Val.

1 3.4 2547 268 37 293 266 114 149 270
2 1.1 800 113 108 205 113 263 274 113
3 1.1 1219 242 977 425 243 1592 392 242

Table 5.3: Performance of memory horizon heuristic on the testbed of problems with
doubled horizons.

CPLEX LP LP heuristic
Time(s) Nodes Time(s) Iterations Time(s) Iterations Gap

HPT 1770 66797 807 1031 161 206 0
LPT 53 220 53 47 53 47 0

Table 5.4: Performance on two real world problems for CPLEX and the LP A*-
algorithm.

surprise as the memory horizon then becomes very short3, and demonstrates that the
generic settingMEM_HOR = 2 is actually fairly robust even in this pathological
case.

5.2.3 Real world instances

We try our algorithms on real world data obtained from Volvo Aero Corporation. The
data is however to be considered as secret, and we only present numbers on the mag-
nitude of the problems. There are two problem sets, HPT and LPT, that stem from
maintenance criteria on moddule of a high- and low pressure turbine of an aircraft en-
gine. The problems contain safety critical components thatmust not break, and are
as such assigned a deterministic life limit, making the BRP applicable. For the HPT
problem there are9 components, and the LPT problem has10 components, both with
a planning horizonT = 200. We only test the LP version of the exact A*-algorithm,
as it from the previous result seem to be the most robust, as well as being the most
comparable to CPLEX in terms of the number of nodes it expands.

A graph of the solution progress for the algorithms above on HPT is presented
in figure 5.4. Note that this graph plots the number of solved LP-relaxations for the
A*-algorithm, which is larger than the number of expanded nodes. Furthermore, we
only allow CPLEX to use one thread. It is interesting to note that the number of nodes
is cut down significantly for CPLEX compared to the parallellprocessing solution.
This is an indication that for this type of problems, parallell processing MIP solvers
may not have a significant advantage over singlethreaded solvers. However, it is likely
that the performance increase for parallell processing in the A*-algorithm is likely to
be approximately linear in the number of processors. We can see that on the LPT,

3Much shorter than the longest life ofTi = 11.
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there is not much difference in the solution process, and they are in fact tied in real
time. However for HPT they are miles apart, where CPLEX expands65 times as many
nodes, and is also significantly beaten in the real time comparison. It was also tested
to let CPLEX solve the HPT problem without allowing it generate any cutting planes,
where it failed to produce an optimal solution after runningfor 24 hours.

We also try the full-force heuristic on both HPT and LPT. We use Simple on
HPT and LPT, with parameters MEM_PURGE_FREQ= 200, MEM_HOR = 3,
MAX_NODES_AT_T = 20, settings that are to be considered as generic. For these
settings we varyT . The problems considered will be too large to prove optimality.
Firstly we study the solution times for the Simple version algorithm with full heuris-
tics, by letting it solve variants of HPT with planning horizons100 ≤ T ≤ 1100. The
result is graphed in Figure 5.5. We see that the solution timeis approximately linear in
T , as is to be expected.

If the heuristic is to be used to solve a subproblem in, say, a stochastic programming
setting, what we wish to obtain is most likely the optimal maintenance decision today,
and future maintenance scheduling is less interesting. In this setting, a heuristic that
prematurely cuts off maintenance decisions today may perform badly. Hence we also
report solution times when not using the memory horizon heuristic, which are graphed
in figure 5.6 for HPT with50 ≤ T ≤ 650.

We also investigate the solution quality obtained. The trueoptima are computed by
CPLEX, and are compared to the heuristic optima in Figure 5.7for 100 ≤ T ≤ 190.
In fact the true optimum is obtained for all tested values ofT .
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Figure 5.4: Solution progress on the HPT problem, displaying the lower bound the
optimum. The horizontal line is the true integer optimum
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Figure 5.5: Time dependence of full-force heuristic.
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Figure 5.6: Time dependence of heuristic with MEM_HOR =∞
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Figure 5.7: Solution quality obtained on HPT for various planning horizons. Circles
are true optimas, while the line displays heuristically obtained optimas.
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Chapter 6

Final Remarks

The work done in this thesis show that binary linear programming models for oppor-
tunistic maintenance planning are likely to have sufficientsubstructure to makeá priori
conclusions about the facial structure. In particular, they have a set covering substruc-
ture, which may be used as a guiding principle for generationof strong cutting planes.
It may also be possible to find combinatorial implications that generate cutting planes.
However these cutting planes can be hard to generate, which may be a direction for
future research.

Furthermore we have demonstrated that natural dynamic programming formula-
tions can have a significant advantage over branch-and-cut approaches, if there exists
some way toá priori reduce the number of maintenance decisions that stand any chance
of being optimal.

The biggest remaining question is however if our approachesextend to a stochastic
programming setting.
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