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Abstract

We study a basic mathematical model for opportunistic neaiatce planning. Two
new classes of facets are derived, based on combinatonications and zero-half
Chvatal-Gomory cuts, and it is indicated how these germrdb extended replace-
ment models. Furthermore a dynamic programming schemeofeing the model
is presented and shown to in some cases have superior parfoento plain vanilla
branch-and-cut solver.

Sammanfattning

Vi studerar en enkel matematisk modell for opportunistisklerhallsplanering.
Tva nya klasser av fasetter presenteras, baserade pa kadoriska implikationer samt
speciella Chvatal-Gomory olikheter. Vidare indikeras Hessa fasetter kan generalis-
eras till utvidgade modeller. En dynamisk programmerifggg#m ges aven for att
I6sa den givha modellen, och demonstreras i vissa fall hd&pgen prestanda jamfort
med en standard branch-and-cut-l6sare.
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Introduction

The problem of planning maintenance is a continuously gngwsubject. As our soci-
ety grows ever more technologically advanced, with moreranck tasks being done
by machines, there are simply many components that can Agila natural conse-
guence, the costs of performing maintenance is growing,vahdikely continue to
do so for many years to come. Therefore, the importance déyring maintenance
operations well seems hard to overestimate. It is estimatedrecent study (by Fo-
rum Vision Instandhaltung, Germany) that in the Europeaiot/maintenance costs
in the manufacturing industry alone is as high as $2 trilliamually, while another
source [RKMO04] states that in the US, roughly one third of ¢bst of maintenance
is wasted by inefficient management methods. This could rifggrmaintenance in
the EU amounts to roughly twice the GDP of Italy, and the GDEhefNetherlands is
wasted in inefficiency.

The scope of this thesis is to study the mathematical aspédtse concept of
opportunistic maintenance planning. The idea is to use soatbematical model to
decide whether or not to perform maintenance that is nattlstmeccessary when an
opportunity arises. That is, we anticipe a future need fonteaance, and ask the
guestion whether or not the cost of replacing a part thattigeidoroken outweighs the
cost of having to perform maintenance again later. An examoluld be to replace all
the tires of a car when it gets a flat, because we interpretaheadla sign that all the
tires are worn out.

This thesis is divided into five main chapters. Chapter 1utises some brief the-
oretical results, and serves mainly to fix notation and esxfees for later chapters.
For a more thorough introduction to combinatoral optiniaatve refer the reader to
[NW88]. Chapters 2 through 4 contains the main body of thisithen that they dis-
cuss the facial structure of a maintenance polytope, andesffialgorithms for solving
the replacement problem. Numerical results are then peoviid chapter 5.






Chapter 1

Basic theory of combinatorial
optimization
This chapter serves to collect some basic results of cortdsinhoptimization as well

as to fix notation. Much of this text follows the treatment ba subject in [NW88].

1.1 Basic premises

By a combinatorial problem we shall understand a problerh@form

minimizecTx, (1.1a)
subjectto Ax < b, (1.1b)
x € X, (1.1c)

wherec,x € R", A € R™*" b € R™, andX is some finite set. We will throughout
assume thaX = {0,1}". Let us denote the feasible set of (1.1) By It is a well-
known fact from linear programming theory that if an optimtaa linear programming
problem exists, it can be taken as an extreme point of théblegsolyhedron. Further-
more, the representation theorem for convex polyhedrdbksitas that any extreme
point of the convex hull of is feasible inS, and thatonv(.S) is a bounded polytope.
Thus, we can if we so wish in (1.1) replaSewith conv(S), transforming the problem
into a linear programming one. Let us write this problem a¢ th

minimizecTx, (1.2a)
subject toAd’'x < b/, (1.2b)
where A’; b are such thatonv(S) = {x € R"|A’x < b'}. An approch to solving

(1.1) could therefore be to solve (1.2). However, this waduire a complete de-
scription of the matrix4’, which in practice is generally undoable. Instead one iroft
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CHAPTER 1. BASIC THEORY OF COMBINATORIAL OPTIMIZATION

forced to work with approximations ebnv(S). The canonical approximation would
be to in (1.2) replacel’ by A from (1.1). A tighter approximation may be obtained if
one is able to somehow find some subset of rows of the mdtrixHopefully, as the
approximation otonv(S) gets tighter, the solutions to thelaxedversion of (1.2) can
be used to guide us towards a solution of (1.1).

1.2 A brief primer of polyhedral theory

In this section we list some useful theorems for use in theafthis thesis. We begin
by defining the notion of &acetof a polyhedronP. To do this we first need a concept
of faces and their dimensions.

Definition 1 (Face) A face of a polyhedro® = {x € R" | Ax < b}isasetF C P
of the formF = {x € P|r’x = o}, where(rw, ) is such thatr’x < = for all
x € P. We say tha{w, my) representghe faceF'. It is calledproperif F # § and
F + P.

Hence, a face is the intersection Bfand a hyperplane described by a valid in-
equality for P. From this definition it can be seen that a face of a polyhedrdself a
polyhedron, and we can define a common notion of dimension.

Definition 2 (Polyhedral dimension)A polyhedronP = {x € R" | Ax < b} is said
to be of dimensiork if the maximum number of affinely independent pointsrofs
k + 1. The codimension of is defined agodim(F') = n — dim(F).

As the maximum number of affinely independent pointsRéfis n + 1, it fol-
lows that no polyhedron ifR™ can have dimension greater than If the dimension
is exactlyn we call the polyhedroffulldimensional In the context of combinatorial
optimization, fulldimensionality can be understood agé¢heeing no redundancies in
the modelling. That is, it is not possible to immediately clode from the constraints
that some variable must be set to a fixed value. It can thustbieted as there being
no hidden equality constraints in the matebof (1.1). It also follows from this defini-
tion that polyhedral dimension is the same as the vectorespiatension of the tangent
vectors ofF.

We are now ready to define a facetdf

Definition 3 (Facet) A face of a polyhedrorP of dimensionk is called a facet if it is
of dimensionk — 1.

A facet represented by, mo) is thus the tightest possible valid inequality B¢
in the sense that it cannot be translated nor tilted intolerotalid inequality that is
not implied byx € P, 77x < m,. Hence, when searching for rows of the mat#ix
in (1.2) it is desirable to find facets obnv S. To be able check whether rows define
facets, we need a less abstract characterization thangs givDefinition 3, which the
following theorem gives us.

Theorem 4(characterization of facets) et P be a fulldimensional polyhedron iR"™
and letF = {x € P|rTx = m} be a proper face of. The following statements are
equivalent:



1.3. INTEGRAL POLYHEDRA

1. Fis afacet ofP,
2. If \Tz = )\ for all x € F, then(\, \g) = a(m, m) for somen € R,
3. codim F' = 1.

Furthermore, the equivalence betwezand 3 remains true even if the assumption on
the fulldimensionality of is dropped.

Proof. The equivalence betwednand?2 is established in [NW88]. The equivalence
betweenl and3 follows immediately from the definition of a facet of a fultdensional
polyhedron, which completes the proof whénis fulldimensional. Let us now drop
the assumption o being fulldimensional, and show thats 3. Letx? € F. Then

it holds that

Mx-x") =0, vxeF (1.3)

and hence also that

My =0, Vy e Span(F —x°). (1.4)

In other words )\ € Span(F — x°)*. From basic linear algebra we now obtain

dim(AATz = A2, Vx € F) + dim(F) = dim(R"), (1.5)

from which the equivalence &@and3 immediately follows. O

Thatis, to show that a valid inequality fét yields a facet, we check that the vector
space dimension of the orthogonal complement of the tangmtors of F has a low
enough dimension.

1.3 Integral polyhedra

A polyhedronP is said to bentegral if all of its extreme points are integral, and a
matrix A such that any submatrix of has determinant 1, 0 or 1 is calledtotally uni-
modular(TU). We have the following theorem, which can be viewed agresequence
of Cramer’s rule.

Theorem 5. If Ais TU, then the polyhedroR = {x € R™ | Az < b} is integral for
allbezm.

This theorem can be very useful, since if we know that a matr{t.1) is TU, we
can immediately replace the condition that {0, 1}™ with = € [0, 1]™. Furthermore,
some ways exist in which a matrix can checked for TU, which &ngncases are based
on network properties on the matrix. A treatment of this tigdi@s beyond the scope
of this thesis and we refer the interested reader to [NW88].
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CHAPTER 1. BASIC THEORY OF COMBINATORIAL OPTIMIZATION

1.4 Chvatal-Gomory rounding

Generating rows ofl’ in (1.2) is not a trivial problem. However some general mdtho
to do this exist, and Chvatal-Gomory Rounding is such anagur that will prove to
be fruitful in Chapter 3. We assume without loss of generéiat in (1.1),A € Z™*"
andb € Z™. Then we may obtain a new valid inequality f6F by taking a non-
negative linear combination of the rows 4f

Letu,, ¢ € {1,...,m} be non-negative real numbers. Then

En: <§m: “iaij> Tj < zm:uibi (1.6)
i=1

j=1 \i=1

is a valid inequality forS. We may round the left hand side down yielding

as another valid inequality fa§. Now the left hand side is an integer,ase {0, 1},
and hence we may round the right hand side down as well, yigldi

j=1 Li=1 i=1
as a new valid inequality fo$. The procedure above is call€thvatal-Gomory Round-
ing and the obtained inequality is called a Chvéatal-Gomory (@&juality.

The procedure may of course be applied recursively, alsgysieviously obtained
Chvatal-Gomory inequalities as the basis for new CG inetigsl The class of CG
inequalities can then be defined as any inequality obtaifited a finite number of
applications of the CG procedure, as well as any valid inktyuhat is implied by the
CG inequalities. These implied inequalities are then saidet dominated by the CG
inequalities.

Given the inequalities of (1.1), it follows that the ineqjtiak (1.6) and (1.7) are
redundant in the description eénv(S). The natural question arises whether (1.8) can
be nonredundant. The following theorem establishes tidsaore.

Theorem 6 (Theorem 2.8 [NW88]) Let 7'z < my with (7, my) € Z"*! be a valid
inequality forS = P N Z" with P = {x € R |Ax < b,x < 1}. ThentTx < 7 is
dominated by a Chvétal-Gomory inequality f6r

This theorem tells us that, in principle, to solve any corabanial problem, all we
need to do is to find all the Chvéatal-Gomory inequalities asldesthe linear program-
ming problem (1.2). Another theorem in [NW88] tells us thastheneration of CG
inequalities can be done in a finite, but likely intractablenber of steps. Furthermore,
the linear programming problem (1.2) may also become tgelty handle.

1That is, a row ofd’ in (1.2).



1.5. AUTOMATED FACET GENERATION

1.5 Automated facet generation

When hunting for facets of a polytope, it is very helpful to @a/computer program
capable of generating all facets for some small instancheptoblem at hand. One
way of doing this is complete enumeration coupled with Fedkilotzkin elimination.
Given a combinatorial optimization problem, it is in priplg easy to enumerate the
feasible set, as it is finite. Suppose we have such an enuorergv,, vo,...,vN}.
Then we may describe the convex hull of those points as thef get [0, 1] satisfying

N
X = Z Aivi, (19a)
=1
N
1=\, (1.9b)
=1
0<X, i=1...,N (2.9¢)
for some);, i = 1,...,N. The idea is to project out the variablasg, to yield a

system of equations and inequalities containing onlyrhis can be done by means of
Fourier-Motzkin elimination. To project oWt;, we write the system (1.9) as

A > A(X, )‘j)7 j>2 (110a)
M < BN, §>2, (1.10b)

where we can interpret the matricdsand B as setting variable dependent upper and
lower bounds on the variablg, respectively. It then follows that giveix, \;), i €
{2,..., N}, (x,A) is feasible in (1.9) if and only if

max A(x,A;) <A < min B(x, ;). (1.11)
Thus, there exists somg such thaix, \) is feasible in (1.9) if and only if

max A(x, A;) < min B(x, \;j). (1.12)

Hence (1.12) is a system not containikg such that the solution set is equal to the
solution set of (1.9) projected ok, = 0. By repeating this we may project out all
the variables\;, i € {1,..., N} and obtain a facial representation of the polytope in
guestion.

Unfortunately, this projection can be a very slow algorithiret n 4, ng be the
number of rows ofd and B, respectively. Then the modelling of (1.12) with linear
inequalities requires in the worst case scenarig:g rows. Hence the number of
inequalities may grow very large, and using redundancylchexremove inequalities
is very important. Even so, this procedure is not applicdhiefor the smallest of
problems. However, studies of the facets of small instantastlass of problems may
lead to insights into more general structures that applyl instances of that class.
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Chapter 2

Basic replacement model

An instance of the Basic Replacement Problem (BRP) is defiaddllows. Consider a
setN\ of componentsN := |A|,andasef = {1,...,7}, T € N being the planning
horizon. A component € A is assigned a life limit off; timesteps, and a cost of
replacement;;. There is also a fixed codt associated with performing maintenance
for any component at time The objective is to minimize the cost of a maintenance
schedule, keeping the system running without failure dytire planning period. This

is encoded in a problem with the variables:

0, otherwise,

1, maintenance is performed at time T
2t = . )
! 0, otherwise,

1, arti is replaced at time,
xit:{ P P ieN,teT,

yielding the BRP as

minimize Z Z CitTit + Z dizy, , (2.1a)

teT ieN teT
+T;
subject to 3w =1, 1=0,....T—T;,ieN, (2.1b)
t=Il+1
zit < zt, teT,ieN, (2.1c)
Tit, 2 € {0, 1}, te7T. (2.1d)

The constraints are straightforward to understand. Cainstf2.1b) states that for
all components and any window of time the size of the life at tomponent, it has to
be replaced at least once. The constraint (2.1c) ensurei$ terepair some compo-
nent at a time, a maintenance occasion has occured, and the maintenaside owst
be paid. Let us henceforth denote the set of feasible pofr(&b) by S. The convex
hull of S will be called the replacement polytope.
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CHAPTER 2. BASIC REPLACEMENT MODEL

This model for the opportunistic replacement problem was firoposed by Dick-
man et al [DEW91] in 1991, and seems to have been largely fiemyastnce. However,
in a recent case study [APS08] and a survey [PSWO09], resuts eamonstrated that
indicate that this model and variations thereof can haversoipperformance compared
to simpler policies as can be found in for example [RKMO04].

2.1 Properties of the replacement polytope

We begin this section by collecting some known propertigh®feplacement polytope
that were proven in a recent article [PSWO09]. The first prgpierthat when the main-
tenance occasions are fixed, that is, for a su$et 7,weletz; =1, t € T/, 2z, =
0, t € T\T’, the result is an integrality property.

Proposition 7. The polyhedron defined i§g.1b)and

v < 1, teT (2.2a)
2t <0, teT\T, (2.2b)
fori e Nis TU.

This property allows us to relax the integrality requirensesn the variables;;. Fur-
thermore, this shows thatf;, = 1 for somei € N/, forcingz; = 1, t € 7, then BRP
is very easy to solve. Hence, from now on we will assumeThat 2, i € V.

Finally, the following two propositions were also provedfie article [PSWO09].

Proposition 8. If T; > 2,1 € N, the replacement polytope is fulldimensional.

Proposition 9. If T; > 2, i € N, the inequalitieg2.1b)(2.1c) define facets of the
replacement polytope. The lower and upper boundscgnz,, respectively, define
facetsifl; > 3, i € N.

2.2 Properties of optimal solutions

In [PSWO09], the following proposition was shown.

Proposition 10. If ¢;;,d;, t € T, are non-increasing irt, there exists an optimal
solution such that it, = 1, thent = >, k,T; for somek; € N.

This proposition shows that some preprocessing varialglecteon is possible. We
elaborate on this result, showing that a more general agigin is possible.

Proposition 11(No maintenance until failure, 1)f ¢;;, d, t € 7, are non-increasing
in ¢, then there exists an optimal solution that satisfies

2y < Z Zt—T; (2.3)

1EN

10



2.2. PROPERTIES OF OPTIMAL SOLUTIONS

where we have defined auxiliary parameters

0, t<-1
=7 = 2.4
“ {1, t=0. (24)

Proof. Suppose thdtr, z) is optimal in BRP not satisfying (2.3), and etz min{t|z; >
Y ien Zi—, }- It follows that no part requires replacement at s. Hence the main-
tenance occasion may be postponed until the failure of samte g\s all costs are
non-decreasing, it follows that doing so will not incredse objective value. O

Yet another version of this proposition is available.

Proposition 12 (No maintenance without failure, 2)f ¢;;,d;, t € 7, are non-
increasing int, then there exists an optimal solution that satisfies

2 < Z Tit-T, (2.5)
iEN
where we have defined auxiliary parameters

0 t<—1
a=< = e N 2.6
it {1, t=0 ! (2:6)

This follows as in the proof of Proposition 11. The caref@der will notice that (2.3)
is implied by (2.5) wheril},7 € N, are distinct. We define a modified replacement
polytope using the inequalities (2.5):

S" = {x € S|(2.5) holds fort € T, t > maxT;}. (2.7

The assumption that> max T; is purely technical to retain fulldimensionality 6f,
which is shown in Proposition 14. If we were to incorporategualities fot < max T;
this would forcez;; = 0 at some times. This is of course practically useful, howéver
would make the following exposition more technical.

The above propositions can now be summarized as:

S’ c 8, (2.8)

and

min Z Cit&i + Z dize p = iy Z CitTit + Z di 2t (2.9)

ieN teT teT ieNteT teT

for ¢;, d; non-increasing irt. We also obtain the following proposition, showing that
(2.5) is a strong inequality.

Proposition 13. If T; > 3,7 € N, [N| > 2, andT;,i € N, are distinct, then the face
of conv S’ defined by(2.5) defines a facet afonv 5.

11



CHAPTER 2. BASIC REPLACEMENT MODEL

Proof. We use Theorem 4. To do this, we should first prove that S’ is fulldimen-

sional. For now, we assume that this is true, and postponedd pntil Proposition 14.
Lets € 7, s > max; T;, and defineFy = {(z,z) € convS’, 2z, = >, x5 -7, }. Let

A, i, p be such that

Z AitTip + Z uize = p, V(x,z) € Fs. (2.10)
1EN €T teT

We wish to show thak;; = axi=s—71,, it = —ax=s andp = 0. We begin by defining
(x4, 24) aszf} = 1 — x4—s—1,.1—s, Wherex denotes the indicator function of the set
U, andz* = 1 — x;—. Itfollows that(z4, 24) € F,. Forj € N, 7 € T\{s,s —T}},
define(z®,28) aszf = 28 — xij—r, 28 = z{*. It follows that(z?,2P) € F,,
and insertion relative t¢z#, z4) into (2.10) yields\;, = 0. Fort € 7\{s}, define
(29,29 asz’ = 2z — x4=r, 2§, = 0,t = 7, 2§, = x{} otherwise. It follows that
(z¢, 2%) € F,, and insertion into (2.10) yields, = 0. Forj € N/, define(z?, z7)
aszl} = zf} + Xizji=s—1;, 2 = 2{* + X4=s. It follows that(z?,zP) € F,, and

insertion into (2.10) yields\; s, + us = 0. Hencel; 7, = aandu, = —«
for some constant. The proposition now follows since insertion of any of thead
vectors into (2.10) yieldpg = 0. O

We now show thatonv S’ is fulldimensional.
Proposition 14. conv S’ is fulldimensional.

Proof. The proof of Proposition 13 shows thatdim(F) = 1, by virtue of Theorem
4, and the proposition follows ifonv S’ ## F. Define for somg € N, (x,2) asz; =
Lt €T, xy = 1 — Xi=ji=s—1,. It follows that(z, z) € conv .S, but(z, 2) ¢ F,. [

We wish to point out that Propositions 11 and 12 still hold & veplace sums by
max. However, the resulting inequality will then be nonlinedrigh may be handled
through the use of disjunctive inequalities [NW88], or thegynibe used to implement
custom branching rules for a branch-and-bound scheme. ¥devednt to alert the
reader to the obvious fact that if we in Propositions 11 ancetifdrce costs to be
strictly decreasing, then inequalities (2.3) and (2.55kdbranyoptimal solution.

2.3 Inducing separability

The causal nature of the problem begs the question if thesenige subproblem struc-
ture that can be exploited in a dynamic programming scheme yelaxation scheme.
The basic idea is that given that, z) is optimal in an instance of BRP with time hori-
zonT, we expect it to yield near-optimal solutions for problermstances where the
planning horizon is changed. To formalize this, consideinatance of BRP with, for

simplicity, an odd planning horizof = 27, + 1. We may then Lagrangian relax all
constraints that contain variablesiat+ 1, with multipliersw;, yielding the Lagrangian

subproblem

min Z CitTir + dpze + Z u;j Z()‘gtxit + u{zt) (2.11a)
j it

12



2.4. UNIQUENESS OF OPTIMAL SOLUTIONS

st Y @ >, ieN, To+1¢{l+1,....1+T;}, (2.11b)
t=l+1

Zt 2 Tit, 1€ N, t e T\{TO + 1}, (leC)

Tty 2 € {0, 1}, ieN,teT. (2.11d)

It follows that this problem separates into two smaller BRBbfems, as relaxing all
constraints containing variables@&t+ 1 yields a problem where no constraint contains
variables to the right and the left @} + 1 simultaneously. These subproblems can then
hopefully be solved much faster than the original probletnshbuld also be clear that
we may divide the problem into more parts, yielding a potdiytiarge set of smaller
subproblems. By finding good multipliers with some algaritrsuch as subgradient
optimization or bundle methods, one may be able to obtaimgsr lower bounds on
the integer optimum than is obtainable through the linelaxegion. This method also
gives us an indication of what defines difficult instances BFBIif lives are large, it
follows that we need to relax more constraints above, whalristically may lead to
weaker bounds. This relaxation is also a very natural oniaiit partitions the prob-
lem into two parts, and modifies the costs near the splittrepulate the full problem,
making us expect a tight duality gap. However, due to timestraints, the author has
not investigated the strength and computational efficiaicuch relaxations.

2.4 Uniqueness of optimal solutions

The solution to BRP may be highly degenerate, especiallyeifdosts are constant in
time. As an example, consider a simple instance of BRP witlh one component,
n = 1, and constant costs. It follows that the optimal solutiores exactly those

which replace the component exactI%J times. Particularly, ifl; = T there arel}

distinct optimal solutions. However, appealing to our itie view of maintenance,
not all these solutions should be treated as being optimalhda sense that we should
not repair parts before they break. In this section we canst way of perturbing
the objective function of constant cost BRP in a way that ksetegeneracy, and such
that the modified objective function has decreasing coskse r€sults of Section 2.2
provide a partial result towards this end, in that if we disttccosts by a small amount,
yielding strictly decreasing costs, the optimal solutioili 8atisfy a quite constrictive
inequality, breaking some degeneracy.

Let P be either the polytope of BRP or its continuous relaxatiorstime instance.
Define the seX as

X = argmin Z CiTit + Z dz | . (2.12)
2€P  \eNteT teT

Now, for0 < €}, ¢; < €, we define

13



CHAPTER 2. BASIC REPLACEMENT MODEL

X, = argmin Z ci(l—€)xy + Z d(l =€)z | . (2.13)
2€P  \jeN.teT teT

The theory of linear programming yields that fosmall enoughX. C X. It follows
that fore > 0 small enough,

X, = argmax g cieftzftJrg dezzk 3. (2.14)
(zF,2%) k€L, p | 4eN teT teT

We now describe a strategy for choositig e} such thaiX. is a singleton set. Suppose
thate has been chosen such that the above proposition holds. wrpick ¢ in an
recursive manner: lét < 5. < e. DefinelCr = {1,...,p} and let

My = max {27}, (2.152)

mr = max  {z5}. (2.15b)
keKr|zk <M

If mr = —oc it follows that 2% = Mr,Vk € Kr, and we defineéCr_; = Kr.
Otherwise we wish to arrange so that

T-1

1

deq > ——— | > ae+ > de |, (2.16)
Mz —my iEN LT t=1

which can be guaranteed by forcing an upper bodéindn all e excepte?.. In (2.16)
we require thab < dr < adei(Mrp — mrp), wherea is the remaining number of
undefineck. It follows that(z*, 2%) € X., k € Kr only if 2% = Mz. Thus we define
Kr_1 = {k € Kz|z% = Mr}, yieldingX. C Kr_1, with a slight abuse of notation.
Recursively define

M, = max{z}, (2.17a)
my; = max {zF}. (2.17b)
kEK|2F <M,

By setting bounds om as in (2.16) we can guarantee tiiat, z*) € X, only if 2z} =
M, from which we may defin&X, C K; = {k € Ki11|2F = M,;}. It follows that
) # Ky and(z?, 2%) € K, if and only if zf = M, t € 7. By repeating this procedure
for eachi € NV, we obtain a singleton sét such that

0 # X CK={(Fz2")|F = My, 2k = M} (2.18)

from which it follows thatX. is also a singleton set.

14



2.4. UNIQUENESS OF OPTIMAL SOLUTIONS

It should be noted that the above procedure of setting boandss not compu-
tationally implementable, due to finite precision and rgpitecreasing bounds. How-
ever, in practice it usually suffices to €} = ¢} = 5% for some smalb to break alot
of degeneracy, even though there is no guarantee that opgowmne unique.

The main advantage of using these discounts yielding legerggacy is that it

significantly speeds up the cutting plane methods that wlbiscussed later in this
thesis.
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Chapter 3

The facial structure of the
replacement polytope

In this chapter we derive two large partially overlappingsdes of facets of the re-
placement polytope. For the first class, a full descriptamwell as proofs of validity
and the facet property of the entire class, will not be presskm this chapter, as such
a presentation is near impossible to understand on its avetedd we will start with a
simple subclass of facets, and give a full proof of validitgldhe facet property for this
subclass. Then we demonstrate extensions and generiiati this subclass, build-
ing up the entire class step by step. Full proofs of each stepat given here, instead
we concentrate on the simplest cases and appeal to the 'sejaaliéern recognition as
well as introduce a pictorial representafiasf how to construct proofs. Throughout
we implicitly assume that for all componerits > 2.

We start by proving a simple lemma, which will be referred tiootighout this
section.

Lemma 15(Killing Lemma). Let

Z NitZTie + Z Hizg 2 p (3.1)

iEN teT teT

be a valid inequality for the replacement polytope. Edte the face of the replacement
polytope defined b8.1), and assume thaf is proper. Let

Z Nigit + Z prze = pf (3.2)

1EN teT teT

be an equation that is satisfied for &lt, ) € F. Then ifu, = 0 and there exists an
(z,2) € F such thatz; = 0, theny/, = 0. Alternatively, if\,;; = 0 and there exists an
(z,2) € Fsuchthat; =1, z;, =0, then>\;S =0.

1The saying "A picture speaks more than a thousands words=nalybeen more true.

17



CHAPTER 3. THE FACIAL STRUCTURE OF THE REPLACEMENT POLYTOPE

Proof. We prove this for:, = 0; the other case follows similarly. Lét:, z) € F be
such that, = 0. Sinceus = 0, it follows that(z’, 2’) satisfies (3.1), where’ = x and
2y = 2z + Xq=s}» and hencgz’, 2’) € F. Insertion into (3.2) then yields the desired
result. O

3.1 Combinatorial facets

This section deals with a class of facets:ofiv(.S) which are obtained through various
combinatorial implications. It is not clear if or how thesmstructions may generalize
to more general maintenance models, and as such, we will;maitg an excessive
amount of detail for all the constructions.

3.1.1 Simple facets

We start by taking a simple example of a facet, having justighstructure to encom-
pass the crucial construction. Suppose we have an instéf2d y and pickp, ¢ € N
such thafl}, < T, and, forl € {0,...,7—T,} ands € {1,...,l+T,—1T,}, consider
the inequality

I+s—1 I+s5+T¢—1 I+T,
Z Tpt —+ Z Zt + E (.”L'pt + xqt) -+ Z Tpt Z 2. (33)
t=I+1 te{l+s,l+s+T4} t=Il+s+1 t=l4+s+T4+1

The inequality is illustrated in Figure 3.1. Each node reprgs a point of time, and
the variable name under it represents the variables to bedaddhe inequality at that
point of time. Black nodes are nodes at whighs present in the inequality.

yd

Figure 3.1: Pictorial representation of an inequality adow to (3.3), withT,, = 9,
T, = 4, s = 3. Here the inequality representedisi + 2 + 23 + >0 (Tpr + Tqt) +
27+ XTpg + Tpg = 2.

We also take this opportunity to fix some terminology. We tiadl componenp en-

veloping component, whils is called a packing component, where we expect the
etymology to be clear.

Proposition 16. (3.3)is valid for .S.

18



3.1. COMBINATORIAL FACETS

Proof. The conclusion is trivial iz s = 21117, = 1; assume that; ; = 0. Then,

by (2.1¢),x; 1+s = 0, and it follows from (2.1b) thazijjffl zq¢ > 1. The remain-

ing terms of the left hand side of (3.3) can,sgs, = 0, be written as

I+, t=I+T,
E Tpt + (zl+s+Tq - xp,l+s+Tq) — Tpl+s > E Tpt +04+0 > 1a
t=I+1 t=I+1

yielding that (3.3) is valid when;,, = 0. The case when; .7, = 0 follows
similarly. O

One might hope that this inequality is not only valid, butobadtrong, and the fol-
lowing proposition shows that this is indeed the case.

Proposition 17. (3.3)defines a facet afonv(S).

Proof. To avoid cluttering the proof with indices, we assume that 0; the general
case follows similarly. We use the characterization of Thao4, which is applicable
sinceconv(S) is fulldimensional. Lef" = {(z, z) = conv(5)|(3.3) holds with equality.
Let A\, u, p be such that

Z AitTig + ZMtZt =p V(x,z) € F. (3.4)
€N teT teT

The first objective is to show that all coefficients, i, that are not included in (3.3)
must be zero. To this end, defife?, z4) asz* = 1, t € 7, andz{ maximally on
F,thatiszfi = 0ifi=¢q, t € {s+1,...,s +T,—1}ori=p, t € {1,...,5—
Ls+1,...,s+ T, —1,s+T,+1,...,7,}, andz{} = 1 otherwise. It follows
that (x4, 24) € F. Varyingz4, i ¢ {p,q}, and inserting into (3.4) yields;; = 0,
i¢{pqgtori=p te{l,....,s—1,s+1,....,s+T,—1,s+T,+1,...,T,} or
i=gq, te{s+1,...,s+T,—1}. Also by varyingz, t ¢ {s, s+ T} while varying
x;; to keep it maximal orF’ we get thaf, = 0, ¢ ¢ {s,s + T,}. Hence (3.4) can be
written as

Its—1 Ifs+T,—1 I+T,
Z AptTpt+ Z eze+ Z (AptTpt + Ageqr)+ Z AptTpt = p-
t=Il+1 te{l+s,l+s+Tq} t=l+s+1 t=l+s+T4+1

(3.5)
By modifying (z#, 24) such thatzs = 0, z,,, = 1 for somet € {1,...,s — 1,5 +
...+ T, —1,s+T,+1,....,T,} we get thatu, = A\ ==, t € {1,...,s —
Ls4+1,...,s+Ty—1,5+T;+1,...,T,}, and in the same way, (1, = s = o
In a similar manner, we can modifg*, z4) in a way such that we get from (3.4) that
At = ps = a. Afinal insertion of(z4, 24) into (3.4) yieldsp = 2a. O

The rest of this section will be spent showing how generttina of the facets (3.3)
can be constructed. There are three basic extensions.3ntki&. inequality contains
T, — 1 g-component variables, which can generalizedfp— 1, for integers: > 1. It
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CHAPTER 3. THE FACIAL STRUCTURE OF THE REPLACEMENT POLYTOPE

COSFE D

Xp+><q

Xp Xp

Figure 3.2: Pictorial representation of the jumping pragedwith?, = 9, T, = 2,
r=2.

is also possible to pack more than one component into a samgieloping component.
Finally, we may also proceed recursively, taking an obthinequality and packing it
into an even larger component.

3.1.2 Simple extension

The first extension is fairly straightforward. Let the sifoa be as in (3.3), and let
r > 1be aninteger, and lete {1,...,7, — rT,}. Consider the inequality

l4+s—1 I+s+rT,—1 4T,
E Tpt + E z¢ + E (xpt + Tqe) + E Tpt > 1+ 1.
t=Il+1 te{l+s,l+s+T5} t=l+s+1 t=l+s+rT,;+1

(3.6)
We can immediately see that with minor modifications the pod&roposition 16 can
be used to show that (3.6) is a valid inequality. Furthermthre proof of Proposition
17 can easily be repeated to show that (3.6) is facet excemhimving Ay = 1,
te{s+1,...,s+rT, —1}. This can however be shown by using what we will refer
to as a jumping procedure, that we illustrate pictorially.

Figure 3.2 represents a sequence of feasible points ondbealé&fined by (3.6). A
vertical arrow indicates which relevant variables are gdt, tand a horizontal arrow
represents a jundp That is, the variable corresponding to the source of anaiso
set to0, while the target variable is set to The number above an arrow indicates
in which order the jumps are performed. In figure 3.2 we jumpulgh three points
(z¥,2%), k = 1,2,3. Thesearerl, = 1,t € {l +s,0+s+T,,..., 1 +s+rT,},
ztfl,tE{qus,lJrrT},andztfz Lt=1I1+sua=11te{l+
s l4+ Ty L+ (r =0Tl + (r = DTy + T, — 1}, 23, = 1, ¢t € {l+s,1+
s+Ll4+s+1+T,,....,0+s+ 1+ (r—1)T,}. An equality under a horizontal
arrow shows what making the jump implies when inserting (8td). In Figure 3.2 the
equality under arrowt means thafi;y s 1,1, = Ag,i+s+r7,—1, @and under arrov that
Agi+T, = Agu+1,—1. Using this pictorial representation it follows that if warcfind
pictures connecting all points of time containing anvariable, we have shown that

2While, as usual, all other variables are defined maximally oriatbe.
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3.1. COMBINATORIAL FACETS

At = Mg fort, " € {l+s+1,...,1+ s+ T, — 1}. For the situation depicted in
Figure 3.2 we need only use the one depicted and its time tieflécA more general
situation is depicted in figure 3.3, and we appeal to the remdenderstand that this
example can be generalized to arbitrary instances.

O @O0

Figure3.31, =3, r=3, 1, =13

3.1.3 Multiple packing components

The next, and significantly harder, step is to introduce niba& one packing com-
ponent into a single enveloping component. This is done ast@apsuperposition of
constraints of the simpler form above, which from now on Wil referred to as ba-
sic inequalities. Givenn inequalities of the form (3.6), with the sampe [ such that

the packing component and the window of time are the sameghadnie written as

A2+ 3 1M 2 > p®) for k =1,..., m, we define a new inequality by letting

Z Ait + Z Htzt = P, (3.7a)
it t
Nie = DAY, ie N\{p}, teT (3.7b)
k
Apt = mgn{ng)}, teT  (3.70)
e = m}gahx{,ugk)}7 teT (3.7d)

= *®)_1). )
0 1+Zk:(p 1) (3.7e)

Let Tl(k) = min{t|u§k) = 1} andrék) = max{t|/¢§k) = 1}. We will assume that
we have ordered such thaf” < * < ... < 7™ where ties are broken with
7'2(1) < 72(2) <... < TQ(m).

Example 1. Let Ty = 3,7> = 4,75 = 8. Define two inequalities of the form (3.3)
by letting! = 0, ¢V = 1, sV = 1 andq¢® = 2, s(? = 4. The valid inequalities
become

3That is, the diagram that is obtained by flipping the diagresmfleft to right
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CHAPTER 3. THE FACIAL STRUCTURE OF THE REPLACEMENT POLYTOPE

3 8
z1 + Z(xlt + 1’315) + 24 + Z.’Egt 2 2,
t=2 t=>5
3 7
D wgitzat Y (war+am) + 2> 2.

t=1 t=>5

Using (3.7) we obtain the inequality

3 7

z1 + Z(Sﬂlt +x3) + 24+ Z(Iﬂzt +x3) + 28 > 3.
=2 =5

In this example we obtain'” = 1, 7{" = 4,7 =4, 72 =3

We now seek to find some conditions under which (3.7) is valit] some condi-
tions under which it defines a facet. We will from now use therstand(), p, p) to
denote an inequality of the form (3.7a).

Proposition 18. An inequality of the forn{3.7) such that ile(’“) = Tl(k/) for some
k#K, thenTQ(k) * 72(’“ ) for anyk” =1,...,m, k" # k, is valid.

Proof. We prove this using induction on the number of basic inetjealim. Let
(x,z) € S. Proposition 16 and its extension yields the resultfor= 1. Assume that
the statement is true for any inequality with < L — 1, and let(\, u, p) be such that
m = L. Then the inequality\’, 1/, p’) consisting of the firsi. — 1 basic inequalites
is valid according to the induction assumption.

Suppose that the packing component of the basic inequalisyg. Then it holds
by (2.1b) that), /\gf)xqt > pk) — 2. If this is strict the conclusion is trivial. It
is also trivial if (X', i/, p’) is strict, assume otherwise. It then follows from (2.1b)
that )", ,uEL)zt = 2, and from the assumptions orjk), j = 1,2 it follows that
> (e — py) z¢ > 1. If this inequality is strict the conclusion is trivial, asse other-
wise.

It remains to show tha}", (A,: — A7) x,; > 0. This is however true, since the
assumptions above imply’, 11z, > 1. As we assumed th&d’, 1./, p') was satisfied
with equality, -, A7, ,; = 0 follows. O

Itturns out that it is hard to characterize exactly when tiegjualities of Proposition
18 define facets of the replacement polytope, and we will regtttthis in any great
detail. A partial result is given later in Proposition 21st@ad we move on, generating
more valid inequalities.

3.1.4 Layered inequalities

Assume that we are given an inequality of the form in Propwsil8 (), 1, p) with
packing componenp at the window of time{l + 1,...,l + T,,}. We also assume
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3.1. COMBINATORIAL FACETS

thatp,+1 = 0, for reasons that will become clear in Proposisition 19. @3eoa new
packing component’ such thatl), > 7, + 1andl’ € {{ + T, + 1 -T,,...,l}. We
define a new inequality\’', 1/, p) by

ST Nywie+ Y gz > g, (3.82)

it t
At = it ie N\{p',p}, teT, (3.8b)
)‘/pt = Apt = X{i+1}> (3.8¢)
>‘;In/t = XLV, VAT W\ LI T 1} 5 (3.8d)
My = [t + X{I41,14+Tp+1} (3.8e)
pl=p+1 (3.8f)

An illustrative example is shown in Figure 3.4.

)(2 7 X1+X2 7
of leJeleer
lEnveIop
eJefe] I TeJeleloT ) o
X3 Z Z+)(3 )(1+X2'|‘){3 Z+}C3 Z X3

Figure 3.4: Example of how to envelop an existing contsraitat a larger one. Here
Ty =5, T, = 7, Ts = 12. Note that the packing inequality splits into two variants
in the enveloped inequality. Looking at the nodes 10, ignoring 23, the original
packed inequality is dominated by these coefficients. Logpkit node$ — 11, ignoring
x3, there is a variant of the original packed inequality thath$ained by letting —
l+1, s—s—1.

Showing that this procedure defines new valid inequalitesfis similar to prov-
ing Proposition 16. This should perhaps not come as a sarpashe construction
is recursive in nature, in the sense that we perform the sg@eation on the packed
inequalities that we did with the original inequalities wheonstructing the simple
packings.

Proposition 19. The inequality defined b§8.8)is valid for S.
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Proof. We show that the inequality is valid fgt = S° U S*, whereS? = {(z,2) €
Slzi41 = 6}, 0 € {0,1}. Whenz;1; = 0 the conclusion follows immediately from
(A, 1, p) being valid and the life constraint (2.1b) fpt. Whenz;,; = 1, there is
a packing inequality situated at- 1, s — 1 that is dominated by the coefficients of
(XN, i, p'), asin Figure 3.4, and the conclusion follows for this caseels O

The above proof indicates why we assumed that 1 = 0 above: wheny; 1, = 1
we had to identify a new packing inequality to reach the casioh, and this was done
by lettings — s — 1. This can not be done unlegg,; = 0, or equivalentlys > 2 in
the original packing inequality. This should also make éaclthat could instead have
assumed that; 7, = 0. We also claim that Proposition 19 can be extended so that
this new inequality can be embedded into yet another lamyaponenp” in the same
fashion, ify;, , = 0.

It can also be shown that the embedding defines a facetsfS if the embedded
constraint does, under the simplifying assumption thatcthrditions of the Killing
Lemma are satisfied.

Proposition 20. Let (), i, p) be a facet otonv S of one of the types discussed in this
section, which is embedded intoaccording to(3.8)yielding the inequality ', i/, p’).
Then(\, i/, p’) defines a facet afonv S, if the conditions of the Killing Lemma are
satisfied.

Proof. We only outline the proof. Lety, 3,7 be as in Theorem 4. Proving that the
inequality yields a facet can then be broken down into thtepss

1. eliminate all coefficients that are not present,
2. show that all embedded coefficients are equal, and

3. show that all enveloping coefficients are equal.

That all relevant coefficients are equal then follows as theedded coefficients and
the enveloping coefficients overlap.

The first step is established through the Killing Lemma. Témosd step follows by
fixing z: = x,+ = z; = 1 on one of the links between the embedding and eveloping
coefficients, and referring to the fact that the embeddedtcaint defined a facet. The
last step follows by defining a feasible point where no embddehariables use the
links between the embedding and the enveloping variabiesy fvhich it follows that
the maintenance occasion f@grmay be placed anywhere. O

We will refer to this as dayered inequality That an inequality is referred to as
being of thek:th layer indicates how many times we have packed inegeslitito
bigger components. The first layer inequalities are themplsirf2.1b) and the simple
facets of (3.3) are of the second layer. By enveloping anuakty of thek:th layer we
then obtain an inequality of thig + 1):th layer.
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3.2. CHVATAL-GOMORY FACETS

3.1.5 Partial characterization of facial properties of mutiple pack-
ings

It follows that all that is left to do to characterize whichtbe valid inequalities are

facets amounts to determining what types of multiple pagldiomponents that are

facets. The author has not been able to do this in full geitygralt will here present a
partial result.

Proposition 21. In the notation of Proposition 18, assume thélf) = Tl(k+1), ke
1,...,m — 1}. Then the inequality defined K§.7) defines a facet afonv S.

Proof. We prove this in the same way that we proved this for the firttresion with
a jumping procedure. That is, we use Theorem 4Fldte the face otonv S and let
a, 3,7 be such that

Z QT + Z/Btzt =7, V(x,z)€F. (3.9)
€N teT teT

We claim that it is similar to other proofs already given towstthat all coefficients not
present in (3.7) are zero, and to show thagt = [, otherwise. The crucial point is to
show that the coefficients of the packed components are .edh& can however be
accomplished using the same jumping procedure as befofeelefeasible solution
on the facel” (z4,24) asz! =1, t € T,andzf} = 1— X\, i € N, t € 7. Then we
proceed with the jumping procedure as illustrated in Figugeand its time reflection.

Q.@g@géoom

Figure 3.5: lllustration of the jumping procedure when gsimultiple packing compo-
nents.

If we let 72(’“) < 71(’““) it seems we still obtain facets in many cases if we require
T; > 3, i« € N, and in some cases with; = 2 as well. The issue is to show that
all irrelevant coefficients have to be zero, and the authemtwd been able to find any
reasonable characterization.

3.2 Chvatal-Gomory facets

In this section we outline a method of generating facets ssdider Chvatal-Gomory
inequalities. Numerical results based on automated faoetrgtion suggest that many
facets can be generated as simple Chvéatal-Gomory ineigsaliing only% as a mul-
tiplier from some subset of constraints, and we seek a @ieeson of when such in-
equalities define facets of the replacement polytope. Whiegus € {0,1/2} there
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CHAPTER 3. THE FACIAL STRUCTURE OF THE REPLACEMENT POLYTOPE

are two major benefits. The first is that the algebra is consldg simpler to work
with than for general;. The other is that following an article by Caprara and Fisithe
[CF93], in which suclzero-half cutavere first discussed, modern general MIP solvers
such as CPLEX have built-in features that generate zeffoshitd heuristically.

As we will only use multiplier&; it follows that we must use an odd number of
inequalities (2.1b) for the Chvatal-Gomory procedure teldianything non-trivial.
Furthermore, for anything non-trivial to occur, the coastts must mix together before
rounding. For two inequalities from (2.1b) this may happerwo ways. Either the
inequalities come from the same component and correspaosadites of such that they
overlap in time, or we have constraints from different comgas that overlap in time,
for which we may add multiples of (2.1c) for the different qpoments, transforming
% (zit + x;1) > 2. Hence our basic construction for Chvatal-Gomory inedjesliill
be to pick an odd number of inequalities (2.1b) that oventafime, and mixing them
together using (2.1c). The inequalities picked from (2:4) henceforth be called
constituent inequalities

3.2.1 The basic construction

We start by treating the case where all the constituent alégs come from different
components. That is, we have picked an odd nuniber 3 of inequalities spanning
over setsZ;, i € 1,...,k, i.e. T, = {l; + 1,...,1; + T;}. To simplify, we assume
thatk = nandT; < Tb, < ... < Tj. The assumption thdt = n might affect the
application of the Killing Lemma negatively, however werdigard that as cases where
it has any significance seem to be pathological. Furtherntioiewill never cause any
obtained inequality to be invalid.

We assume that for anye {1,...,k} there existj1, j2 € {1,...,k}\{i}, j1 # Jo
suchthatZ; N 7;, # 0 andZ; N 7;, # 0. If , N T; # 0 lett;; € 7, N T;, and pick
a distinct subsef 7, |ZJ| = k, of these. Now we are ready to execute the Chvatal-
Gomory procedure. By a linear combination of the above iaétieis we get a new
valid inequality

k
% Z Z Zit + Z (221, — @in,; — xje,,) | =

i=1teT; (i,))€TT

|

(3.10)

By first rounding the left hand side and then the right hand gid obtain, a% is odd,

k
Z Z Tt + Z 24, 2 % (3.11)

=1 t€Ti\{ti;,(4,5)€LT } (4,1)€TT
as a valid inequality.

Example 2. We consider the simplest possible case; 3,7; = 3, 1o =4, T3 = 5,
l; =0,i=1,2,3,T = 5, and the procedure is illustrated in figure 3.6. The valid
inequality here becomes

(21 4+ x31) + (22 + x22) + (213 + To3 + T33) + 24 + T35 > 2.
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" | Y, 1
Ve e e e 0
k2 L] 2 L] E%]

]
[E
=
o
o

Figure 3.6: Example of a Chvéatal-Gomory inequality. Honita rectangles indicate
the constituent inequalities, while vertical groupingdigate the choice df 7. Num-
bers indicate the coefficients of the inequality. Coeffitseénside circles indicate the
coefficient forz; at that time, and the number at raveolumnt is the coefficient for
Lt
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Now we search for conditions such that the inequalitiesinbthdefine facets of the
replacement polytope. To this end we define a géph (V, E), and state conditions
in terms of this graph. LeV = {1,...,k}, and lete;; € Eiff (i,5) € ZJ. The
interpretation of this graph is that nodes correspond tatitorent inequalities, while
an edge between two nodes state that the two constituentahies corresponding
to those nodes have been mixed, and can thus be satisfiedibg let, = z;;,, =
z;,, = 1. Note that this is satisfied by using only one variable of #feHand side of
(3.11), due to the mixing. Furthermore we defiiie= (V;, E;) to be restricted graph
when deleting nodé

We also define a notion of crossing for reasons that will bexapparent in Propo-
sition 23.

Definition 22. An edgee;; of G is said tocrossa nodek if min;c7, {|t —t;;|} < 1.

Example 3 (Example 2 continuéd The graph corresponding to Example 2 is shown
in Figure 3.7.

Figure 3.7: The graph corresponding to example 2. Numbetstaeedges indicate
which non-trivial nodes it crosses.

Now we are ready to state and prove the following proposition

Proposition 23. The inequality(3.11) defines a facet of the replacement polytope if
forall i € {1,...,k} we can partitiong; into connected subgrapt = (V/, E7),
|V?| = 2 such that

A~ 2 .
Ei = E;\ (u;i E) (3.12)
does not contain any edges crossingnd the conditions of the Killing Lemma hold.

Before moving on to the proof, we interpret the formulatidh@ proposition. An
edge in the graply indicate that both the constituent inequalities it linkargha com-
mon variable. Furthermore, due to the conditions on how thplgwas constructed, it
is possible to satisfy both the constituent contraints kynig exactly one variable that
is contained in the associated inequalitylbeA partitioning as in the proposition can
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then be interpreted as satisfying the constituent comésra pairs, using one variable
from the inequality in each pair. By the requirements on tlossings, we have a large
degree of freedom in how we choose to satisfy the last remgiconstituent inequal-
ity. This allows us to find many affinely independent pointiséging our inequality
with equality, which leads to the conclusion that it is a face

Proof of Proposition 23.The definitions that go into it make the proposition neat to
prove. We use Theorem 4, and [Etbe the face defined by (3.11). L€X, u, p) be
such that

Z AitTit + Z ueze = p, V(x,z) € F. (3.13)

iEN LT teT

The Killing Lemma removes all coefficients not part of (3.,1dnd the above equa-
tion reduces to

Z Z AitTig + Z Zt,; =P (3.14)

i=1 teT\{ts;|(i.4)€TT} (i.)€TT

Note that the conditions imply th&t is connected. Hence it suffices to show that
Xie = ps fort € T\{t;;|(¢,7) € ZJ} ands € {t;;|(i,5) € ZJ}. Then the co-
efficient inequalities will propagate through the graphpgsconstruction two nodes
sharing an edge has at least one coefficient in common. &tspy this we consider
the constituent inequality:, and pick a partition ofj,,, corresponding to the assump-
tions. Define(z™,2™) asz* = 1,t € T\ (UZ;) andz™ = 1 for t = ¢;; and some
(i,§) € E\E;, z* = 0 otherwise. Also, fori € N\{m} letz?? = 2", t € T\T,,
a = 1fort = t;; and somdi, j) € E\E;, zi7 = 0 otherwise. Finally let:”?, = 2"
fort € T\T;, 21, = 0 otherwise. We can now see that™, ™) is almost feasible in
BRP, as the only constraint it does not satisfy is (2.1b)Yfgr Furthermore, plugging
(z™,z™) into the left hand side of (3.11) yieldsH S(z™, z™) = £51. That s, to be
feasible in BRP and satisfy (3.13) we must add a maintenaceaes@n formn at exactly
one point in7;. As all edges crossing: by assumption are if/, for somej?, it fol-
lows that we may pick any maintenance occasion withirfrom which insertion into
(3.14) yields\;; = u, fort € T;\{t;;|(¢,5) € ZJ } ands € {t;;|(i,7) € ZJ }. O

The natural structure of the above proof is somewhat obdduwyehe details, and we
demonstrate with a simple example.

Example 4 (Example 2 continued)In this example it is fairly easy to see that the
Killing Lemma holds, and in the graph 3.7 we easily see thatitinditions of Propo-
sition 23 hold. Let us show that all coefficients of constituimequality 2 are equal,
that is, thatu; = Aao = Ao3 = u4. The partitioning ofl; is trivial, and we see that
we retain only the edge 3, which corresponds to setting = =%, = 23, = 1 in the
proof above. We then see that the constituent inequalitéesi3 are satisfied in Figure
3.6. We may now perform maintenance of comporieat any point in the constituent
inequality2 at the cost of increasing the right hand side of (3.11), asave lalready

4And hence the value of the correspondingequals.
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setzy = 1, which after insertion into (3.14) yields; = A2s = Aoz = 4. Similarly
we may for constituent inequality show thaty; = us = A3, and we see that both
constituent inequalities sharg as a coefficient, yieldingi, = A3 = p1 = oo =
A23 = pa4. The incorporation of the coefficients for constituent inality 3 follows
analogously.

We also want to alert the reader to that the assumption onitliegd_emma seems
to be very weak, and it mainly serves to avoid the unpleasastof handling the details
that become neccessary to lift it. The cases where the ¢onsliof the Killing Lemma
do not hold are typically of form where some component liféjis= 2, which can be
viewed as a pathological case.

3.2.2 Extensions

We now discuss two extensions of the above propositionilyiRroposition 23 was
stated completely in terms of the associated graph, andrimwon we will talk about
zero-half cuts in terms of their graphs. The assumptionsoenthe inequalities were
generated (in terms af;) forced the associated graph to be simple (i.e. two nodes are
joined by at most one edge). This restriction can in factfbediby only requiring that
t;; are distinct, and the proof goes through with some techmicalifications.

Secondly, we can extend the above results to inequalitiesemhe constituent in-
equalities do not have distinct components. For each coemére A pick a number

k; of constraints ati, j = 1,.. ., k; such that
L<U+T -1, (3.15a)
Uiy=1U+T, §=2,...k (3.15b)

and),. k; is odd. Now we wish to pick inequalities from (2.1c) followircertain
rules, such that we link together the constraints picked/@b&or everyi € A such
thatk; > 2, we pick inequalitieszl% — @ >0 andzlki,ﬁl = i1y, +1 from (2.1c),
and require that we pick other inequalities from (2.1c) far $ame times, with different
components. Far € N such that; = 1 the same rules apply as before.

Example 5. In Figure 3.8 we demonstrate an inequality of the above raeetl type.

We now define a graph for this inequality as before, with thditaah that we also
let there be an edge between two nodes if the constituentiatiigs come from the
same component and overlap. In total, it now follows that hwdes of the inequality
graph share an edge if and only if it is possible to satisfycthestituent inequalities by
only using one variable of the generated inequality, if weratjard the crossings. This
was the essential property that facilitated Propositiora?8l it still goes through with
some modifications.

3.2.3 Lifting crossings

In Proposition 23, we had to assume some structure on thsicgss otherwise the as-
sociated inequalities would not define facets of the repiesce polytope. We indicate
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1 1z 1 1 1 Yz Yz
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1 0 1 1 1 0 1

Figure 3.8: A CG inequality generating without distinct sbtuent inequalities. Note
that this inequality is also of the simple combinatorialgyp
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how some of these crossed inequalities can be lifted todacatnsider an inequality
as in Proposition 23, except that for one node in the graghetis one edge crossing
that node which can not be included in the partition. Let ttessed node come from
component € N, and the crossing occur aE 7;. It follows that the coefficients for
x;; andz; arel in this inequality. We wish to show that a modified inequahtyrere
we let the coefficient of;;; be0, is valid. Then the proof of Proposition 23 will go
through for this new inequality, as the only hindrance wasdtossing.

Denote the original inequality by” (z, z) > mo, and the modified byt'" (z, z) >
m. Itis immediately clear that the primed inequality is vaktienz; = 0, since then
x; = 0, and the primed and unprimed inequality are equivalent. Wetrshow that
primed inequality is valid when, = 1. The result follows if we can show thatdf = 1
andnT(x,z) = m, thenz;; = 0. Butif 77 (z, 2) = 7o, then(z, z) corresponds to
a partitioning of the graply into subgraphs of siz2 and one subgraph of side By
assumption no such partitiong exists that contains the edgesponding ta; = 1
andz;; = 1 and the result follows.

The careful reader may have noticed that the graphs repiegehe inequalities
above share a striking similarity twld cycle inequalities without chordisr set cover-
ing/packing polyhedra [Pad73]. In fact, if we were to penficthe above construction
for a set covering instance, proving similar propositiome,would get exactly the odd
cycle inequalities. This should perhaps not come as a se;m@s the constraints (2.1b)
of the replacement problem are of the set covering type. Mewyeising only these
to try and generate odd cycle inequalities is futile, duehi tbtal unimodularity of
this submatrix from Proposition 7. What we are doing abovetban be viewed as a
perturbed version of the odd cycle inequalities that ocar tthe nature of constraints
(2.1c). This observation begs the question of whether athitting planes for set cov-
ering polytopes can be perturbed in such a way as to be apldit@ the replacement
problem.

We conclude this section by noting that the characterimatiof when zero-half
cuts become facets, or even valid, seem badly adapted flusiaon in a computer
program. The characterizations are indirect and abstackthe author has not been
able to formulate even a good heuristic algorithm for geti@m® Hence the separation
problem of finding the most violated zero-half cut may verylivbe hard to solve.
Instead we take the results to mean that zero-half cuts carpbeverful tool for BRP,
and as such an efficient solver will likely benefit from an aggive heuristic zero-half
cut generation. However the abstract characterizatiordmuble-edged sword; this is
also what makes it likely that the methodology of identifyfacets may be generalized
to other replacement models.

3.3 Extended models

It was previously mentioned that some of the facets deriverewf the odd cycle in-
equality type, that could be utilized since the problem hadtacovering substructure.

5The facets of this section seem to behave nicely when theciassd graphs are simple. However,
preliminary numerical results indicate that graphs corredpw to useful inequalities are very far from
being simple.
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We may then ask ourselves whether the work done generatizastte realistic mod-
els for opportunistic maintenance, if they possess a sedroay substructure. In this
section we give an example of such a generalization, anedhgtt many of the results
above generalize to other models as well.

3.3.1 Deterministic individual components

Underlying BRP is the implicit assumption that for each comgnt that needs replace-
ment, there is an infinite pool of identical component indixdls to choose from. In
a more realistic setting this may not be the case. Let us denthe set\V" as a set of
tasks that must be performed, and let us define &set € N of components that can
perform that task. We can then model an opportunistic maartee problem with the
variables

1, individualr of component is replaced at

Ti =19, o P P (3.16a)
0, otherwise
1, maintenance performed at time

=140 ! P (3.16b)
0, otherwise

wherei € N,t € T andr € {1,...,n;} = R;, and define theJncapacitated
Individual Replacement Proble(WIRP) as

min Z Z CirTiy + Z dyzt (3.17a)

1ENTET reER; teT
l
sty > ah, > 1, ieN,le{S;...., T}, (3.17b)
rER; t=min(I—T7+1,1)
Si
SN wa>1, ieN, (3.17c)
reR; t=1
i, < 2t ieN,teT,reR; (3.17d)
zt, x5, € {0,1} ieN,teT,reR; (3.17¢)

whereT?, is the lifetime of indidual of component at timet and.S; is the remaining
life of component at the start of the planning horizon. The structure is vemyilar
to that of BRP: the objective is to minimize the cost of kegpihe system running
over the planning period. The canonical example of such aemeduld be a repair
versus replace scenario. That is, given some componeutdaive have the option of
replacing the component by a brand new one, or to repair ppaRgare probably less
costly, but the next component failure may occur earliethls casgR;| = 2.
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3.3.2 Varying lives

The assumption in BRP that all components have lives that@mstant may not be
satisfied in several real-world applications. An exampleselthis is not the case could
be a cooling or heating system that carries a different leggedding on the weather
conditions. We therefore modify the BRP by considering eaarhponent as having a
maximum total usage capacify, and associating with each unit of time a usage load
u;;. We assume that a component breaks if its total usage smdastt replacement
exceedd.;, and to keep the system running we must replace componeiote libey
break. We may model this by defining

I+t
Ti(l):max{ﬂZUitSLi,l+t§T},leT (3.18)
I+1
yielding the Varying Lifelength Replacement Problem (VORB

min CitTit + diz 3.19a
(@.2) ieA;t:eT o ; - ( )
I+T; (1)
s.t. > wi =1, ieN,0<1<T—Ti(l), (3.19b)
I1+1
i < zt, ieN,teT, (3.19¢)
Tit, z¢ € {0, 1}, ieN,teT. (3.19d)

3.3.3 Conjectures for general models

We can see in both the above proposed models that they cantshcovering sub-
structure, coupled with mixing constraints. Although aailetl inspection of previous
constructions will not be given, the author is confident thany previous results hold
for these models as well. In particular, Proposition 23,clutis quite abstract to its
nature, should fairly easily generalize to these models els Wurthermore, results
on decreasing cost instances and the breaking of degengnacyd also generalize.
This leads to writing out two conjectures for replacementeis with set covering
substructure.

Metaproposition 24. If costs are non-increasing, maintenance may be postpomidd u
the failure of some component.

This metaproposition states that the fundamental propkdiyfacilitates the shortest
path solver of Section 4.2 is satisfied. However it is notrehticlear how the priori
reductions on the number of possibly optimal maintenancesibms that are given for
the basic model may extend to other models.

Metaproposition 25. Zero-half cuts generated as in Section 3.2 will often definett.
It is outside the scope of this thesis to define general cimmditunder which these
metapropositions become actual propositions, or even fioede/hat is meant by a
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general replacement model. However we expect that the rémdéle to follow the
Chapters 2 and 3 for UIRP and VLRP, and perform the modifioatibat are necces-
sary.
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Chapter 4

Algorithms

We propose a polynomial time separation algorithm, as we# ahortest path based
algorithm for solving BRP.

4.1 Constraint generation using graphs

The resulting linear programming problem that is obtaingdatlding all the facets
obtained in Chapter 3 to the problem (1.2) can be seen to heeeydarge number of
constraints, and an explicit treatment of all facets soaob®s intractable. However,
some of the inequalitites have sulfficient structure to alfloma constraint generation
approach. This is done by constructing several graphs aisoreble size, which will
allow the separation problem to be solved as shortest patiigms in these graphs.
The algorithm will also in some cases produce valid inedjealithat are not facets.
Not all the inequalities derived in Chapter 3 will be genedaiand what follows below
is an algorithm for solving the restricted separation peabbf generating some of the
layered facets of Section 3.1.4 in polynomial time.

We will start by restricting the problem to generating faagftthe second layer. We
will also assume thahin 7; > 3, and thafl; < T, < ... < T, which are simplifying
conditions that we expect the reader to understand how teye lifted. Let us fix a
packing component, and construct a weighted digraph @h nodes:

V={(s,k)seT, ke{l,...,p—1}}, (4.1a)
E={e@sn). )} (4.1b)

wheree(, 1y (s 1) € Eif s =5’ > 1,5, € T,and

{SSI’”TM k=p, k' <p-1,m>1, (4.2)

s< s, K =p.

37



CHAPTER 4. ALGORITHMS

Given a solutior{z*?, 2L¥) to an LP-relaxed version of (2.1), the weights of the edges
W(s k), (s',k7) are defined as

s'—1
Z(xﬁf—l—xﬁtp)—i—zflp—m, s—s8 =mT}, k,k<p—1,m>1
t=s+1

(4.33a)
s'—1
Z (el +apl )+ 2E0 25—l —m, s—s' =mTw, k=p, ¥ <p-1,m>1
t=s+1

(4.3b)
Zxﬁtp, s<s, k' =np.
t=s+1

(4.3c)

We claim that a pattP through this graph froni + 1,p) to (I + T}, p) for somel
corresponds to a second layer inequality;, z) > r with the packing component
of the type in Proposition 21. Furthermorgz™? 21*) —r = L(P) — 1 where
L(P) is the weighted length of that path. HencelifP) < 1 we have identified
an inequality that is violated in the LP-relaxed solutionhisTcan be understood if
we interpret (4.3) properly. An inequality of the type we discussing lives on the
timest € {l + 1,1+ T, }, for somel. The edges represent feasible ways in which we
can 'fill’ this timeframe with coefficients in a way correspbng to a valid inequality.
The weights (4.3a)-(4.3b) respresent the addition of agrdakequality: (4.3a) adds
a packing such tha;tz(k) = rf“l), while (4.3b) yields a packing where thes are
distinct. The exact expressions for how this is done arevedifirom (3.7).

To prove these statements we begin by defining a mappingy — R*7 7, where
X is the space of paths {{V, E'). The inequality corresponding to the pahwill then
be given asf(P)T (z, 2,1) > 1.

Example 6. We give an example of a path through a graph such as above. L£ei,
andTy =4, Ty = 6, T35 = 11. Figure 4.1 shows an inequality that is generated as a
path. The resulting inequality becomes

4 10
stz tzn+ Y (@t as) + Y (w2 + w3) >3 (4.4)
t=2 t=6

Definition 26. The mappingf : X — R"**! is defined ag'(P) = ", f(¢), and
f(e(s.),(s.1)) is defined as in (4.3) where;”, 217 are replaced by the corresponding
unit vectors, and constants are replaced with the unit vect¢o, 0, . .., 0,m)%.

We can now prove the following proposition.
Proposition 27. If P is a path in(V, E) from (I + 1, p) to (I + T}, p) for somel €
{0,...,T —1T,}, then
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®00C . YoJelolelole

® 000 dOOOOQ%

Figure 4.1: Pictorial representation of the a path througagph according to (4.3),
with T3 = 11, Ty = 4, T = 6. The first row shows the initial (empty) situation, the
second rows the coefficients that are added after travetisinfirst edge, and so on.
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fP) (z,2,1) > 1 (4.5)

is a valid inequality of the typé3.7) with the properties of Proposition 21 of the re-
placement polytope.

Proof. We prove this using induction ovéP|, where|P| is the number of nodes in
the path. If|P| = 2, the statement is trivial, since then clearly (4.5) is amiradity of
the form (2.1b). IffP| = 3 and the last node @? is (I + T}, p), the statement is also
trivial. Now assume that the statement is true for@tuch thaiQ| < u, v > 2, and
all @ such thatQ| = u+ 1 where the last node @ is (I + 7}, p), and let/P| = u+1.
Then,(s,k) € Pforsomes € {{+1,...,1+T,}, k < p—1,or (4.5) s trivially of
the form (2.1b). Let be the last such node. Then, removing the nedé) from P
and collapsing its inward and outward edige an edge td/ + 7}, p) yields a path of
the form in the induction assumption, which yields a validdnality of the type (3.7).
FurthermoreP can then be viewed as this valid inequality with the additdris, &)
defining a new basic inequality. Hence, by (3.7), it followattf (P)7 (z, z,1) > 1is
also a valid inequality of the replacement polytope of typ&). The final case where
|P| = u+ 2 with the last node being + T, p) is treated similarly. O

Itis also clear from Definition 26 and (4.3) thatP)? (2=, 217 1) = L(P).

From the preceding discussion it now follows that the retd separation problem
can be solved by many-to-many shortest path problems, and hence that #tiscted
problem can be solved in polynomial time. However, as notexve, not all inequali-
ties of Chapter 3 are generated in this fashion. The approagbwing the separation
problem as shortest problems through graphs may be exteadegher layer facets:
recursively we solve the separation problem for Akh layer and use the solution to
update the weigths for layér—+ 1. We also point out that the graph can be made sig-
nificantly smaller than is described above: we may replaeg@thnodes with oni\37T'
nodes, however such a description becomes more involvezicilitial observation is
that we need only keep track of whether the last nodekhadp or not, however the
weights must be defined differently. The issue that is hati@leplve is generating in-
equalities where packing components overlap, and thereiisrtly no known efficient
algorithm for generating the zero-half cuts.

4.2 Dynamic search algorithms

In this section we propose and discuss a shortest path blageilan in Markov state
space for computing solutions to BRP, under natural assomgpbn the costs;; and
dy.

4.2.1 Non-increasing costs

We consider instances of BRP whetg andd; are decreasing infor all € A/. Con-
sider the weighted digraph = (V, E, W) where

Lwith a trivial modification if the node has no outward edge
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V:{(t,Tl,...,Tn),Ti S {0,,TZ—].}U{(O,Th,Tn),(T+1)}, (46)

i.e. anode irV/ represents a possible state of the maintenance systene, setise that
it tracks to what point time the system has survived duringagntenance schedule,
and the remaining lives of each component, as well as atxiligtial and final states
fort = 0,7 + 1. We define the edges of this digrapheas E if e goes from a node
s to a nodes? such that? — ¢! < min; 7; andt? — t* = 7} for somei € A such that
7; # 0, ort? — t; = min,; T;. We also require that

2 {r} —(P =), (- 20, @7

T, — (12 —t1), othwerwise.

These edges can interpreted as linking together two maintenstates if there exists a
maintenance decision &t such that we can advance timettowithout system failure.
Furthermore the remaining life of the components at the nate svill evolve according
to 4.7.

We also define extra edges E from s to s? if t2 = T+1 andt? —t! < min; T;.
It follows that the outward degree of each vertexDris less tham. The weigths of
the edgesv € W from states at! to states at? are defined as

w=de+ Y ¢, (4.8)
J

where the sum runs over all indicgsuch thatr; — (> — t!) < 0. The weights of
edges connected to states whete 0 is d;, and edges reachinig= 7'+ 1 have weight
Zj ¢j¢, With j running as before. One should think of this graph as deswisiates of
the maintenance and connecting states if there exists @enaimce decision &t such
that we reach the statedt while keeping the system running unfilwhilst satisfying
(2.3). The weights are given as the costs to perform thoseteragince decisions. Let
X bethe space of pathstfrom (¢, 11, . .., T,,) to (T+1), and the define the mapping
f:X —={0,1}"*T Jasf(P) = 3 .cp g(e), whereg : E — {0,1}"7+7T by letting

1, t=t 7t -2 -tH) <0,

(9(€)) (i-1)1¢ {0, otherwise Z o

1, t=t2<T+1,

te7. (4.10
0, otherwise. ( )

(g(e))nT+t = {

Note that the definition of yields that the range of really is {0, 1}*7+7, due to the
structure ofD. We will from now understand the binary stringe {0,1}"7*7 as
corresponding t@z, z) in BRP throughz;, = y(;_1yr44, 20 = ynryr fOri € Nyt €

T, and simply denotg(P) = (z', 2F"). Also note thatv(z, 2F) = (¢,d)T (2T, 2T),

wherew is the pathlength function.

Proposition 28. (7, %) is feasible in BRP, and satisfi€2.3).
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Proof. We need to show thdt:”, %) satisfies (2.1b) and (2.1c), as the rest is trivial.
We begin with (2.1c). Le§, s be such that?, = 1, and we must show that” = 1.
But then, according to the definition gf there must exist an € P leaving a state
with t. = s, and asP is a path neither starting nor ending in a state with s there
exists an edge entering this state, But then, from the definition o, it follows that
2P =1.

Now letj € A andl € {0,...,T — T;}. We wish to show thap ", 7, =1, >
1. By definition, E only contains an edge fromt > 1 to ¢2 if t> — ¢t < min; T}.
Hence the pathP passes through a statec V with ¢, € {{+1,...,1 4+ T;}, and
from the definition ofE' it follows that for some edge to such a state, it must hold
thatt; — (t* — t') < 0, as7; < Tj. The definition ofg then yields that for some
te{l+1,... 1 +T}, 25, = 1. O

Proposition 29. Let(z*, z*) be an optimal solution to BRP with non-increasing costs.
Then there exists a path € X such thatw(z?, 2F) = (¢, d)T (2%, 2*)

Proof. As the costs are non-increasing we may assumeiffat*) satisfies (2.5), by
Proposition 12. We prove the proposition by explicitly cwasting the pathP. Let
t1 <tg <...<t, bethetimeswhere’ =1, and lett, = 0. It follows that if we can
find P = {e1,...,ems1} such thatit yieldgz*, z*), the statement is true. By (2.3) it
follows thatt; = min; T;, and we let; = (0, T, ... ,Tn) — (Tl, 0, To—Ty,...,T,—
T1) € E. Now assume thatfor = 2,...,m, the edges,, . .., e;_1 have been defined
such thagj;ll g(e) agrees with{z*, z*) for all timest < t;, and look for an edge from
the state at;_; to some state &f;. By (2.3) and the defining properties &f such
an edge exists, and it only remains to show thf;i’lﬁtf1 = zj,, , fori € N for some
such edge. To this end, defing = max (t|z], = 1,t < t;_q) fori € N. Trivially,
s; € {to, t1,...,tj_o}. Equation (2.1b) now yields that_; € {s; + 1,...,s; + T;},
and decreasing costs then imply that

1, tj¢{8i+1,...,8i+Ti}

x| = ’ (4.11)
it 0, otherwise

However this statement is the same as that defigingnd it follows that the edges
e1,..., ey can be chosen in the desired way. All that remains is to cadecthat
em+1 = (tm,71,-..,7n) — (T + 1), which completes the construction.

O

What we have managed to show is now that BRP with decreasirtg cas be
solved as shortest path problem in the weighted digfaph

4.2.2 Complexity analysis

The natural question arises how difficult it is to solve thergdst path problem defined
above. We assume that the reader is familiar with the mosthuamshortest path
solvers and the standard notafiorA well known worst case runtime for Dijkstra’s

20therwise, a primer can be found on Wikipedia
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algorithm isO(|V'|log|V'| + | E|), and the number of expanded node®igV | + |E|).
For the above problem we hay¥| = O(TIL;T;) and |[E| < n|V|, and it follows
for large instances of BRP, the runtime may grow very largewever in practice we
expect the runtime to be much smaller, as the dig@j$not connected, and it suffices
to use estimates of the size of the connected component gbtiree state. Consider
instances of BRP where we fix T', and are allowed to var¥;, i € N/. Aswe increase
Ty, it follows that|V'| grows very rapidly, and in the extreme ca§e= T, i € N, the
size of the state graph [§| = T"*!. However the connected component of the initial
node hagVy| = 3, that is the intitial node, the goal node and an intermedierge
at (7,0,...,0). Continuing with this line of reasoning, we heuristicallypect the
number of expanded nodes to depend notlodirectly, but rather onnﬁ. We
partially formalize this in a proposition.

Proposition 30. Let an instancd” of BRP with constant costs be givenhbyl', T;, ¢;, d,i €
N. Define thes-discretized; € Z+, modification of this a®* with T/ = kT, n’ = n,

T! = kT;,¢; = ¢;,d’ = d, i« € N. Then the associated shortest path problemsHor
and P* are equivalent.

Proof. We prove this by showing that the connected component ofritialinode in
both problems induce the same digraph. Without loss of gdierwe assume that
the least common divisoECD(T,Ty,...,T,) = 1. Let us denote the connected
components of the initial nodes of the digraphstas D*. We begin by mapping all
nodes ofD,. into D by letting (t,71,...,7,) — (kt,k71,...,k7,). It then suffices
to show that this mapping is surjective. However it followserf the definition of
the edges that for any node ™%, v = (¢, 7{,...,7,) we have that’ = Omod ¥,

7/ = 0mod k, and the proposition follows. O

The proposition shows that in a sense the time discretizaiica given problem
does not make the problem harder to solve, something whicériainly not true for a
general MIP.

4.2.3 Improvements

To have any chance of efficiently solving large problems itot possible to use Dijk-
stra’s algorithm, but rather the guided A*-algorithm [WiAghich functions in exactly
the same way as Dijkstra’s algorithm, but on a graph with riediiedge weights

wy; = wij — h(i) + h(j), (4.12)

whereh(i) denotes an optimistic heuristic of the shortest path distdrom nodei
to the goal node. Hence, where Dijkstra ranks nodes acaptidistance from the
source to those nodes, A* ranks them according to distamee $ource to nodand
an estimate of distance from node to goal. We then also negapialy the algorithm
with a heuristic for computing the remaining distance todbal state, and we will in
this section discuss different ways to do this. There arerg&gly four different ap-
proaches: simple estimates, LP-relaxation estimatemngtinened LP-relaxation esti-
mates, and partitioning heuristics. We begin by discudsihgelaxation estimates, and
then derive simple estimates from this, as well as somegitiened LP-relaxations.
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Consider a state in the digra@h., v = (¢, 7,...,7,). By construction the partial
solution of BRP that corresponds to a path leading to thie $&eps the maintenance
system working until time. It follows that an admissible heuristic for computing the
remaining path length is given by solving a modified versibthe LP-relaxation with
the variables corresponding to the current path fixed. Angtieened LP-relaxation
can then be obtained by adding some cutting planes to theahilbm, or by running a
branch & cut scheme with a few nodes. It should be noted tleafthalgorithm then
reduces to a branch & cut algorithm for the entire problenthwsin adapted branch-
ing rule. We expect this choice of a heuristic to be a good greeuristic for a
wide range of problems, as it yields a balanced tradeoff éetwheuristic accuracy
and heuristic computation time. We may also choose to ingtlis relaxation by for
example requiring that the total number of maintenancesiona/component replace-
ments should be integral.

For smaller problems, where the number of expanded nodesotde a concern,
we will instead want a faster, but perhaps less accuratestieuiT his can be obtained
by computing lower bounds on the optimal value of the LPxetbsubproblem above.
We can easily do this by computing lower bounds on the numbegpdacements of
each part, as well as a lower bound on the number of maintenacerasions, which
can be obtained directly as linear combinations of (2.19.0ét that

i+ 1
§ 2> 1+ iosontl (4.13)
T
a T —s+1—min;{r|r > 0}
Soazx| e J. (4.14)
Mot min; T;

We now reach the most involved heuristic, which we expectaeehto use for
very Iarge problems. This is motivated by the intuitive olvaon that for larger’,
i.e. T T is large, the solution to BRP should be periodic@nd the separability
property discussed in Chapter 2. That is, we wish to use thimapvalues for smaller
instances as an estimate of the optimal value of larger enadl Consider instances of
BRP wheren, T;, i € N are fixed, and we are allowed to [Etvary. Letf*(T) be the
optimal value of the problem with planning horiz@h

Proposition 31. For fixedn, T}, ¢ € N, if c¢;4, d; are decreasing in, thenf* is super-
additive, that is

[Ty +T) > f5(T1) + f*(T2). (4.15)

Furthermore,

F(M+T) < (M) + () +d+ ) ai (4.16)
iEN

30r rather, there exists a near-optimal solution that is joéea
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Proof. Let (z*, z*) be an optimal solution to BRP with planning horiz@h Define
(29,27),j=1,2as

Ty = T}y, te{l,....,Tn}, (4.173)
7 =2, te{l,...., T}, (4.17b)
l‘zz,t = IZH-TN ted{l,...,Tv}, (4.17¢)
Z =25, te{l,..., Ty} (4.17d)

It follows that (27, 27) are feasible in BRP with planning horizo#s, respectively,
and consequently(z7, 27) > f*(T}), j = 1,2. Finally

AT +To) = f(a',2Y) + f(a?,2%) > f5(Th) + f*(Ta). (4.18)

Conversely if we let{z7, 27), j = 1,2, be optimal solutions to the problems with
planning horizond’;, j = 1,2, respectively, we can define a feasible solution to the
problem with planning horizoff; + T5 using (4.17), and adding;;, = zp, = 1 for
i € N, finishing the proof.

O

We also point out that the same result holds for the LP-relamima. We wish
to alert the reader to that the main usage of the partitiohegistic is not to produce
good quality solutions to the BRP, but to provide strong@rdpobounds than are ob-
tainable by linear relaxation methods. Also note that théitpaning is very similar to
the Lagrangian relaxation with multiplietsthat was discussed in Chapter 2. Finally
we note that there exists in a sense a dual version of thdipagj where we instead
of partitiong the planning horizon partition the comporseinto subgroups. It is then
easily seen that the inequalities corresponding to Prtpos31 for component parti-
tionings hold when the inequalities are reversed, which thay be used to construct
a primal heuristic.

4.2.4 Heuristics

For large instances, the method above may not be able totateniithin a reasonable
timeframe, and we may need to use some heuristics to speegbsthp. A basis for
this comes from Proposition 31, which loosely speaking ifditation that the linear
relaxation gap grows asymptotically linearly for a fixedtaree when increasirf. A
further motivation of this is that for very largé we expect the solution to both BRP
and its linear relaxation to be periodical. This yields ttreg heuristic estimates of
remaining cost are less sharp for states at early times,tedtis should be linearly
related. We may then motivate the heuristic to introduce anarg horizon for the
A*-algorithm, that is, we delete all the open states thatsamae fixed distance away
from the latest expanded state. That is, if we have foundta ata with an estimated
cost of f;, and there are states at< t with the same scofewe guess that the state

“Note that it cannot be smaller asvas an expanded node
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at s is worse than the one at and that we are fooled into believing that it is good
merely because the heuristic bound is bad. Note that foh#hisistic to perform well,
the remaining distance heuristic has to behave monotdyidgls controlled through
the use of parameters, MEM_PURGE_FREQ and MEM_HORIZON, which cdntro
how often the memory is purged, and how far back to purge exdsly. It is natural

to estimate that a natural time-scale for the problem at fegien by its minimal life
limit, and hence MEM_HORIZON is defined in terms of multiplEfshis.

Another heuristic speedup is to limit the number of open sateny given instant
of time. Thatis, we define a parameter MAX_NODES_AT_T, widefines how many
open states we allow that are at the samié&a new state is added to the open set with
the same, we simply remove the state atvith the worst score. This heuristic will
then work well if the heuristic is monotone for states,dah the sense that we assume
that the ordering of heuristic scores are a good estimateeajtdering of actual scores.
This heuristic has the added benefit of keeping the memogeustithe algorithm low.
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Numerical results

In this chapter we present some basic numerical tests oreimitations of the theo-
retical results obtained in this thesis. This chapter ismeant as as extensive numeri-
cal study, but should rather be read as a guideline to whethéwey is applicable. The
reason for this is mainly that, as the problem at hand has meviqusly been exten-
sively studied, there exist no resource for benchmark prabl Furthermore the author
does not have access to large amounts of data from real wahldtry applications.

There are two main investigations that we wish to perforrhis ¢hapter. These are
a study of the power of the facet-generating shortest patbdseparation algorithm of
Section 4.1, and the dynamic programming scheme of Sectibr=br the separation
algorithm, we are mainly interested in how much the lineagpamming relaxation
gap of BRP can be reduced, and for which instances it perforetis

The dynamic programming scheme is granted a bit more attenéis there are
more things of interest to test. The tests we perform include

1. Performance of the exact solver.
2. Dependence on choice of heuristic.
3. Solution quality and performance when using heuristeesipps.

4. Comparisons with commercial grade MIP solvers.

The reference MIP solver that is used is CPLEX 12.1. Alganghimplemented by the
author are written in MATLAB R2008b, with some parts writiarC, being called with
MATLAB’s MEX-interface. All numerical experiments are germed on a dedicated
Linux desktop workstation.

5.1 Separation problem
It is interesting to study how much the constraint genenasicheme is able to reduce

the gap of the continuous relaxation in relation to the optimteger solution. The
first test we perform is to solve many instances of a mediweesproblem, so that
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the true optimum is obtainable. The instances are chosem that the number of
components: and the horizori’ is fixed. The component costs are fixed random
numbers:; € U(1,2), and the fixed cost is varied.

We test using the simplest version of the separation prolofe8ection 4.1. The
implemented algorithm version is capable of generatingttaof the second layer only.
The authors experience indicate that gap reduction is gallgdependent on one fac-
tor, which is the minimal life of the components. In Figure$ &nd 5.2, we graph the
relaxation gaps before and after the cutting plane algoriitr problems with short-
lived components are longlived components, respectively.

Relative gap between integer optima and continuous optima
0.04

No added inequalities
— — — Added inequalities

0.035

0.03F

Figure 5.1: Relative gaps between integer and continuotisiapvarying d, problem
1. This problem contains several components with shorsJigs far down a%; = 3.

We note that the facet generation performs very well on troblem.

We also give an instance for which this approach performslypodhe instance is
constructed such thatin 7; is larger; such a problem is problem 2, and the results are
depicted in Figure 5.2.

The poor performance can be explained somewhat. What the givieclass of
facets does is to superposition slightly more than, for §initp, two inequalities from
(2.1b), yielding for both fractional and integer solutiarsinequality that is probably
not satisfied strictly. However in fractional solutionsetmixing with (2.1c) allows
us to exchange for example; = 1/2, x99 = 1/2 with z; = 1/2 in the inequality.
Heuristically, it follows that the more-variable content we exchange withvariable
content, the more violation we obtain. For this subclassoéfs, we maximally sub-
stitute4 z-variables for2 z variables. It, again heuristically, follows that the amboh
violation of constraints is determined by the typical siz¢he values of the variables
in the fractional solution. Now, finally, we expect that tigpital size of the variables
in the optimal fractional solution iémin; 7;)~!, for obvious reasons, and hence that
the subclass of facets generated above is stronger forgunobith shorter lives than
for larger lives.
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Relative gap between integer optima and continuous optima
0.07 T

No added inequalities
— — — Added inequalities

0.06 -

Figure 5.2: Relative gaps between integer and continuotisiapvarying d, problem
2. This instance contains components with lives spannimm ff; = 13 to 7; = 40.

If we now consider the zero-half cuts of Section 3.2, theyenaliowed to use
many more mixing constraints from (2.1c). As the lives of doeponents increase,
causing the violation gain from one mixing to decrease, tiralrer of possible mixings
increase as well. Therefore we expect the zero-half cute tadre robust for problems
with longer lives. Unfortunately, it seems to be much hatdexdd facets with a large
number of mixings as they are very time-consuming to idgnivhich is why this has
not yet been implemented.

5.2 Dynamic search algorithms

We also wish to test the performance of the proposed A*-élgorof Section 4.2 for
different heuristics, as well as comparing to commercialegal MIP solvers. Again,
implementations are written in MATLAB with linear prograrssived in CPLEX 12.1,
which is also the MIP solver that is used for comparison. Asttirg plane generation
has not yet been implemented to work within this algorithne, take advantage of
CPLEX'’s built-in zero-half cut generation to emulate thsulés of section 3.2. These
implementation details may have a significant impact onrngmesults. MATLAB’s
scripting language, being uncompiled, is typically vegwsfor applications containing
many loops. Hence the A*-algorithm is severely penalizegkaitime comparisors
The tests are performed on the problems of Table 5.2.1. Theara data that is
measured is the computation time in real time, and the numbeodes that are pro-
cessed for each algorithm. The algorithms that are teseedearoted CPLEX, Simple,

11t can be mentioned that in the shortest path algorithm fos#aration problem, early versions were
coded in MATLAB. When switching to C, a speedup factor of royd0-100 was obtained.
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Problem|| n T | minT; | maxT;
1 10 | 50 2 11
2 4 | 100 9 22
3 2 | 500 15 23
4 2 13 3 5

LP and LPCUT, where the names of the last three indicate thadtie estimate of
remaining distance that is used.

5.2.1 Problem testbed

Throughout this section we will variations of six problenssaabenchmark. Two prob-
lems, HPT and LPT, are real-world instances obtained frolad/@ero, while prob-
lems1 through4 are invented by the author to be fairly illustrative exarspédifferent
classes of problems. For the four invented problems, badiid given in Table 5.2.1.

The problems of Table 5.2.1 were chosen to represent diffefesses of instances.
Problem1 is a dense problem, in the sense that it contains componéttsimilar
lives, which makes optimal solution contain many maint@eaoccasions. Problem
2 is intented to be a more realistic problem. Problgns chosen to investigate the
effects of a long planning horizon, while problehis a very simple problem intended
to investigate whether there exists some overhead wheingittre algorithms.

5.2.2 Time dependence of relaxation gaps

It was hypothesised earlier that the gaps of the heuristimates for fixed instances
grew as the planning horizon grew. We test this hypothesisoyputing both integer
and continous optima for some problems when varying thenpt@nhorizon. To test
this we let CPLEX solve modifications of problem 2, fbr= 25,...,125. The result
is shown in Figure 5.3, from which we can see that for this |[gnob) the hypothesis
that both the integral and the continuous optimas grow agpmately linearly is fairly
accurate. Furthermore the gap seems to follow the samepafthis result provides
strong support for the memory horizon heuristic for the Ageaithm.

Simple tests

In this section we let the exact A*-algorithm solve the testlof instances in Table
5.2.1. The results are presented in Table 5.1

We see that in real time comparisons, CPLEX seems to win ort ms&nces.
However it should be noted that real time may not the mosvaeliebasis of compar-
ison, as this should be favoring CPLEX with its efficient iexplentation as opposed
to the fairly slow implementation of the A*-algorithm in MAJAB. It should also
be noted that CPLEX is parallellised, and uses 2 procesatiite the A*-algorithm
does not. More interesting is the number of expanded nodasshould be compared
with the number of branching nodes of CPLEX, where the A%sallpm seems to per-
form significantly better than CPLEX, especially for longrizon instances. However
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Relaxation gaps

Objective Value

20

60

80
Planning Horizon

100

Figure 5.3: Integer and continuous optima for problignvhen varying the planning
horizonT'. Both objective values appear to increase approximatedatiy.

CPLEX Simple LP LPCUT
Time(s) | Nodes || Time(s) | Iterations|| Time(s) | Iterations|| Time(s) | Iterations
1 0.94 187 578 46457 873 18484 30 146
2 1.70 503 35 2995 6.6 81 14 51
3 * 326947 7.2 10384 530 3683 2327 3543
4 0.04 0 0.007 8 0.4 6 0.4 6

Table 5.1: Timing results when solving a testbed of instandiethe runtime exceeds
one hour, the algorithm is considered to have failed, arlishinarked by &. Other-
wise the problem is solved to optimality.
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Simple LP LPCUT
Time(s) | Iter. | Obj.Val. | Time(s) | Iter. | Obj.Val. || Time(s) | Iterations| Obj.Val.
1 2 1329 131 12.4 58 131 9.4 125 131
2 0.28 225 54 4.0 30 54 11.8 47 54
3 0.52 603 120 35.3 | 106 120 106 146 120

Table 5.2: Performance of the memory horizon heuristic entéistbed of problems.
All variants obtain the true optimum.

for dense instances, that is instances with a large numbeoraponents and many
maintenance occasions, such as problem 1, CPLEX still padftetter. This is not
surprising, as many maintenance occasions implies a langar of edges in the op-
timal solution in the shortest path formulation, while agmumber of components
significantly increases the number of edges, both incrgasiea computational time.
However, the strong LP version still performs fairly well thiis problem, which indi-
cates the importance of choosing a proper remaining disthearistic.

In conclusion, the A*-algorithm can beat a general MIP sofee some instances,
however there is not a distinct advantage.

Heuristics

We test the heuristic version of the A*-algorithm with diféait parameter settings, and
study the effects on solution time and quality. For the SIMMRieuristic we use the
parameters MEM_PURGE_FRES200 and for the LP and LPCUT
MEM_PURGE_FREQ= 20. For all algorithms MEM_HORIZON = 2. In this initial
test we use MAX_NODES_AT_¥ .

We can see in Table 5.2 that for all problems the optimal &wiluis obtained.
Futhermore the solution times are significantly decrea$ad.effect is most dramatic
for the Simple heuristic on problem 1. This is easily undeodt as this problem is
very dense, which makes the Simple heuristic very bad. Tdises the long running
time for the exact solution. However the simple heurististii consistent on this
problem, in the monotone sense, making the memory horizaridtie powerful. It
is also interesting to note that we no longer neccessaripard less nodes with the
LPCUT solver.

We also study the effects when doubling the planning horizomvestigate the
scaling properties of the heuristic.

The known true optima for the problems in Table 5.324%, 113, 242, as obtained
by CPLEX. We can then see for these fairly large problems, with plagihiorizons
of up toT = 1000, the objective value is either optimal or very close to opfimvith
the deviation being at modt5%, and with very short runtimes in comparison to a
traditional branch & cut. It should be noted that the worstf@renance is obtained
on problem 1 containing a component with lifé = 2. This should not come as a

2Obtaining the optimum for problem 2 with CPLEX took o\3# hours.
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Simple LP LPCUT
Time(s) | Iter. | Obj.Val. || Time(s) | Iter. | Obj.Val. || Time(s) | Iter. | Obj.Val.
1 34 2547 268 37 293 266 114 149 270
2 11 800 113 108 205 113 263 274 113
3 11 1219 242 977 425 243 1592 | 392 242

Table 5.3: Performance of memory horizon heuristic on tetbtd of problems with
doubled horizons.

CPLEX LP LP heuristic
Time(s) | Nodes || Time(s) | Iterations|| Time(s) | Ilterations| Gap
HPT 1770 | 66797 807 1031 161 206 0
LPT 53 220 53 47 53 a7 0

Table 5.4: Performance on two real world problems for CPLEM ¢he LP A*-
algorithm.

surprise as the memory horizon then becomes very tamtl demonstrates that the
generic settingl EM_HOR = 2 is actually fairly robust even in this pathological
case.

5.2.3 Real world instances

We try our algorithms on real world data obtained from Volveré Corporation. The
data is however to be considered as secret, and we only pras@bers on the mag-
nitude of the problems. There are two problem sets, HPT ang that stem from
maintenance criteria on moddule of a high- and low pressukgrte of an aircraft en-
gine. The problems contain safety critical components thast not break, and are
as such assigned a deterministic life limit, making the BRpliaable. For the HPT
problem there ar@ components, and the LPT problem Héiscomponents, both with
a planning horizo¥” = 200. We only test the LP version of the exact A*-algorithm,
as it from the previous result seem to be the most robust, dsas/deing the most
comparable to CPLEX in terms of the number of nodes it expands

A graph of the solution progress for the algorithms above &THs presented
in figure 5.4. Note that this graph plots the number of solv@drélaxations for the
A*-algorithm, which is larger than the number of expandedes Furthermore, we
only allow CPLEX to use one thread. It is interesting to nbig the number of nodes
is cut down significantly for CPLEX compared to the paralf@ibcessing solution.
This is an indication that for this type of problems, pataleocessing MIP solvers
may not have a significant advantage over singlethreadedrsolHowever, it is likely
that the performance increase for parallell processingeénA*-algorithm is likely to
be approximately linear in the number of processors. We eantlsat on the LPT,

SMuch shorter than the longest life @t = 11.
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there is not much difference in the solution process, ang &ne in fact tied in real
time. However for HPT they are miles apart, where CPLEX egjgéh times as many
nodes, and is also significantly beaten in the real time coisga It was also tested
to let CPLEX solve the HPT problem without allowing it gerterany cutting planes,
where it failed to produce an optimal solution after runnimg24 hours.

We also try the full-force heuristic on both HPT and LPT. Wes &mple on
HPT and LPT, with parameters MEM_PURGE_FRE® 200, MEM_HOR = 3,
MAX_NODES_AT_T = 20, settings that are to be considered as generic. For these
settings we varyl'. The problems considered will be too large to prove optityali
Firstly we study the solution times for the Simple versiogaaithm with full heuris-
tics, by letting it solve variants of HPT with planning haiss100 < 7' < 1100. The
result is graphed in Figure 5.5. We see that the solution isSrapproximately linear in
T, as is to be expected.

If the heuristic is to be used to solve a subproblem in, sagchastic programming
setting, what we wish to obtain is most likely the optimal manance decision today,
and future maintenance scheduling is less interestinghignsetting, a heuristic that
prematurely cuts off maintenance decisions today may parfmadly. Hence we also
report solution times when not using the memory horizon iséaywhich are graphed
in figure 5.6 for HPT withb0 < T' < 650.

We also investigate the solution quality obtained. The tioima are computed by
CPLEX, and are compared to the heuristic optima in Figurdd.700 < 7' < 190.
In fact the true optimum is obtained for all tested value% of
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Figure 5.4: Solution progress on the HPT problem, dispayhe lower bound the
optimum. The horizontal line is the true integer optimum
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Runtimes of full heuristic
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Figure 5.5: Time dependence of full-force heuristic.
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Figure 5.6: Time dependence of heuristic with MEM_HOR«=
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Solution quality on LPT
120 T T T T
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Figure 5.7: Solution quality obtained on HPT for variousnpieng horizons. Circles
are true optimas, while the line displays heuristicallyaitéd optimas.
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Chapter 6

Final Remarks

The work done in this thesis show that binary linear programgnmodels for oppor-
tunistic maintenance planning are likely to have sufficgristructure to maképriori
conclusions about the facial structure. In particulary thave a set covering substruc-
ture, which may be used as a guiding principle for generaif@trong cutting planes.
It may also be possible to find combinatorial implicationatthenerate cutting planes.
However these cutting planes can be hard to generate, whighbe a direction for
future research.

Furthermore we have demonstrated that natural dynamicagmoging formula-
tions can have a significant advantage over branch-andpgubaches, if there exists
some way t@ priori reduce the number of maintenance decisions that stand angeh
of being optimal.

The biggest remaining question is however if our approaekeend to a stochastic
programming setting.
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