
Thesis for the Degree of Master of Science

A surrogate-based parameter

tuning heuristic for Carmen crew

optimizers

Staffan Häglund

Department of Mathematical Sciences

CHALMERS UNIVERSITY OF TECHNOLOGY

GOTHENBURG UNIVERSITY

Göteborg, Sweden 2010

CHALMERS UNIVERSITY OF
TECHNOLOGY

Department of Mathematical
Sciences

Visiting address:
Chalmers Tvärgata 3
Göteborg, Sweden

Postal address:
Mathematical Sciences, Chalmers Univ.
of Technology and Göteborg Univ.
412 96 Göteborg

Telephone:
031-772 1000

Telefax:
031-16 19 73

Web page:
http://www.chalmers.se/math/

Abstract

This project has been performed at Jeppesen Systems AB (for-
merly Carmen Systems) in Gothenburg, a company making opti-
mization software for the airline and railway industry.

Crew planning for airlines and railway leads to large and diffi-
cult optimization problems, governed by many hundreds of rules
and parameters set by the government, the union and the airlines
themselves. The rules and parameters set by the airlines can be
changed in order to create better solutions for the crew planning
but they interact in non-trivial ways making manual parameter
tuning difficult.

In this thesis an algorithm is developed and implemented that au-
tomates the selection of parameter values to find the best solution.
The problem is a so-called expensive black-box optimization prob-
lem and the chosen algorithm is based on surrogate modeling with
radial basis functions (RBF) and the use of a merit function select-
ing promising parameter settings to investigate. The model also
includes expensive black-box constraints as well as several objec-
tives.

The algorithm is implemented into a GUI, connecting to the crew
optimizers used at Jeppesen Systems and allowing for parameter
tuning for their heavy optimization runs. The algorithm and pro-
gram are then tested and analyzed assessing their performances.

A surrogate-based parameter tuning heuristic for Carmen crew optimizers

Staffan Häglund

c© Staffan Häglund, 2010

Author: Staffan Häglund, Engineering Mathematics Master’s Program,
Chalmers University of Technology

Supervisor: Andreas Westerlund, Optimization Expert, Jeppesen Systems AB
Examiner: Michael Patriksson, Professor, Mathematical Sciences,

Chalmers Univ. of Technology and Göteborg Univ.
Sponsor: Jeppesen Systems AB

2

Acknowledgements

———————————————————————————

For their help in the work that has resulted in this thesis, I would
like to thank a few people.

First of all I would like to thank the people at the pairing- and
rostering departments at Jeppesen Systems for great few months
which have been very rewarding. In particular I would like to
thank my supervisor Andreas Westerlund for all the support I
have been given and Henrik Delin for all the help with system
related issues. I also want to extend thanks to Tomas Gustafsson,
Head of Optimization at Jeppesen Systems, for the opportunity to
do my thesis at Jeppesen Systems and for giving me the customer
perspective.

Lastly I would like to thank Malin Nilsson for providing support
and cheering me up whenever the programming troubled me.

———————————————————————————

Contents

1 Introduction and problem description 1
1.1 About Jeppesen . 1
1.2 Terminology . 1

1.2.1 Airline planning . 2
1.2.2 Rules and parameters . 4
1.2.3 Key performance indicators . 4

1.3 Problem description . 5
1.4 Costly global optimization . 6

2 Theory and background 9
2.1 Surrogate modeling . 9

2.1.1 Interpolation of scattered data in R . 9
2.1.2 Interpolation and approximation using RBF 10
2.1.3 Kriging method . 14

2.2 Merit functions . 15
2.2.1 One stage/two stage methods . 15
2.2.2 Target values - minimize bumpiness . 16
2.2.3 CORS method . 16
2.2.4 Quality function . 17

2.3 Experimental design . 17
2.3.1 Random sampling . 18
2.3.2 Maximin . 18
2.3.3 Latin hypercube design . 19

2.4 DIRECT algorithm . 20
2.4.1 Initial step . 20
2.4.2 Potentially optimal hyper-rectangles . 21
2.4.3 Norms . 22

2.5 Multiobjective optimization . 22

3 The optimization algorithm 24
3.1 Creating a surrogate model . 24
3.2 Choosing initial points . 25
3.3 Finding new points to evaluate . 25
3.4 Quality function . 25
3.5 Weight function . 26

3.5.1 Single objective . 27
3.5.2 Multiobjective . 27

3.6 Monte Carlo integration over Ω . 27
3.6.1 Reducing the domain of integration . 28

3.7 Output constraints . 29
3.8 Integrality . 30

4 Implementation of general algorithm 32
4.1 Single objective algorithm . 32
4.2 Finding new points: Implementation . 34

4.2.1 Weight function . 35
4.2.2 Output constraints function . 35
4.2.3 Integrality constraints function . 37

4.2.4 Spatial function: Integration . 37
4.3 Adaptation to multiobjective . 38
4.4 DIRECT solver . 40

5 Implementation in RUSA 42
5.1 Original RUSA . 42
5.2 Additions to RUSA GUI . 42

5.2.1 Automated optimization . 43
5.2.2 Prediction model . 44

5.3 GUI - Algorithm interface . 44

6 Evaluating the algorithm 47
6.1 Single objective algorithm . 47
6.2 Output constraints . 47
6.3 Multiobjective . 49

7 Results: Evaluating Additions to RUSA 51
7.1 RUSA automated optimization . 51

7.1.1 Single objective: Relaxing some KPI constraints 51
7.1.2 Single objective: Using all KPI constraints 53
7.1.3 Multiobjective optimization . 54

7.2 RUSA prediction model . 55
7.3 RUSA: Rostering test case . 57

8 Discussion and future research 59
8.1 Algorithm construction . 59
8.2 Algorithm evaluation . 60
8.3 Evaluation of additions to RUSA . 60

References 64

A Test cases 66

B KPI plots 66

C Best solutions found 68
C.1 Pairing . 68
C.2 Rostering . 68

D Plots of Prediction model error 69

E ZDT multiobjective test functions 70

F Rostering: Comparing best solution with Matador standard 71

1 INTRODUCTION AND PROBLEM DESCRIPTION

1 Introduction and problem description

This is a Master’s Thesis for the degree Master of Science in Engineering Mathematics at
Chalmers University of Technology. The project has been performed at Jeppesen Systems in
Gothenburg during spring and summer of 2010. At Jeppesen Systems software is produced
to optimize, among other things, pairing and rostering optimization problems as a part of the
crew planning for the airline and railway industry. The problems to be solved are modeled as
generalized set partitioning problems with constraints determined by rules set by the union and
legislation but also by the airline itself. The constraints arising from legislation and the union
are considered fixed whereas the rules and parameters set by the airline can be changed to e.g.
minimize cost. There are more than a hundred set of rules and parameters determined by the
airline, so an exhaustive search, trying to find the best parameter setting, is impossible due to
the combinatorial explosion and costly simulations. Therefore, in determining which parameter
values to choose, experience and empirics must be used to determine which parameters has the
most effect on e.g. the cost. The scope of this thesis concerns just this: attempting to automate
and facilitate the selection of good parameter values.

The outline for this thesis is as follows. In the remainder of this section the airline planning
process and terminology is presented, leading up to a black-box optimization problem. This
optimization problem is characterized mathematically and some related research is discussed.
Further, a mathematical model for this optimization problem is introduced. Moreover, the
general requirements on the algorithm are discussed as well as the specified goal of the master
thesis work. In Section 2 some mathematical theory is presented giving the reader a background
to the discussion that follows. Topics such as multiobjective optimization, surrogate modeling,
merit functions and experimental design are discussed. In Section 3 the different parts of the
algorithm, which is implemented in this thesis, are presented, using and further discussing the
theory in Section 2. Further, Section 4 presents the algorithm implementation: how the parts in
the previous sections are pieced together into an algorithm as well as some discussion regarding
implementation. In order to use the algorithm on Jeppesen’s pairing and rostering problems it
is implemented into a GUI which is described in Section 5. Lastly, in Section 6, Section 7 and
Section 8 some numerical results are presented and discussed.

1.1 About Jeppesen

Jeppesen Systems AB is a subdivision of Jeppesen which is a subsidiary of Boeing Commercial
Aviation Services. Until 2006, when bought by Jeppesen, Jeppesen Systems AB was an inde-
pendent company called Carmen Systems AB which is a name that can still be seen for example
in names of products. In this report Jeppesen will refer to Jeppesen Systems AB. Jeppesen
Systems AB has its headquarters in Gothenburg with approximately 300 employees and this is
also where the work for this thesis has been carried out.

Jeppesen Systems AB is a software company developing products mainly for optimizing plan-
ning and scheduling for the airline and railway industry with emphasis on the airlines. As much
as 25 % of the world’s airline crews are in some way scheduled using Carmen software [Gus09].
Jeppesen was also given the prestigious Edelmann Award in 2000 for their work on making the
handling of flight maps more efficient as well as the INFORMS Prize in 2010 for outstanding
organization-wide use of operations research throughout the company [Gus09, INF10].

1.2 Terminology

The airline industry has its own terminology. The most basic unit in a schedule is a leg which is
a non-stop flight from one airport to another. A flight is both a commercial and administrative

1

1.2 Terminology 1 INTRODUCTION AND PROBLEM DESCRIPTION

concept but in the administrative sense a flight consists of (usually) one or several legs and it
has a unique combination of flight carrier and flight number per day.

A sequence of legs constituting a day’s work for a crew member (i.e. work between rest
periods) is called a duty. A sequence of duties beginning and ending at the same base is called
a trip or a pairing where a crew member always must start and end at its home base. As an
example SAS has several home bases, where CPH, ARN and OSL are the three largest ones.

From these trips a crew member’s individual schedule is created, called roster. This specifies
which trips that are assigned to the particular crew member as well as vacation, training, reserve
duty etc. The schedules are given to the crew usually 2-6 weeks in advance depending on the
airline.

If legs do not match up in the roster, meaning that the end of a flight is not at the same
airport as the start of the next, transit is required. This transit is called deadheading and can
be done by train, taxi or airplane. If the deadhead takes place with another airline’s flight, it
is usually called an OAG1 flight. The deadheading, or OAG, is planned as a passive leg in the
crew’s roster [Jep].

1.2.1 Airline planning

The overall method for planning is rather well established in the airline community. Presented
somewhat simplified it consists of the following six steps

1. Timetable construction

2. Fleet Assignment

3. Tail Assignment

4. Crew Pairing

5. Crew Rostering

6. Crew Tracking / Day of Operation

where the output from step 1 serves as input for step 2 and so on. Usually, each step is treated
as a separate optimization problem. However, the trend is that a pure step-by-step optimiza-
tion method is avoided more and more since that may lead to sub-optimization. Information
from subsequent steps are needed earlier in the planning process in order to achieve good re-
sults. Therefore, a current topic of research is to integrate two or more steps into a new, single
optimization problem.

The timetable is usually created one year in advance where the previous traffic patterns as
well as estimates of passenger demand to and from airports are considered. This is done trying
to maximize passenger revenue with the constraints given by the available aircrafts and the
timeslots available at the airports.

An airline usually has several kinds of aircrafts (fleet) taking different number of passengers,
requiring different number of crew etc. The fleet assignment problem is the task of matching
the aircraft types to the different legs to maximize profit. This is done taking into consideration
passenger demand on certain legs. In tail assignment a particular aircraft is assigned to each
flight, giving each aircraft a “personal” schedule where also maintenance requirements need to
be considered.

The crew planning problem is considered to be a very hard problem. It is therefore split into
two parts: crew pairing and crew rostering. In crew pairing, trips (also referred to as pairings)

1OAG = Official Airline Guide

2

1.2 Terminology 1 INTRODUCTION AND PROBLEM DESCRIPTION

are created from legs. All trips should together cover every leg to its crew need: different flights
need different number of crew e.g. some airplanes require one flight attendant, one purser,
one pilot and one co-pilot whereas other require additional crew. The trips are anonymous,
meaning that they have not yet been assigned to any particular crew member. In order to make
a good paring, information about the crew is needed: the number of crew, their home bases etc.
Assigning the trips to crew members is the major task in crew rostering. Also other activities
such as vacation, training, reserve duty etc. are assigned to crew members.

All planning steps 1 to 5 are finished at least two weeks before operation and in an ideal
world the planning would end there. However, people get sick, flights are delayed etc. which
require changes in the planning. This is done from roster publication to the day of operation
and is called Crew Tracking. Then there is “Day of Operation” which includes the real-time
changes during operation.

The general planning process described is rather well established as mentioned earlier and
therefore it is also used in the Carmen software produced by Jeppesen. There are a lot of
software and code required for each of the planning steps, and at Jeppesen, the most important
GUI used to connect to all their software routines, is called Studio. In Studio there are tools
for importing timetables and OAG files, building rotations, switching rules on and off, changing
parameters, building/modifying duties, creating reports etc.

This thesis concerns the crew planning, hence the crew planning steps: pairing and roster-
ing. There are different optimization solvers for the pairing and rostering problems that utilize
their specific structure. A relevant model to introduce for these problems is a generalized set
partitioning model:

min f = cTv,

s.t Av = 1m̄ (1a)

h(v) ≤ 0k̄ (1b)

v ∈ {0,1}n̄, (1c)

with the objective coefficients cj, binary variables v = (v1, . . . ,vn̄), binary constraints matrix A
and function h(v). Ignoring constraints (1b), the classic set partitioning problem is obtained
which is very well studied [BP76, FK90, GS09].

In simplified terms both the pairing and rostering problems can be modeled as generalized
set partitioning problems. For example, the pairing problem can be described as follows: Given
n̄ trips and m̄ legs, introduce variables vj ∈ {0,1} where vj = 1 if trip j is used and vj = 0
otherwise. Each trip has a cost cj and it is of interest to minimize the cost function cTv. Each
trip has to be covered exactly once so the m̄× n̄ constraint matrix A = {aij} is created where
aij = 1 if leg i is a part of trip j and 0 otherwise. The number of columns in A is typically huge
and hence the columns can normally not be completely enumerated, requiring solution methods
where enumeration is not performed. One such method that is widely used is column generation.
Further, there are also other constraints, given by (1b), that are added. An example of such
constraints are base constraints which can be obtained by putting h(v) = Bv − p. The base
constraints give limits on total amount of work produced by crew with a particular home base
where p is the limit on the base production [Gus99].

In theory the pairing problem is modeled as a generalized set partitioning problem but for
implementation it is modeled as a generalized set covering problem, hence allowing more than
one crew on each position on the flights. In doing so, among other things, more flexibility
is allowed with respect to deadheads and it gives faster convergence for most larger problems
[Gus99]. The generalized set covering problem can be formulated as in (1) but with (1b) replaced
by Av ≥ 1m̄.

3

1.2 Terminology 1 INTRODUCTION AND PROBLEM DESCRIPTION

The rostering optimization problem can also be formulated as a generalized set partitioning
problem, see (1), but rosters are chosen instead of trips, and they are chosen in such a way that
all trips are covered exactly once, together with other tasks such as reserve duty and training
[KK04].

1.2.2 Rules and parameters

For an airline there are thousands of rules and regulations that must be considered when schedul-
ing the crew. There are different kinds of rules determined by the government, union and the
airlines themselves. The first kind, legal rules, determined by the government usually concerns
safety, requiring that the crew have sufficient rest and the right training. Union rules usually
try to improve the social quality of the crew, for example not allowing too long trips so that
crew do not have to stay away from home base for too long. The rules and parameters set by
the airlines are used to improve the quality of the solution. For example, the pairing optimizer
has a tendency to produce longer trips since it increases productivity. However, longer trips
are harder to fit into good rosters. Therefore the airline sets a limit on how long trips can be
since they know empirically that the end cost will be higher if they do not. The rules set by the
airlines are usually on/off; like “no more than 4 aircraft changes per duty”, but they also have
parameters that can be tuned to find the best solution2. Also the penalties discussed later fall
into the class of parameters.

For the Pairing case, the rules determine if a pairing is legal, where a legal pairing corresponds
to one column in the constraints matrix A in (1). Therefore not all possible combinations of
legs will constitute a column in A, however, the number of legal pairings is usually still huge,
rendering enumeration impossible or at least impractical.

What is the best solution is something that can be discussed and there are three main aspects
that have to be taken into account: social quality, stability and the real cost. Social quality are
characteristics of a trip that a large majority of the crew members consider good, such as no
repetitive duties in a trip, no long connection times, not more than one early start in a trip etc.
Stability means that the roster is not very sensitive to delays and other changes. Stability is
increased by for example making sure that the connection time between legs is not too short and
that there are no aircraft changes within a duty [Jep]. These measures of quality are quantified
by Key Performance Indicators.

1.2.3 Key performance indicators

For the Pairing in the Carmen Products, a solution is evaluated by Key Performance Indicators
(KPIs) which measures different aspects of quality, stability and cost, for example

• Total Cost

• Deadhead Time

• Aircraft Changes

• Duty Time Per Working Day

• APC3 Total Rule Cost

2Also rules can be tuned but it is not as common. However, it might not be known whether a rule should say
“no more than 4” or “no more than 5 aircraft changes per duty”. Then the p in the rule “no more than p aircraft
changes per duty” can be seen as a parameter corresponding to the rule in question.

3APC=Automated Pairing Construction

4

1.3 Problem description 1 INTRODUCTION AND PROBLEM DESCRIPTION

The Total Cost is usually the KPI that is minimized and it includes what is called real costs and
soft costs. The real costs are real world costs such as duty-day costs, hotel nights, OAG costs,
overtime costs etc. The soft costs are penalties for lack of quality and poor stability including
short connection penalty, excessive aircraft change penalty etc.

The costs are measured in the fictive currency Carmen dollars. If a rule may be violated but
it is preferred that it is not, it should be seen as a quality issue and be a penalty instead. For
example, the rule “do not allow crew change after charter flights” could be seen as the penalty
“crew change after charter flights should be penalized by 5000 Carmen $” [Jep]. Penalties and
rules are usually combined e.g. 1 aircraft change per duty is okay where the penalty is linearly
or nonlinearly increased for 2, 3 and 4 aircraft changes per duty and a rule is set that there
cannot be more than 4.

So consider the real costs Hj for a trip j as well as the parameters/rules rk, k = 1,2, . . . ,M,
then the cost cj for trip j as given in (1) can be seen as composed of Hj as well as the penalty
functions ψk for the parameters/rules rk:

cj = Hj +

M
∑

k=1

ψk(rk).

The penalty function ψk increases when approaching undesirable values for parameter/rule rk
and when an absolute rule is set, e.g. rk ∈ Z must not exceed 4, then ψk = ∞ for rk > 4.

1.3 Problem description

As described earlier, the task of setting values for parameters to achieve the best solution is a
difficult problem and experience and empirics must be used. The scope of this thesis concerns
the automation of this and the goal of the project is two-folded. The goal involves the parts
Parameter Tuning and Prediction Model, namely

Parameter Tuning

• Tune in parameters for shorter simulation times/better quality.

• Give “the best” parameter setting for a given Carmen crew optimization problem.

Prediction Model

• Create a prediction model to determine the KPI values (e.g. cost) for any set of parameters
without any additional expensive evaluations.

For the parameter tuning there are some requirements and restrictions which highly deter-
mine which methods to use. First, a number d of parameters are chosen and bounds are set
for them, creating the search domain Ω. The number of parameters usually should not exceed
d = 10. Some of the d parameters are integer valued, some are binary and some can be seen as
continuous.

One KPI shall be chosen as an objective function to be minimized although support for two
or more KPIs as objectives would be good. With the objective(s) chosen there may be more
KPIs that there is no interest in minimizing but only keeping within some bounds, call them
KPI constraints or output constraints. It should be possible to choose a number η of those KPI
constraints and set their bounds constituting their range4 D. Then the feasible solutions should
have the corresponding KPI constraints’ values within the bounds D.

Given this the goal for the Parameter Tuning can be reformulated as:

4The most commonly used definition of range is adopted where for f : U → V the range is f(U), hence the
image of U under f .

5

1.4 Costly global optimization 1 INTRODUCTION AND PROBLEM DESCRIPTION

(I) Give the lowest value(s) for the KPI objective(s) in the bounded parameter domain Ω
given that the KPI constraints are within the bounds D.

In addition, no assumptions can be made concerning the objective KPI(s) nor the KPI constraints
when it comes to monotonicity or any other structural information.

The parameter tuning and the prediction model shall be implemented in RUSA (RUle Sen-
sitivity Analysis), a program written as a thesis project in 2008 by Joel Driessen [Dri08]. The
programming language used in RUSA is Python hence in order to incorporate the additional
code into RUSA it should preferably be in Python. The implementation must also allow for
parallel function evaluations. The requirements for the GUI features for the additions to RUSA
are discussed in Section 5.

So, a quick review of the requirements and limitations:

1. d parameters with user-defined upper and lower bounds constituting Ω.

2. Some dimensions are integer valued, others are continuous.

3. One KPI as objective but preferably providing support for more.

4. KPI constraints within user-defined bounds D.

5. No assumptions about the objective KPI(s) nor the KPI constraints.

6. Implementation in RUSA (Python).

7. Parallel computations must be used.

1.4 Costly global optimization

Problem (I) described in Section 1.3 can be classified as an expensive black-box optimization
problem. Information about the objective is only given through sampling and every evaluation
of the objective is expensive with respect to CPU time. Further, there are black-box constraints
where information is also only given through sampling. The black-box (KPI) constraints are
given by an upper bound ui and a lower bound li where the upper bound can be infinity. The
parameter domain Ω is also given by finite box-constraints and some dimensions are integer
valued.

Given this, the problem at hand can be classified as a mixed-integer costly (expensive) global
black-box nonconvex problem with nonlinear black-box constraints. Introduce the following sets:
I = {i : 1 ≤ i ≤ η} and J = {j : 1 ≤ j ≤ d} where d is the dimension of the parameter domain
and η is the number of output constraints. Then the problem can be formulated mathematically
as

min f(χ1, χ2, . . . , χd)
s.t. li ≤ gi(χ1, χ2, . . . , χd) ≤ ui, i ∈ I

lvj ≤ χj ≤ uv
j , j ∈ J

χj ∈ Z ∀j ∈ I (2)

where li ≤ gi(χ1, χ2, . . . , χd) ≤ ui, i ∈ I are the black-box constraints, in this thesis also called
output constraints or KPI constraints depending on the context. The decision vector

χ = (χ1, χ2, . . . , χd) ∈ Rd (3)

is bounded by box-constraints and the parameters whose indices are given by I are integer
valued, I = {j : χj ∈ Z}. A solution with e.g. χj = 4 corresponds to the jth parameter having
a value 4.

6

1.4 Costly global optimization 1 INTRODUCTION AND PROBLEM DESCRIPTION

Denoting the box-constrained set of decision vectors by

Ω = {χ = (χ1, . . . , χd) : lvj ≤ χj ≤ uv
j , j ∈ J }, (4)

where the superscript v stands for variable, the set of feasible output constraints vectors by

D = {g(χ) = (g1(χ), . . . , gη(χ)) : li ≤ gi(χ) ≤ ui, i ∈ I}, (5)

the set of feasible decision vectors taken into account integrality and output constraints by

ΩID = {χ = (χ1, . . . , χd) ∈ Ω : χj ∈ Z ∀j ∈ I, g(χ) ∈ D}, (6)

the problem can be written on a more compact form:

χ
∗ = arg min

χ∈ΩID f(χ). (7)

The task of global optimization is to find the set of parameters in the feasible region ΩID for
which the objective function obtains its lowest value. In other words χ

∗ is a global optimizer
to (2) if f(χ∗) ≤ f(χ) for all χ ∈ ΩID. On the other hand χ̂ is a local optimizer of (2) if
f(χ̂) ≤ f(χ) for all χ ∈ ΩID in some neighborhood of χ̂. When the objective has several local
minima there could obviously be minima that are local but not global and hence local search
methods are bound to get stuck. Therefore some global search method is needed to find the
global minimum with some level of reliability.

It should be noted that in (2) nothing says that the feasible domain without the integrality
constraints, {χ ∈ Ω : g(χ) ∈ D}, is connected which complicates things since proofs of conver-
gence for many methods are based on compactness of the domain and that a generated sequence
of points is dense in the domain [Gut01, RS05, HQE08]. However, generating even close to a
dense set of points within reasonable time with an expensive objective function is impossible.
Even so, a non-connected feasible domain is always harder to optimize over in general. It is not
given that the objective function f(χ) is continuous although it is approximated as such since
otherwise the problem is a lot harder to solve.

In order to solve (2) a method is needed for problems where

1. The computation of f(χ) is very expensive.

2. The function is a black box; hence no analytical derivatives are available.

3. The search domain is subjected to box constraints and nonlinear black-box constraints.

4. Some dimensions are integer valued.

5. The method should rather easily be extended to multiobjective optimization.

The optimization of expensive black-box functions is a challenging problem and several ap-
proaches have been suggested in the literature. The larger parts of them are based on response
surface techniques, most of which need to utilize every computed function value. An excellent
review of the most important development is given by Jones in [Jon01].

Many surrogate methods have been developed using statistical approaches, called Kriging,
see e.g. [Gut01, JSW98] where the basics are discussed in Section 2.1.3. There are also methods
based on radial basis function interpolation, RBF methods, first discussed in [Gut01, Pow99].
The idea of the general RBF algorithm is to create a surrogate model of the expensive black-box
function using evaluated points and then use merit functions to find new points to evaluate.
The merit function, depending on the surrogate, is inexpensive to evaluate and to optimize the

7

1.4 Costly global optimization 1 INTRODUCTION AND PROBLEM DESCRIPTION

merit function an external global optimization solver is usually used. If there are e.g. non-linear
and integrality constraints involved it is common to use an external global optimization solver
that can handle non-linear and integrality constraints. Expensive constraints can be treated by
adding them to the objective function in the following way [HQE08, Qut09]

f̂(χ) = f(χ) +
∑

i∈I

wi max {0, gi(χ) − li, ui − gi(χ)} , (8)

and minimize f̂(χ) instead of f(χ) where wi are weights and li and ui are lower and upper
bounds respectively for output constraint i. The difficulty for the problem in this thesis is that
the constraints are expensive but they are also black-box, hence no knowledge of them are given
beforehand and every estimation of them are rough at best. Also no commercial solvers, such as
the global optimization solvers in the TOMLAB package, can be used due to licensing reasons.

A few methods from the literature are the Efficient Global Optimization Algorithm (EGO)
[JSW98] which uses the Kriging framework and so does Gutmann’s bumpiness minimization
method [Gut01]. Examples of methods using radial basis functions are CORS [RS05] and the
qualSolve algorithm [JPRW09]. The three methods mentioned last are discussed in more detail
in Section 2.

There are also methods based on pattern search such as the Generalized Pattern Search
(GPS) algorithm [Tor97] and the Mesh Adaptive Direct Search (MADS) method [AJD06, AO06]
which is an extension of the former.

The surrogate modeling method adopted in this thesis is the method of radial basis functions.
The algorithm includes surrogate modeling, merit functions as well as experimental design and
these are the subjects discussed in Section 2.

8

2 THEORY AND BACKGROUND

2 Theory and background

In this section some theory and background is presented that is used when constructing the
algorithm. Different approaches are presented and discussed and these will be the base for the
choice in the algorithm implementation.

This section is more mathematical in nature with emphasis on theory and background and
reading it will give much insight into the choices made in the following sections. However, for
the casual reader it is not necessary to thoroughly study this section in order to enjoy the rest
of the thesis. Instead, when required in the subsequent sections, this section can be used as a
reference.

First, in Section 2.1 two versions of surrogate modeling are presented where emphasis is on
the RBF interpolation. That is followed by Section 2.2 discussing different ways of creating
merit functions: one-stage and two-stage methods as well as three examples of merit functions
where the Quality function is the one of most interest. In Section 2.3 some experimental design
techniques are discussed and in Section 2.4 the topic is the global optimization solver DIRECT.
From these approaches, the parts most suitable for problem (I) in Section 1.3 are selected and
in some cases further discussed, which is described in Section 3.

2.1 Surrogate modeling

A surrogate model, or response surface, is an interpolation of sampled points, predicting the
costly function for points not yet sampled. Jones [Jon01] discusses that non-interpolating sur-
faces such as fitted quadratic surfaces are unreliable because the function may not sufficiently
capture the shape of the function. Instead it is better to interpolate the data and for that there
are two widely used methods: Radial Basis Functions and the Kriging method (DACE).

2.1.1 Interpolation of scattered data in R
Interpolating data is the task of constructing new data points within the range of a discrete
set of known data points, or put in a different way, finding a function that corresponds to
the data for some discrete set of points. More formally it can be stated that given points
X = {x1, x2, . . . , xn} in R and corresponding function values f = {f1, f2, . . . , fn}, a function
P (x) (e.g. in C0) is sought such that

P (xk) = fk,∀k ∈ {1,2, . . . ,n}.

Since the set of continuous functions is an infinite dimensional function space interpolation is
not at all unique, but limiting oneself to one dimension and e.g. the space of polynomials of
degree less than n, denoted Πn−1, then uniqueness holds. For Πn−1 it is given that for points
x1, x2, . . . , xn ∈ R the following holds

P (xk) =
n
∑

l=1

clx
l−1
k ,∀k ∈ {1,2, . . . ,n}

which is equivalent to solving the linear system Âc = b where Âkl = xl−1
k , bk = fk and c =

(c1, . . . , cn) is the vector of coefficients. Since Πn−1 is isomorfic to Rn there is a unique solution if
and only if all points xk are distinct. The function space Πn−1 has several desirable properties,
especially that it is independent of the points {xk}. Although this approach gives a unique
solution it is not practical to use in implementations since the polynomial order increases with
the number of points and that usually leads to large oscillations.

9

2.1 Surrogate modeling 2 THEORY AND BACKGROUND

A more appealing approach which avoids the problem mentioned is the use of splines where
piecewise polynomial functions are used to interpolate the data. Any order of the splines can be
used but cubic splines are a common choice. Consider points a = x1 < x2 < . . . < xn = b and
the intervals Jk = [xk, xk+1] where the polynomials are defined on each of these intervals. With
a function space

S3(X) = {S ∈ C2((a,b)) : S|Jk
∈ Π3(R), k = 1,2, . . . , n}

the problem can be formulated as finding S(x) ∈ S3(X) such that S(xk) = fk, k ∈ {1,2, . . . ,n}.
This function space however is not independent of the set of points X. Moreover, with n points,
hence n− 1 splines each with four degrees of freedom, there are 4(n − 1) degrees of freedom in
total. At each inner node, constraints are set for the function values as well as first- and second
derivatives in order to ensure that S ∈ C2((a,b)). Therefore S3(X) is an n + 2 dimensional
function space, but the data only gives n degrees of freedom, hence the problem is not uniquely
solvable. There are different ways of modifying the function space to ensure that a unique
solution exists. With the conditions that the second derivative is zero at the end points, the
Natural Cubic Spline (NS3(X)) is given and another condition is the so-called ”not-a-knot”
condition: d3S/dx3 = 0 for x ∈ {x2, xn−1}.

In comparison, the function spaces S3(X) and NS3(X) are not location independent which
is a drawback compared to Π3, however there are no large oscillations. In trying to extend this
to higher dimensions there are several discouraging problems e.g. ordering the points can be
done using triangles in two dimensions but even for that case the order of the function space is
generally unknown. This method is obviously not suitable for higher dimensions although there
are ways to reformulate the natural spline problem.

Natural cubic spline interpolants to functions in one variable are given as a solution to a
variational calculation. Powell [Pow92] shows that given data X = {xk : k = 1,2, . . . ,n} and
{f(xk) : k = 1,2, . . . , n} and a function S(x) with a square integrable second derivative such
that f(xk) = S(xk), k = 1,2, . . . ,n, then

B(S) =

∫ ∞

−∞

[

S′′(x)
]2
dx (9)

is minimized under the interpolation requirements f(xk) = S(xk), k = 1,2, . . . ,n if and only if
S(x) has the following form

S(x) =

n
∑

k=1

λkφ(|x− xk|) + p(x)

where
n
∑

k=1

λk =
n
∑

k=1

λkxk = 0

and where φ(r) = r3, r ≥ 0 and p(x) = âx+ b̂. This discussion can be generalized further and it
leads us to consider multivariate splines using radial basis functions. The expression for B(S) in
(9) is a measure of how much the function S(x) is alternating since S′′(x) denotes the curvature.
Minimizing a measure of the curvature will give a non-bumpy surface.

2.1.2 Interpolation and approximation using RBF

A radial basis function is a function φ(x) = φ(||x||): hence φ is a function of the Euclidean
distance to the origin only, φ = φ(r). The radial basis function interpolation problem is as

10

2.1 Surrogate modeling 2 THEORY AND BACKGROUND

follows. Let x1, . . . ,xn ∈ Rd be any given set of pairwise different points with corresponding
data f1, . . . , fn ∈ R where n and d are any positive integers. We seek a function S(x) that
interpolates the data {(xi, fi) : i = 1,2, . . . , n}, hence that satisfies

S(x) =

n
∑

i=1

λiφ(||x − xi||), x ∈ Rd

S(xi) = fi, i = 1,2, . . . , n

(10)

or equivalently Φλ = b where Φij = φ(||xi −xj||), bi = fi and λ = (λ1, . . . , λn). The coefficients
λi are real numbers and the norm || · || is the Euclidean norm in Rd. The matrix equation
Φλ = b can be solved uniquely to determine the vector λ if and only if Φ is invertible. Since Φ
depends on the radial function φ it is safe to assume that the invertability of Φ depends on the
choice of radial function. In order to find necessary restrictions on the function space to ensure
a unique solution, some definitions are introduced.

Positive definiteness
A continuous function Φ̃ : Rd ×Rd → R is positive definite if for every set of pairwise different
points x1, · · · xn and every c = (c1, · · · , cn) ∈ Rn\{0} it holds that

n
∑

i,j=1

cicjΦ̃(xi,xj) > 0. (11)

By choosing Φ̃ as a positive definite radial function it holds that Φ̃(xi,xj) = φ(||xi − xj||) and
hence

cT Φc =

n
∑

i,j=1

cicjφ(||xi − xj ||) > 0 (12)

where Φij = φ(||xi − xj ||) are the elements of the positive definite matrix Φ.
It is only necessary to consider the positive definite case since if cT Φc < 0 then −cT Φc > 0

hence then −Φ is positive definite. Ensuring that a matrix is positive (negative) definite also en-
sures that the matrix is invertible and hence the radial basis function interpolation has a unique
solution. In developing a criterion for positive definiteness for radial functions the concept of a
completely monotone function is required.

Completely monotone [Mic86, Fas03]
A function ϕ : [0,∞) → R which is in C[0,∞) ∪ C∞(0,∞) and which satisfies

(−1)lϕ(l)(r) ≥ 0, r > 0, l = 0,1,2, · · ·

is called completely monotone on [0,∞)

Criterion for positive definiteness for radial functions [Fas03]
A radial function ϕ is completely monotone on [0,∞) if and only if ϕ(|| · ||2) is positive definite
on Rd for all d.

This criterion can easily be used to determine which radial functions that are positive definite
and it is easy to show that the previously mentioned spline r3 is not. In order to extend the
family of functions that can be used as interpolates, the requirement of positive definiteness is
relaxed and the concept of conditional positive definiteness is introduced.

11

2.1 Surrogate modeling 2 THEORY AND BACKGROUND

Conditional positive definiteness [Mic86]
A continuous function Φ̃ : Rd ×Rd → R is conditionally positive definite of order m if for every
set of pairwise different points x1, · · · xn and every c = (c1, · · · , cn) ∈ Vm\{0} it holds that

n
∑

i,j=1

cicjΦ̃(xi,xj) > 0

where

Vm =

{

c ∈ Rn :

n
∑

i=1

cip(xi) = 0, ∀p ∈ Πm−1(Rd)

}

.

(13)

By choosing φ such that Φ̃(xi,xj) = φ(||xi − xj ||) then φ is conditionally positive definite if the
same holds for Φ̃.

By using a conditionally positive radial function φ in creating the splines, positive definiteness
can only be ensured for λ ∈ Vm hence the matrix Φ can become singular for λ /∈ Vm. Therefore it
is necessary to reformulate problem (10) to ensure that a unique solution exists. The formulation
is as follows [Pow92]. Given any set of pairwise different points x1, . . . ,xn ∈ Rd and data
f1, . . . , fn ∈ R find λ ∈ Rn and µ ∈ Rm̂ such that

S(x) =

n
∑

j=1

λjφ(||x − xj ||) +

m̂
∑

k=1

µkpk(x), x ∈ Rd

S(xi) = fi, i = 1,2, . . . , n
n
∑

i=1

λipk(xi) = 0, k = 1,2, . . . , m̂

(14)

where m̂ is the dimension of Πm(Rd) and p1, · · · , pm̂ are the basis of the space Vm. Let P be
the matrix

P =

p1(x1) · · · pm̂(x1)
...

...
p1(xn) · · · pm̂(xn)

(15)

then Vm is the space of all c ∈ Rn that satisfy P Tc = 0m̂ and (14) can be written as a system
of equations

(

Φ P
P T 0m̂×m̂

) (

λ
µ

)

=

(

f
0m̂

)

(16)

where Φij = φ(||xi − xj ||) and Pij = pj(xi) and for a unique solution, the matrix

A =

(

Φ P
P T 0m̂×m̂

)

∈ R(n+m̂)×(n+m̂) (17)

is non-singular. We seek a condition on P (or actually on the set of points X) upon which A is
non-singular and hence for which it can be proven that a unique solution exists. For that the
notion of point set unisolvence is introduced.

Unisolvence
The points X = {x1, . . . ,xn} ⊂ Rd with n ≥ m̂ = dimΠm(Rd) are called Πm(Rd) unisolvent if
the zero polynomial is the only polynomial from Πm(Rd) that vanishes at all of the points in X.
For example, assume that

∑m̂
i=1 µipi(x) ∈ Πm(Rd) and that

∑m̂
i=1 µipi(x) = 0 ∀x ∈ X then it

12

2.1 Surrogate modeling 2 THEORY AND BACKGROUND

follows that µi = 0 for i = 1,2, . . . ,m̂.

A is invertible
Consider (λ, µ)T in the nullspace of A. Then it follows that

Φλ+ Pµ = 0n,
P Tλ = 0m̂,

(18)

and if λ = 0n, µ = 0m̂ then the nullspace of A is the empty set and hence A is invertible.
Multiplying the first row of (18) with λT gives

0 = λT Φλ+ λTPµ = λT Φλ+ (P Tλ)Tµ

and since P Tλ = 0m̂ it follows that λT Φλ = 0. Moreover, since Φ is conditionally positive definite
it must be that λ = 0n. This gives Pµ = 0n and hence

∑m̂
i=1 µipi(xk) = 0 for k = 1,2, · · · , n.

Since
∑m̂

i=1 µipi(x) ∈ Πm−1(Rd), if requiring the set of points X to be unisolvent, then from the
definition of unisolvence it follows that µ = 0m̂.

From this a theorem can be constructed which has already been proven above:

Theorem (Unique solution for interpolation problem)
Suppose φ is conditionally positive definite of order m and X is Πm−1(Rd) unisolvent. Then
(16) is uniquely solvable.

Choosing radial basis functions
Up until now the focus has been on the requirements on the set of points X and on the radial
function φ(r) that ensure a unique solution to the interpolation problem. Thus far it has not been
shown which form the radial functions can have and in which space the corresponding polynomial
lies. The radial basis function φ(r) must have a shape that provides good interpolation results
while at the same time be conditionally positive definite to ensure a unique solution to the
interpolation problem. Common choices of φ are shown in Table (1) and the polynomial degrees
are justified below.

Table 1: Different choices of radial basis functions

RBF φ(r) > 0 p(x) m0 = dim(p(x))

Cubic r3 âTx + b̂ 1

Thin plate spline r2 log r âTx + b̂ 1

Linear r b̂ 0

Multiquadratic
√

r2 + γ2, γ > 0 b̂ 0
Gaussian exp (−γr2), γ > 0 0 -1

Recalling the definition of Vm from (13) we formally denote V0 = Rn and hence Π−1 = {0}.
Obviously Vm+1 ⊂ Vm for all m ≥ 0. Powell [Pow92] shows that in the cubic and thin plate
spline cases

cT Φc > 0 ∀c ∈ V2\{0},

in the linear and multiquadratic cases

cT Φc < 0 ∀c ∈ V1\{0},

13

2.1 Surrogate modeling 2 THEORY AND BACKGROUND

and in the Gaussian case
cT Φc > 0 ∀c ∈ Rn\{0}.

Define m0 to be 1 in the cubic and thin plate spline case, 0 in the linear and multiquadratic cases
and -1 in the Gaussian case. After choosing a form of φ, let m be an integer such that m > m0,
then φ is conditionally positive definite of order m and hence (14) is uniquely solvable as long as
X is unisolvent. Table 1 shows a compilation of common radial functions with the corresponding
minimal polynomial order required to ensure conditional positive definiteness. With a unique
solution to (16) the surrogate is uniquely determined and it has the form

S(x) =
n
∑

j=1

λjφ(||x − xj ||) +
m̂
∑

k=1

µkpk(x), x ∈ Rd. (19)

2.1.3 Kriging method

Suppose the aim is to make a prediction about the value f(x̄) for some point x̄ in the domain.
Before sampling any points there will be an uncertainty about the value of the function at this
point. This uncertainty is modeled by saying that the value of the function at x̄ is given by
a normally distributed random variable Y (x̄) with mean µ and variance σ2. The correlations
between the random variables for points x1,x2, . . . ,xn are given by

Corr[Y (xi), Y (xj)] = exp

(

−
d
∑

l=1

θl|xil − xjl|
pl

)

, (20)

where xk = (xk1, xk2, . . . , xkd) and it is assumed that θl ≥ 0 and 0 < pl ≤ 2. Large values
of θl serve to model functions that are highly active in the lth variable and pl determines the
smoothness of the function in the lth direction.

The uncertainty about the function’s values at n points can be represented as Y = (Y1(x1),
. . . , Yn(xn))T . The distribution of Y depending on µ, σ, pl, θl, l = 1,2, . . . , d will characterize
how the function is expected to vary when moving in different directions. To estimate these
parameters, they are chosen to maximize the likelihood of the observed data according to the
likelihood function

1

(2π)n/2σn‖R‖1/2
exp

(

(f − 1µ)T R−1(f − 1µ)

2σ2

)

, (21)

where f = (f1, . . . , fn)T is the vector of function values and the i,j-th element of R is given by
(20). In practice it is the logarithm of (21) that is used to compute the parameters together with
equations for µ̂ and σ̂2 [Jon01]. Take a point x∗ with some guessed function value f∗ and make
it the n + 1th point. Further, calculate the parameters by maximizing the likelihood function.
These parameters reflect how the function varies as described earlier. Now, an augmented log-
likelihood function can be derived [Jon01] describing how consistent the point (x∗,f∗) is with
the observed variation. It is therefore rather intuitive that the prediction for f∗, the so called
Kriging predictor, is given by maximizing that augmented log-likelihood function. The Kriging
predictor has the following form

f̂(x∗) = µ̂+ rR−1(f − 1µ̂) (22)

where

µ̂ =
1TR−1f

1TR−11
, r =

Corr[Y (x∗), Y (x1)]
...

Corr[Y (x∗), Y (xn)]

(23)

14

2.2 Merit functions 2 THEORY AND BACKGROUND

and where R and f are as given earlier.

For x = (χ1, χ2, . . . ,χd), calling ϕ(x) = exp
(

−
∑d

l=1 θl|χl|
pl

)

then the ith element of r is

just ϕ(x∗ − xi) and denoting the ith element of R−1(f − 1µ̂) by λi and µ̂ = b̂ then it holds that

f̂(x∗) = b̂+

n
∑

i=1

λiϕ(x∗ − xi), (24)

which is a form similar to the form of the RBF surrogate in (14). However ϕ(u) 6= ϕ(‖u‖) for
any norm ‖ · ‖ unless pl = 1 ∀l = 1,2 . . . ,d (Null(‖u‖)={0} since θl ≥ 0 but subadditivity and
positive homogeneity only holds simultaneously if pl = 1 ∀l = 1,2 . . . ,d). Therefore ϕ(·) is not a
radial basis function, but it has a simliar form where ϕ(·) depends on the estimated parameters,
found as described earlier.

2.2 Merit functions

Merit functions use the interpolated surrogate function to find promising areas of the design
space to evaluate. The merit functions are not expensive to evaluate which is an advantage to
the costly black-box function.

Many forms have been suggested for merit functions and the main qualifications required
are that they guide the search towards unexplored areas of the search domain and/or towards
promising areas with low function values. A merit function that is purely global would choose
the point which is the furthest away from any other evaluated point, hence a space filling search.
This would not in general give an accurate value of the minima. The extreme on the other end
is always finding the minimum of the surrogate Smin. The surrogate approximates the costly
black-box function hence there is a build-in uncertainty that has to be considered when finding
new points. Therefore, always sampling the minima will render a purely local search and it is
therefore easy so get stuck in a local minima.

The key to success is combining these two sometimes contradictory requirements to explore
regions of the domain that have not yet been sampled and regions that have promising function
values. Here, three forms of merit functions are presented: Gutmann’s bumpiness minimization,
the CORS method as well as the Quality function where the emphasis for this thesis is placed
in the latter.

2.2.1 One stage/two stage methods

According to Jones [Jon01] surrogate based method for solving expensive global optimization
problems can be classified as either one-stage or two-stage, where most methods are two-stage.
In the first stage a surrogate model is fitted to the data, estimating the required coefficients.
Then in the second stage these coefficients are considered “true” and the surrogate surface is
used to compute new points. The potential pitfall with two-stage methods is that with an initial
sample the error in the surrogate could be large. Therefore, considering the model “true” may
lead to erroneous results such as searching too locally or stopping prematurely.

For one-stage methods the initial step of surrogate fitting is skipped and the two stages are
“merged” in some sense. The response surface mathematics is used to evaluate a hypothesis
about the location of the optimum. For example, the credibility of the hypothesis that the
model passes through a point x∗ with function value (target value) f∗ can be assessed through
observing the properties of the best-fitting response surface. Intuitively, the response surface
that gives the smoothest surface may be seen as the most probable although it depends on the
applications.

15

2.2 Merit functions 2 THEORY AND BACKGROUND

The first of the tree merit functions presented below is a one-stage method where the role of
the target value f∗ can be observed.

2.2.2 Target values - minimize bumpiness

The notion of bumpiness is motivated by the discussion around the definition of B(S) given in
(9). There it was noted that minimizing B(S) will minimize the overall curvature of the function
in some sense. To be precise, S′′(x) is a measure of the curvature and expression B(S) can be
seen as a semi-norm and a semi-inner product of the curvature of S(x),

B(S(x)) =

∫R[S′′(x)]2dx =
〈

S′′(x), S′′(x)
〉

= ‖S′′(x)‖.

A semi-norm ‖ · ‖ satisfies all the properties of a norm, except that ‖u‖ = 0 does not imply
u = 0. It can be shown [Gut01] that the radial function S for a given φ which satisfies (14) also
minimizes the semi-norm 〈g,g〉1/2 on the set of all functions g of the form (19) for a given φ that
satisfies g(xk) = fk, k = 1,2, . . . , n.

Given a set of sampled points X = {x1,x2, . . . ,xn} and an estimated target value f∗ we
want to find the point x∗ which most probably has the value f∗. For every x̄ /∈ {x1, . . . ,xn} an
RBF S(x) can be created that satisfies the interpolation conditions

S(xk) = f(xk), k = 1,2, . . . , n,
S(x̄) = f∗.

. (25)

The new point x∗ is chosen as the value of x̄ whose surrogate model minimizes the measure of
bumpiness B(S(x̄)). A target value f∗ should always be used that is lower than the minimum
of the surrogate model Smin. If the difference Smin − f∗ is large then the algorithm aims for a
big improvement hence a global search whereas for a low value a modest improvement will do,
rendering a local search.

Gutmann [Gut99] shows that minimizing B(S(x)) subjected to the interpolation conditions
(25) is equivalent to minimizing the utility function gn(x) defined as

gn(x) = (−1)m0+1µn(x)[S(x) − f∗]2, x ∈ Ω\X; (26)

hence x∗ = arg minx∈Ω\X gn(x). m0 is described earlier as the lowest polynomial order required
for conditional positive definiteness and µn(x∗) is the coefficient corresponding to x∗ of the
radial basis interpolation function solution L (Lagrangian function) which satisfies L(xk) =
0, k = 1, . . . , n, and L(x∗) = 1. More details can be found in [Gut99, Gut01] by Gutmann.

2.2.3 CORS method

In [RS05] Shoemaker and Regis introduce the CORS method, Constrained Optimization using
Response Surfaces to deal with expensive black box optimization. The CORS method aims
to find the minimum of a surrogate function given that you are a certain distance away from
previously evaluated points. Say that X = {x1,x2, . . . ,xn} are previously evaluated points,
then the maximum distance from any x̃ ∈ Ω to any point in X is

∆i = max
x̃∈Ω

min
xj∈X

‖x̃− xj‖.

Denoting the surrogate function in the ith iteration by Si(x) the problem can be formulated as
follows:

min Si(x)
s.t. ‖x − xj‖ ≥ βi∆i, ∀xj ∈ X

x ∈ Ω
(27)

16

2.3 Experimental design 2 THEORY AND BACKGROUND

where βi is a parameter 0 ≤ βi ≤ 1. If βi = 1 the maximin point is found and hence a global
search is conducted whereas with βi = 0 the minimum of Si(x) is found which constitutes local
search. The parameter βi is cycled through to balance global and local search. Problem (27)
is generally non-convex but the surrogate and constraints as well as their gradients are cheap
to evaluate and hence gradient-based optimization solvers can be used. Another option is to
run a global optimization method such as Constrained DIRECT (cf. Section 2.4) and refine by
starting a non-linear program solver from that point.

2.2.4 Quality function

As before, consider a set of points X = {x1,x2, . . . ,xn} sampled from the search domain Ω. In
[JPRW09] a merit function of the following form is suggested

Q(y) =

∫

Ω
(UX(x) − UX∪y(x))ω(S(x))dx, (28)

where
UX(x) = min

xi∈X
‖xi − x‖ (29)

is the space filling part, favoring parts of the domain not yet sampled and ω(S(x)) is a weight
function favoring parts with low surrogate values.

The merit function is called the Quality function and is a two-stage method where the weight
function can be altered to fit the requirements; hence it is potentially very flexible. The downside
is the integration which requires a substantial amount of computational power when going to
higher dimensions. However, the integral is justified by making it less favorable to be close to
the boundary of Ω. This is good since more information is given when creating the surrogate if
the points are not at the boundary of Ω but a certain distance away from it. In simple terms,
this non-attraction to the boundary can be explained by the fact that the integration causes the
fitness of a point to depend not only on the features of the points itself but also on the features
of the surrounding points. The contribution to the integral from the spatial part is largest at
the point y and then decreasing with increasing distance to y. In integrating around a point
that lies on the boundary of Ω, the neighborhood that lies outside of Ω will not contribute to the
integral hence making it a less favorable point when comparing with inner points of the domain.

2.3 Experimental design

All surrogate based algorithms need an initial set of points in order to get started. To build the
first interpolation surface, n ≥ d+1 points are needed where d is the dimension of the search space
Ω ⊂ Rd. The procedure of selecting initial points is often referred to as Experimental Design
and there are many different approaches. Here the methods of Random sampling, Maximin and
Latin Hypercube are discussed where the focus is on the latter.

In designing an experiment, a model is fitted to data given by evaluating the experiment at
a limited set of points X sampled from a domain Ω. One wishes to fit a model to the data that
approximates the real event in all of Ω with as small error as possible. Therefore great care has
to be taken when choosing the points X and it is important that, among other things, they are
well spread out, ensuring that every portion of Ω is sampled.

In [SdHSV03] two main criteria are discussed that are used to measure the quality of the
sampled points: space-fillingness and non-collapsingness where the first criterion is just what
has been described earlier. For the second criterion, when a parameter (dimension) has no
influence on the response of the output, two points that differ only in that dimension collapse,
meaning that they can be seen as the same point evaluated twice. With a limited amount of
evaluations, that should of course be avoided.

17

2.3 Experimental design 2 THEORY AND BACKGROUND

2.3.1 Random sampling

The simplest way of finding a set of n points X = {x1,x2, . . . ,xn} in Ω is to randomly pick n
points with a uniform probability distribution in Ω. However, this procedure cannot ensure that
the points are well distributed in Ω so some method is needed to keep them apart.

One simple method for doing so is illustrated in Figure 1. Points are picked at random from
Ω where a point is kept and added to X if it does not lie within any circle of radius R centered
round points in X. If R or n are large enough then this may be impossible but then points are
chosen that minimizes the overlap of the circles. In Figure 1(a) where R = 0.8 it is apparent
that two points exist such that their circles overlap with other circles. In Figure 1(b) where
R = 0.5 none of them overlap.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(a) Random sampling design with R =
0.8

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(b) Random sampling design with R =
0.5

Figure 1: Illustration of a random sampling design where intersection of the circles centered at
the points in X should be avoided.

This method gives a well spread out set of points if the radius R is estimated correctly where
the radius R has to be estimated depending on the domain Ω and the number of points n. In
generalizing to higher dimensions, an estimation of R requires the relation of the volume of Ω
to the volume of the hyper-sphere. The volume is given by

Vd(R) =
πd/2

Γ(d
2 + 1)

Rd =

πd/2

(

d
2

)

!
Rd, d even,

2(d+1)/2 π
(d−1)/2

d!!
Rd, d odd,

(30)

where d!! is the double factorial, d!! =
∏

i;0≤2i<d(d − 2i). From (30) it is apparent that the
coefficient depending on d vanishes as d → ∞ due to the factorial denominator and hence with
a fixed number of points then R must increase if d increases in order to ensure that the points
are well spread out. This can be illustrated in Figure 1(b) where R is too small and hence the
upper left corner is not covered. The estimation of R is the main drawback of this method.

2.3.2 Maximin

Suppose we want to sample n points in Ω, preferably with a good spatial distribution. This can
be done by maximizing the minimum distance between the n points. This can be formulated as

18

2.3 Experimental design 2 THEORY AND BACKGROUND

finding a set of points X that is given by the following optimization problem

max
X⊂Ω

min
0≤i<j≤n

‖xi − xj‖ ⇐⇒

max
x

d,

s.t. d ≤ ‖xi − xj‖, ∀i,j : 0 ≤ i < j ≤ n,
xj ∈ Ω, j = 1, 2, . . . , n.

.

Stinstra et.al. [SdHSV03] propose a method for solving this optimization problem by excluding
one point at a time and solving a sequence of smaller problems in order to find a point to add.
Also several points, preferably in proximity of one another, can be excluded simultaneously but
then the optimization gets more complicated. The most commonly used norms are l1, l2 and
l∞ and the maximin problem for the l2 norm can be illustrated in a similar way as in Figure 1.
From the nature of the l1 and l∞ norms, boxes are used instead of circles when the distribution
for those norms are illustrated as in Figure 1.

2.3.3 Latin hypercube design

The Latin Hypercube design was proposed by McKay et.al. [MBC79] and it can be viewed as
a d-dimensional extension of the Latin square sampling ([Raj68, BHH87]). As before n points
should be sampled from Ω in a “good” manner. We introduce the notion of stratified sampling,
meaning that parts of the domain are sampled individually. In stratified sampling all areas of the
space Ω are represented by input values. Ω is partitioned into I disjoint strata Ωi, i = 1,2, . . . , I
and random samples zij, j = 1, 2, . . . , ni are obtained from every Ωi. Then

∑

ni = n and if
I = 1 then random sampling over all of Ω is obtained.

With the Latin Hypercube Design (LHD) this is taken even further ensuring that each
dimension has all portions of its distribution represented by input values. The range of each
dimension is divided into n parts each of equal marginal probability, denote this sample Xk =
{zjk, j = 1,2, . . . n} for dimension k. Then for k = 1,2, . . . ,d a sample zjkk is picked at random
without replacement from Xk creating a point xj = (zj11,zj22, . . . , zjdd). This is done for j =
1,2, . . . ,n creating X = {x1,x2, . . . ,xn}.

The LHD has the non-collapsingness property meaning that projecting an n-point design
onto any factor, n different levels are given for that factor. If the output is dominated by only
a few factors this method ensures that those components are represented in a stratified manner
no matter what factors turn out to be important.

The LHD itself does not provide a set of well spread-out points as figure 2(a) shows. In this
figure the correlation is ρ = 1 and not only are the points not well spread out, they are also
non-unisolvent. In figure 2(b) a set of points X is shown where the correlation is close to zero,
ρ = −0.03 but the distance between the two points in the middle of the figure is not very large.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(a) A LHD in worst case scenario,
ρ = 1.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(b) A LHD with a small correlation,
ρ = −0.03.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(c) A Maximin LHD, ρ = 0.2.

Figure 2: The Latin Hypercube design with n = 6 points and Ω = [0,6] × [0,6] ⊂ R2.

19

2.4 DIRECT algorithm 2 THEORY AND BACKGROUND

There are procedures for finding good LHDs by minimizing the pairwise correlations or
by maximizing the inter-site distances. With a pure random sampling in all of Ω a small
correlation says nothing about the distribution ofX in Ω but it does for the LHD since it also uses
stratification. Although ρ is small the smallest inter-site distance need not be very large as seen
in Figure 2(b). In maximizing the inter-site distances the so-called maximin LHD [dHMHvD07]
is obtained which combines the maximin problem discussed earlier with the features of the LHD.
The maximin design in Figure 2(c) is taken from www.spacefillingdesigns.nl. The minimum
distance is maximized although the correlation is not very small, ρ = 0.2.

From Figures 2(b) and 2(c) it seems that there could be a trade-off between minimizing
correlation and maximizing inter-site distance or at least that the two are not always entirely
correlated. That observation turns out to be correct. Roshan and Ying [VH08] showed that
minimizing the pairwise correlations and maximizing the inter-site distances need not be in
agreement and instead suggest a multi-objective optimization approach providing good results
in terms of both the correlation and distance criteria.

Despite this, the method of just minimizing correlations provides good enough results, in
particular if additional points are sampled later.

2.4 DIRECT algorithm

In order to find the global minimum or maximum of a function over a domain, a global Opti-
mization solver is needed. The DIRECT (DIviding RECTangles) algorithm is such an algorithm
that was first introduced in [PJS93] motivated by a modification to Lipschitzian optimization.
It was created to solve difficult global optimization problems with bound constraints and a real-
valued objective function. The Lipschitzian optimization methods are also global optimization
methods although the largest drawback is that a Lipschitz constant has to be estimated which
can be hard or even impossible if the function is not Lipschitz continuous. The DIRECT al-
gorithm requires no knowledge of the Lipschitz constant or for the objective function to even
be Lipschitz continuous. It is a sampling method meaning that the progress of the algorithm is
governed only by evaluations of the objective function.

2.4.1 Initial step

DIRECT begins by transforming the domain to the unit hypercube Ω̂ = {x : x ∈ [0,1]d} where
the algorithm operates except for when evaluating the function. The center of the space is c1
and the algorithm commences by finding f(c1). The function is then evaluated in c1 ± δei, i =
1,2, . . . , d where δ is one third the side length in the cube and ei is the unit vector in the ith

direction. During the initial step the DIRECT algorithm chooses the best function value in the
largest space. Therefore the following is defined

wi = min (f(c1 − δei),f(c1 + δei)) , 1 ≤ i ≤ d (31)

and the dimension with the smallest wi is divided into thirds so c1 ± δei are the centers of the
new hyper-rectangles. This is done for all dimensions on the “center hyper-rectangle” continuing
with the dimension which has the next smallest wi. The initial division step is illustrated in
Figure 3(a).

After the initial step, the algorithm begins its loop of identifying potentially optimal hyper-
rectangles, sampling at their center and dividing them into thirds.

20

2.4 DIRECT algorithm 2 THEORY AND BACKGROUND

(a) First step of DIRECT. (b) The divisions after a few iterations.

Figure 3: Illustration of the DIRECT division algorithm.

2.4.2 Potentially optimal hyper-rectangles

The algorithm searches globally and locally by dividing all hyper-rectangles that meet the crite-
ria in (32). Basically, the hyper-rectangles are divided into groups of the same size and for each
group the algorithm considers dividing the rectangle with the smallest value of f at the center.
Not all such hyper-rectangles are divided though; also an estimation of the Lipschitz constant
is used to decide whether division should take place. The argument used for DIRECT is hence
basically a Pareto efficiency argument.

Definition (Potentially Optimal Hyper-rectangle) [Fin03]
Let ǫ > 0 be a positive constant and let fmin be the current best function value. A hyper-rectangle
j is then said to be potentially optimal if ∃K̂ > 0 such that

f(cj) − K̂dj ≤ f(ci) − K̂di, ∀i, and

f(cj) − K̂dj ≤ fmin − ǫ|fmin|.
(32)

Here cj denotes the center of hyper-rectangle j and dj is a measure of this hyper-rectangle.
Jones et.al. [PJS93] chose the distance from cj to its vertices as a measure whereas Kelley et.al.
[GK01] used the longest side in the hyper-rectangle. The parameter ǫ is a balance parameter
giving the user control over the relation between global and local search [FK06].

The potentially optimal hyper-rectangles found are then divided in the next iteration step.
They are divided along the direction corresponding to the longest side of the hyper-rectangle
ensuring that they will shrink in every dimension. If there is a tie for the longest side then
all those sides are divided in a fashion similar to the initial step where the order of division is
determined by (31) but centered around the center of the hyper-rectangle in question instead
of c1. In Figure 3(b) the division algorithm is illustrated as a pattern of division after a few
iterations.

Generally, potentially optimal hyper-rectangles either have low function values at their cen-
ters or are large enough to be good targets for a global search, which Figure 4 illustrates. In the
figure each point corresponds to a group of hyper-rectangles having equal size and equal function
values. The hyper-rectangles illustrated by the lower convex hull in the figure all satisfy (32). It
is worth noting the role of the parameter ǫ: the point (0, fmin − ǫ|fmin|) alters the convex hull
so that points with low function values but in small hyper boxes are not necessarily potentially
optimal. This shifts sampling somewhat towards larger hyper-rectangles and unexplored parts
of the domain.

21

2.5 Multiobjective optimization 2 THEORY AND BACKGROUND

Figure 4: A graph showing grouping by hyper-rectangle size and function value where the
potentially optimal hyperrectangles lie on the line.

2.4.3 Norms

In this thesis a few different norms are used. From now on the norm ‖ · ‖ denotes the 2-norm
‖ · ‖2 where ‖x− y‖2 describes the Euclidean distance between points x and y.

If different dimensions of the search space have different length scales or if it is of interest
to rescale the units of the domain, then a weighted norm can be used. In particular it is
advantageous to use a weighted norm if one wants the relative difference in each dimension to
have equal weight in the norm. In this thesis the weighted norm for the domain Γ is denoted
‖ · ‖Γ and it is defined by

‖v‖Γ ≡ ‖W (v − vmin)‖ =

[

d
∑

i=1

(

vi − vmin
i

wi

)2
]1/2

,

where

Wij =
1

wi
δij , wi = vmax

i − vmin
i = max

vi∈Γ
vi − min

vi∈Γ
vi,

(33)

where δij is the Kronecker delta function, hence δij = 0, i 6= j and δij = 1, i = j. The vector
given by W (v−vmin) takes values in the hyper-square [0,1]d and hence each dimension has equal
impact on the norm. This norm is only defined for box-constrained domains such as Ω where
vmin
i = lvi and vmax

i = uv
i in accordance with previous notation. To be strict ‖v‖Γ is not a norm

by itself since none of the required properties are satisfied, unless vmin = 0d. But ‖W (v−vmin)‖
is a norm and defining ‖v‖Γ ≡ ‖W (v − vmin)‖ then ‖v‖Γ is a norm per definition.

The norm ‖v‖Γ has the same effect as using the inverse of the linear transformation T (vi) =
vi(v

max
i −vmin

i)+vmin
i on each element of v = (v1, v2, . . . , vd) and then use the Euclidean 2-norm.

2.5 Multiobjective optimization

In single objective optimization the search space is often well defined. As soon as there are several
contradicting objectives to be optimized simultaneously, there is no longer a single optimal
solution but rather a whole set of possible solutions of equal quality. Consider κ objective
functions fi(x), i = 1,2, . . . , κ and otherwise the same problem as in (2) but without integrality.

22

2.5 Multiobjective optimization 2 THEORY AND BACKGROUND

The problem can then be stated as finding

P∗ = arg minF (x) ≡ (f1(x), f2(x), . . . , fκ(x)),
subject to

li ≤ gi(x) ≤ ui, i ∈ I
x ∈ Ω

(34)

A solution to a multiobjective problem minimizes the components of a vector F (x) in a Pareto
sense, where x ∈ Ω is the decision vector. In order to quantify this, the notions of Pareto opti-
mality and Pareto dominance are introduced [CL05, vVL00].

Pareto Dominance
A vector u = (u1, . . . , uκ) is said to dominate v = (v1, . . . , vκ) (denoted by u � v) if and only if
u is partially less than v i.e., ∀i ∈ {1, . . . , κ}, ui ≤ vi and ∃i ∈ {1, . . . , κ}: ui < vi.

Pareto Optimiality
A solution x ∈ Ω is said to be Pareto optimal with respect to Ω if and only if there is no x′ ∈ Ω for
which v = F (x′) = (f1(x

′), f2(x
′), . . . , fκ(x′)) dominates u = F (x) = (f1(x), f2(x), . . . , fκ(x)).

From these definitions the notion of a Pareto Optimal set can be introduced

P∗ = {x ∈ Ω :6 ∃x′ ∈ Ω s.t. F (x′) � F (x)}

which is the set of Pareto optimal points and the Pareto front

PF∗ = {F (x) = (f1(x), f2(x), . . . , fκ(x)) : x ∈ P∗}

which is the set of objective vectors corresponding to the Pareto optimal set. From these
definitions it follows that P∗ ⊂ Ω and that PF∗ ⊂ F (Ω) is the range of F (x) restricted to P∗.

In solving problem (34) the aim is to find the Pareto optimal set P∗. In determining which
solution from the Pareto optimal set to use, it is necessary to look at the Pareto front and
decide which trade-off between the objectives that is the best for the particular problem. There
is hence no simple answer to which solution to choose. If there were, then either there would
be no trade-off between the objectives and hence the Pareto optimal set is a singleton or it is
known exactly how important each objective is.

In the latter case it may be advantageous to instead use a so called aggregated objective
function. If it is known beforehand how big of an impact each objective should have, hence
their relative importance has been ranked e.g. by weights: wi for objective fi(x), then the
multiobjective problem can be transformed to a single objective problem with objective function
∑κ

i=1 = wifi(x).
Variation of the parameters wi can also be used to find Pareto optimal points, however the

weighted sum approach can only capture convex Pareto frontiers [MMS00]. The sum can be
modified to get around this as suggested in [MMS00] where for a two objective case the following
aggregated form is used f1(x)s + bf2(x)s, with b > 0 and s ∈ N.

23

3 THE OPTIMIZATION ALGORITHM

3 The optimization algorithm

The black box optimization algorithm is based on surrogate modeling, described in Section 2.1,
and the optimization of a merit function, described in Section 2.2. In this section, the different
parts of the optimization algorithm are theoretically presented and described using the theory in
the previous section. Several methods for surrogate modeling, merit functions and experimental
designs have been discussed and here the methods best suited for the given requirements are
chosen to create an algorithm. This Section describes the methods used whereas the practical
implementation is described in Section 4.

3.1 Creating a surrogate model

In Section 2.1 it was shown that in choosing a conditionally positive definite function φ of order
m and a unisolvent set of points X ⊂ Ω, the interpolation problem (35) is uniquely solvable.

S(x) =

n
∑

j=1

λjφ(||x − xj ||Ω) + p(x), x ∈ Rd

S(xi) = fi, i = 1,2, . . . , n

(35)

The norm ‖ · ‖Ω is the weighted norm allowing each dimension to have equal relative impact.
Further, choosing a form of the radial basis function from Table 1 e.g. φ(r) = r3 and p(x) =
âTx+ b̂ (µ = (âT , b̂)T) it has been shown that φ is conditionally positive definite of order m = 1.
Therefore the matrix equation

(

Φ P
P T 0m̂×m̂

) (

λ
µ

)

=

(

f
0m̂

)

(36)

has a unique solution where Φij = ‖xi − xj‖
3
Ω and

P =

xT
1 1

xT
2 1
...

...
xT

n 1

, λ =

λ1

λ2
...
λn

, µ =

a1

a2
...

am̂−1

b

, f =

f1

f2
...
fn

. (37)

For the uniqueness to hold, the set of points X needs to be unisolvent. If X is Πm(Rd)
unisolvent then X ∪xn+1 is also unisolvent hence unisolvence has to be established for an initial
set of point after which it holds for any addition of points to the set. In order for unisolvence to
hold there must be at least d+ 1 points where d is the dimension of the search space.

The surrogate function is then given by

S(x) =
n
∑

j=1

λjφ(||x − xj ||Ω) + µT (xT , 1)T . (38)

The RBF method and the Kriging methods are similar in performance but the Kriging method
requires maximizing the likelihood function whereas the BRF only requires solving a system of
linear equations. The simplicity of the RBF surrogate method was preferred in this case. In
using a surrogate based model, the prediction model part of this thesis followed naturally from
the parameter tuning part; requiring less code and making it easier to comprehend.

24

3.2 Choosing initial points 3 THE OPTIMIZATION ALGORITHM

3.2 Choosing initial points

As described in Section 2.3.3 the Latin Hypercube design has several good properties where
non-collapsingness is one and another is the fact that a low correlation will ensure that the set
of points is rather well spread out, which is not the case for random sampling. Therefore the
Latin Hypercube Design is used where minimizing the modulus of the correlation ensures a good
enough spread out set of point.

Initially ninit points are chosen using the scheme described in Section 2.3.3. The result is
a set of points X = {x1,x2, . . . ,xninit

} that is unisolvent with outmost certainty hence the
interpolation can be done uniquely. With additional points drawn from Ω and added to X
the initial configuration is not as important as it would have been if no additional points were
chosen, although with a good initial set of points the surrogate will hopefully approximate the
black box function in a better way.

3.3 Finding new points to evaluate

In creating a surrogate function S from a set of points X = {x1, . . . ,xn} and corresponding
function values {f1, . . . , fn}, the real function f(x) is modeled by S(x). Since S(x) is an in-
terpolation of observed data, the surrogate function will only be an approximation of the real
function. Increasing the number of data points renders a more trustable model, especially so if
the data points are well spread out and with a more realistic model, the minima can be deter-
mined with higher accuracy. Although, only making the model more reliable will not provide the
sought minima. Therefore we wish to weight in a point’s space filling properties with its value’s
proximity to the model’s minima. It would also be advantageous to easily be able to change
the impact that the space filling and the proximity to the model’s minima has when determin-
ing a new point to evaluate. The (black-box) output constraints also have to be incorporated
into the method, especially considering the possibly large error in the estimation of the output
constraints.

Given a surrogate function constructed using a set of points X and corresponding function
values f , one wishes to find new points to evaluate. This can be done using merit functions
as described in Section 2.2. We wish to construct a merit function that has the properties
mentioned above and that can easily be extended to the multiobjective case. Therefore the form
of the merit function chosen is the Quality function Q(y) suggested in [JPRW09] and briefly
discussed in Section 2.2.4. It has almost all the desired properties discussed and can be modified
to fit the rest as will be described in the following sections.

3.4 Quality function

In [JPRW09] a quality function of the following form is suggested:

Q(y) =

∫

Ω
(UX(x) − UX∪y(x))ω(S(x))dx, (39)

where Q(y) is maximized to find a new point to evaluate. Hence we seek y∗ such that

y∗ = argmax
y∈Ω

Q(y). (40)

This form of Q(y) is in this thesis denoted the neighborhood quality function (NQF). The term
UX(x) is defined as the shortest Euclidean distance from a point x to any of the points in the
set X scaled to unit size:

UX(x) = min
xk∈X

‖xk − x‖Ω. (41)

25

3.5 Weight function 3 THE OPTIMIZATION ALGORITHM

Therefore the term (UX(x) − UX∪y(x)) measures the prospective model uncertainty reduction
achieved through adding a point y to X. In maximizing only this term, or setting ω(S(x)) = 1,
the new point will seek to create a well spread out set of points.

The surrogate interpolation as well as the uncertainty function UX(x) is depicted in Figure
5. Starting with the leftmost picture and going to the right, one additional point has been
added to X in each figure. The filled line corresponds to the surrogate model passing through
each data point. The dashed-dotted line shows the shape of the surrogate before the point
was added, hence it corresponds to the surrogate in the figure to its left. At the bottom the
uncertainty function UX(x) is plotted and it can be seen that where the new points are added,
the uncertainty is reduced. Note that the uncertainty function has been rescaled and should
only be compared relative to itself. The horizontal axis shows the x-values and the vertical axis
shows the function values.

Figure 5: Interpolation of data using the surrogate model. Going from the left to the right,
one additional point has been added in each figure. The dash-dotted line shows the surrogate
without the new point and the dashed line at the bottom shows the uncertainty function UX(x)
which has been rescaled in these figures.

The term ω(S(x)) depends on the surrogate model and it is call the weight function for
the integral. It weights the space filling properties of a point y as described before with the
proximity to the surrogate’s minimum value.

Another form of the weight function investigated in this thesis is a modification of (39) which
has been named the non-neighborhood quality function (NNQF). It has the following form:

Q(y) = UX(y)ω(S(y)) (42)

and it is hence less computationally heavy. The two versions of the quality function are named
in this way, in this thesis, since the quality of a point y for NQF depends not only on the point
itself but also on a neighborhood of that point. The NNQF depends only on the point in which
it is evaluated (as well as X) and it is therefore more prone to select points close to the boundary
of the set Ω as discussed in Section 2.2.4.

3.5 Weight function

The weight function Q(y) is maximized and hence the weight function ω(S(x)) should be com-
parably small for points where in some sense it is less favorable to be. In which sense depends on
the number of objective functions, hence the weight function has different expressions for single
objective and multiobjective optimization.

26

3.6 Monte Carlo integration over Ω 3 THE OPTIMIZATION ALGORITHM

3.5.1 Single objective

With one objective, the aim is to find as small value as possible for the black box function,
f(x). Therefore in maximizing Q(y) in (39) or in (42), the weight function ω(S(x)) should have
relatively low values where the surrogate’s values are far away from the surrogates minima. The
weight function’s relative spatial dependence on S(x), given by UX(x), should be tunable to
account for the uncertainty in the surrogate model and hence the following form of ω is used,
suggested in [JPRW09]

ω(S(x)) = exp

(

−σ
S(x) − Smin

Smax − Smin

)

. (43)

The parameter σ ≥ 0 is the tuning parameter that accounts for the relation between spatial
dependence and the proximity to the surrogate’s minima and Smin and Smax are the minimum
and maximum of the surrogate model respectively. From this it is easy to see that the maximum
value is ω(S(x)) = 1 for S(x) = Smin and the minimum value is ω(S(x)) = e−σ for S(x) = Smax.
In this way the weight function is kept bounded at all times and the bounds are dependent only
on the parameter σ. So with σ = 0 then ω(S(x)) = 1 independent of the value of the surrogate,
meaning a space filling search whereas increasing σ will favor regions where the surrogate is close
to Smin.

3.5.2 Multiobjective

For multiobjective optimization with κ objectives, one surrogate model is created for each objec-
tive creating the vector of surrogates S(x) = (S1(x), S2(x), . . . , Sκ(x)) where Si, i = 1,2, . . . , κ
is determined by solving (16) with f given by the values for the ith objective.

The aim of multiobjective optimization is to find the Pareto front as described in Section
2.5. Therefore the weight function should favor points close to the Pareto front and hence the
Euclidean distance from the surrogate’s value at a point to the Pareto front, scaled to unit size,
is used as a measure of the proximity to the Pareto front. The set of points constituting the
Pareto front of S(x) as defined in Section 2.5 is denoted S∗ and the distance (naturally the
minimal distance) is given as

dist(S(x)) = min
s∗∈S∗

‖S(x) − s∗‖S(Ω) (44)

where the scaled norm is used to make every dimension equally important. In analogy with the
single objective case, the weight function has the following form

ω(S(x)) = exp

(

−σ
dist(S(x))

dist(S(x̃))

)

(45)

where x̃ is given by
x̃ = arg max

x∈Ω
dist(S(x)) (46)

hence dist(S(x̃)) is the maximum distance to the Pareto front in the set S(Ω). As in the single
objective case the following holds e−σ ≤ ω(S(x)) ≤ 1 where the upper bound is reached when
S(x) is at the Pareto front and ω is decreasing with increasing distance to the Pareto front,
reaching the lower bound when x = x̃.

3.6 Monte Carlo integration over Ω

The expression for the quality function as given in (39) involves integration over the set Ω.
There are many methods of integration available where e.g. the trapezoidal quadrature rule is

27

3.6 Monte Carlo integration over Ω 3 THE OPTIMIZATION ALGORITHM

simple, easy to use and provides fairly good results when the integrand is flat enough. However,
increasing the dimension of Ω ⊂ Rd will render trapezoidal integration useless since the number
of points increase exponentially with the dimension.

Another method that can be extended to higher dimensions without an exponential increase
in calculations is the Monte Carlo integration method. Monte Carlo is a class of computational
methods relying on randomly sampled numbers. For Monte Carlo integration when increasing
the number of samples the law of large numbers will ensure convergence if the integrand is “nice”
enough [SdM01].

Denote the integrand in (39) by I(x,y): I(x,y) = (UX(x) − UX∪y(x))ω(S(x)). Choose
randomly a set of points E from an even distribution in Ω, then

∫

Ω
(UX(x) − UX∪y(x))ω(S(x))dx ≈ V (Ω)

1

|E|

∑

x∈E

I(x,y) (47)

where V (Ω) is the volume of Ω and as |E| → ∞ the error in (47) goes to zero, in fact the error
decreases as 1/

√

|E| [SdM01]. Therefore the maximization problem can be reformulated as

y∗ = argmax
y∈Ω

Q(y) ≡ V (Ω)
1

|E|

∑

x∈E⊂Ω

I(x,y). (48)

3.6.1 Reducing the domain of integration

In I(x,y) the spatial term (UX(x) − UX∪y(x)) describes the prospective gain in space filling from
adding a point y to the set X. Consider a fixed y ∈ Ω and a given set of points X ⊂ Ω. The term
UX(x) is the minimum distance from x to points in X hence when adding y to X the following
will hold UX(x) − UX∪y(x) 6= 0 only for the points x̄ ∈ Ω that has y = arg minx∈X∪y ‖x̄ − x‖
hence the points that are closer to y than any point in X. With this in mind it is clear that the
domain of integration Ω can be reduced and this is illustrated in Figure 6.

x
1

x
2

x
3

x
4

x
5

y

Figure 6: A polyhedron created by determining the region where (UX(x) − UX∪y(x)) is non-zero
in the bounded domain Ω.

The region where I(x,y) is non-zero is a bounded polyhedron in Ω ⊂ Rd and hence it can
be described by a system of linear equations of the form Dx ≤ e where x ∈ Ω is bounded. The
polyhedron is not necessarily bounded if Ω is not bounded. The polyhedron depends on y and
it is here denoted Ωy = {x ∈ Ω : Dx ≤ e}. Given a set of points X = {x1,x2, . . . xn} the matrix

28

3.7 Output constraints 3 THE OPTIMIZATION ALGORITHM

D and vector e are explicitly written as [RW07]:

D·k = (xk − y)T

ek = 1
2(xk − y)T (xk + y).

(49)

The quality function has hence been reduced to

Q(y) =

∫

Ωy

(UX(x) − UX∪y(x))ω(S(x))dx (50)

and the expression for Q(y) after Monte Carlo integration is as in (48) with Ω replaced by Ωy.

3.7 Output constraints

Consider the case where there are several output functions among which there are one or more
objectives. Besides the objectives there are output functions that there is no interest in mini-
mizing or maximizing but only keeping within some bounds, so called output constraints. This
can be stated as the following minimization problem:

Given an objective function f(x) and η output functions gi(x), i ∈ I, find x∗ such that

x∗ = arg min f(x)
s.t. li ≤ gi(x) ≤ ui, i ∈ I

x ∈ Ω
(51)

In incorporating this into the model, the quality function Q(y) must be modified in some way.
The function f(x) is an unknown black box functions and hence surrogate modeling as described
in Section 3.1 can be applied. The same is true for the functions gi(x), i ∈ I.

For every output constraint gi(x) a surrogate model Sgi
(x) can be created that approximates

the real function. Denote the vector of surrogates by Sg(x) = (Sg1
(x), . . . , Sgη(x)). In the

algorithm it should be disadvantageous to select points where the output constraints are outside
the bounds. This functionality is placed in the function ϕ(Sg(y)). A simple form like the
indicator function 1D(Sg(x)) where D is as given in (5) is not favorable since the uncertainty in
Sg(x) might exclude feasible points.

It would be favorable to be able to alter the function ϕ(Sg(y)) depending on the level of trust
that can be put in the model. This leads us to consider a form similar to the weight function
ω(S(x)) namely

ϕ(Sg(y)) =

η
∏

i=1

min
{

1,e−σc(Sgi
(y)−ui)

}

min
{

1,e−σc(li−Sgi
(y))
}

(52)

where σc has a similar functionality as σ has in the weight function ω(S(x)). The function’s
dependence on Sg(y) and σc can be seen in Figure 7.

With the addition of the output constraints function ϕ(Sg(y)) the quality function is given
as follows

Q(y) = ϕ(Sg(y))

∫

Ω
(UX(x) − UX∪y(x))ω(S(x))dx. (53)

where Ω and Ωy are interchangeable.

29

3.8 Integrality 3 THE OPTIMIZATION ALGORITHM

Figure 7: The function ϕ as described in (52) as a function of Sg1
(seen in one dimension), with

l1 = 0.5 and u1 = 1.3.

3.8 Integrality

Recall from Section 1.4 the definition of I: the set of indices for which the parameters are integer
valued. Including this into the model gives a mixed integer non-linear problem (MINLP) which
is NP-hard in general and in fact MINLPs are worse than NP-hard [Let09].

The simplest way by which integrality can be ensured is rounding to nearest feasible integer.
This may provide results that are far from optimal, especially if the function in question varies
considerably. There are methods for MINLPs which are hard to apply to this case. Therefore
rounding together with an integer weight function γ(y) is considered.

As with the output constraints function ϕ, the simple choice γ(y) = 1G(y) where G = {v :
vj ∈ Z, j ∈ I} will not work in practice. In order to guide the algorithm toward integer values
in the dimensions given by I the following function can be used

γ(y) =
∏

j∈Imin
{

1,e−σint(∆j(y)−δ)
}

where
∆j(y) = min

ỹ∈Z |ỹ − yj | = min{⌈yj⌉ − yj, yj − ⌊yj⌋}

(54)

and y = (y1, y2, . . . , yd). The function is depicted in Figure 8 where the steepness of the function
is determined by σint in analogy with σc and σ and the constant δ determines the size of the
neighborhood around every integer where γ(y) = 1. The final forms of the quality functions are
then given by

Q(y) = γ(y)ϕ(Sg(y))

∫

Ω
(UX(x) − UX∪y(x))ω(S(x))dx

and
Q(y) = γ(y)ϕ(Sg(y))UX (y)ω(S(y))

(55)

where Ω can be replaced by Ωy as described earlier.
The functions ϕ and γ are functions of y only and hence are not integrated over. The integral

is used to account for not only the characteristics at the point y but also a neighborhood Ωy. If

30

3.8 Integrality 3 THE OPTIMIZATION ALGORITHM

the integrand would be multiplied with ϕ(S(x)) then points close to the boundary of the output
constraints would be picked with less likelihood. This, since then characteristics of ϕ will most
likely make the integrand small in a part of Ωy leading to a lower value of the quality function
and hence making it a less favorable point. This behavior is not advantageous since optimum is
in general likely to occur where one or more of the constraints are fulfilled with equality.

Figure 8: The term γ as described in (54) as a function of y ∈ Ω (seen in one dimension). In
the figure σint = 1,2,6,20 has been used and δ = 0.05.

31

4 IMPLEMENTATION OF GENERAL ALGORITHM

4 Implementation of general algorithm

The methods presented in Section 3 are in this section used to construct a working algorithm.
The algorithm is still general and can be used on a wide range of problems. First the algorithm
is described in general with pseudo code for the single objective case. Further, in Section
4.2.1 the implementation of the quality function is discussed for the single objective case and
in Section 4.2.4 the topic is implementation of integration and domain reduction. In Section
4.3 the adaptations necessary to extend the algorithm to the multiobjective case are discussed
followed by a section talking about the DIRECT solver used.

The optimization problem of interest in this report is the optimization problem (2), in-
troduced in Section 1.4, with decision variables χ1, χ2, . . . ,χd. Recall also the notation χ =
(χ1, χ2, . . . ,χd) given by (3). Further, in Section 2 and Section 3 some theory were presented
using general points x ∈ Rd. Here in Section 4, we put x = χ in order to be able to easily
compare the parts of the algorithm with the theory presented in the previous two sections.

4.1 Single objective algorithm

The algorithm presented here is general and in Section 5 the necessary changes to make it
work with the Carmen crew optimizers are described. The pseudo code for the single objective
algorithm is presented in Algorithm 4.1.

Algorithm 4.1: Single Objective ()

Choose search domain, Ω
Set dimensions which are integer valued, I
Set range for output constraints, D
Set nr. initial pts ninit, nr. parallel jobs Np and nr. batches of jobs Nb

Create initial set of points X or retrieve points from earlier optimization
Calculate values for output constraints and the objective: (g, f) = send jobs(X)

for 1,2 . . . , Nb do
Calculate surrogate function S(x) for objective function
Calculate Smin = minx∈Ω S(x)
Calculate Smax = maxx∈Ω S(x)
Calculate surrogate functions Sg(x) = (Sg1

(x), . . . ,Sgη
(x)) for output constraints

Chose σ, σc

Set X0 = ∅
for 1,2, . . . ,Np do

y∗ = find new point(Smin, Smax, S(x),Sg(x), σ, σc, X)
Ensure that ‖y∗ − x‖ > δ ∀x ∈ X and some δ, and that y∗i ∈ Z for i ∈ I
Add y∗ to X0: X0 = X0 ∪ {y∗}

end for
Calculate new values for output constraints and the objective: (g0, f0) = send jobs(X0)
Add the new points to g, f : g = g ∪ g0, f = f ∪ f0

Add X0 to X : X = X ∪X0

end for
Set Xf = {x ∈ X : Sg(x) ∈ D}: the set of feasible decision vectors

Find x̄ = arg min
x∈Xf

{f(x)}

return x̄

Initially, the problem specific data has to be specified. A box-domain Ω ⊂ Rd is chosen over
which optimization is conducted where the dimensions I are integer valued. The range for the

32

4.1 Single objective algorithm 4 IMPLEMENTATION OF GENERAL ALGORITHM

output constraints D is set, also given by a hyper-box. The number of initial points ninit as well
as the number of parallel computations Np and the number of batches of point Nb are set where
ninit > d and d is the dimensionality of Ω.

An initial set X of ninit points is created using the Latin Hypercube Design described in
Section 3.2. The algorithm also supports the possibility for a warm start: utilizing a set of
points determined by the user. The pseudo code for the generation of initial points can be seen
in Algorithm 4.2. Recall that the domain Ω is a hyper-box with upper and lower bounds in
dimension j given by uv

j and lvj respectively.

Along each dimension k = 1,2, . . . , d, n evenly distributed coordinates are chosen: Xk =
{z1k,z2k, . . . , znk} such that lvk = z1k < z2k < . . . < znk = uv

k. Then decision vectors xi, i =
1, . . . , n are created by randomly picking an element from each set Xk without replacement
until the sets are empty. Then a set of points X = {x1,x2, . . . ,xn} is obtained which is evenly
distributed in a sense but it can not be guaranteed that that X is unisolvent. In order to
create a set X that is unisolvent (with an outmost probability) a correlation test is performed.
The maximum absolute value of any off-diagonal element in the correlations matrix given by X
provides a good measure of how well spread out the set of points are. The correlations matrix
is given by {ρij} and after a fixed number of tries the set of points will be chosen which has the
lowest value of maxi6=j |ρij|.

Algorithm 4.2: Create initial set of points (Ω, ninit)

Set number of retries
Set ρmin/max = 1 and X = ∅ and denote n = ninit

for loop index = 1,2, . . . , number of retries do
for k = 1,2, . . . , d do

Select n evenly spaced coordinates along the kth dimension in Ω:
Xk = {z1k,z2k, . . . , znk} such that z1k, znk are at, or close to, the boundary
of the kth dimension of Ω.

end for

for j = 1,2, . . . , n do
Randomly pick a coordinate jk from each set Xk, k ≤ d ⇒ xj = (zj11, . . . ,zjdd)
Each chosen coordinate zjkk ∈ Xk is removed from Xk: Xk = Xk\{zjkk}, k = 1, . . . ,d

end for

Calculate correlation matrix P = {ρij}i,j=1,...,n from X0 = {x1,x2, . . . ,xn} :
if ρ0 ≡ max

i6=j
|ρij | < ρmin/max do

Set ρmin/max = ρ0

Set X = X0

end if
end for
return X

The evaluation of the expensive black box function is done using the send jobs function.
This function is problem dependent and in using test functions such as the Branin function,
see (59), it merely returns a simple function value. The implementation of this function for the
Carmen crew and fleet optimizers is discussed in Section 5.3 where the pseudo code is presented
in Algorithm 5.2.

The values for the objective function f and the output constraints g received from send jobs
are used to find new points to evaluate. This is done as many times as set by the number of
batches of jobs Nb. How the selection of new points is done is discussed in more detail in Section
4.2.

33

4.2 Finding new points: Implementation4 IMPLEMENTATION OF GENERAL ALGORITHM

The algorithm returns the point x̄ which has the lowest calculated value f(x̄) while the
output constraints Sg(x̄) are within the set bounds D. At every point where the function has
been evaluated, the value of the surrogate model corresponds to the objective value since S(x)
has been created through interpolation. The same is true for the output constraints.

4.2 Finding new points: Implementation

The selection of new points is based on the parts of the algorithm presented in Section 3. First
the surrogate function S(x) is calculated, or basically the coefficients (λ, µ)T are calculated
from (36) using the objective values f and the surrogate model is then given by (38). The
surrogate models for the output constraints Sg(x) are calculated in the same manner using the
output constraint values g = {g1, . . . ,gη}. The minimum and maximum values of the surrogate
function, Smin and Smax respectively are calculated using the DIRECT algorithm and values
for σ and σc are chosen. The choice of σ and σc depends on N .

For every batch of jobs, hence for every batch of points to evaluate, a number of points Np

are chosen to be processed in parallel. This is done in the function find new point whose pseudo
code is presented in Algorithm 4.3.

Algorithm 4.3: Find New point (Smin, Smax, S(x),Sg(x), σ, σc, X)

except the first run do
Calculate surrogate function S(x), x ∈ Ω for objective function
Calculate surrogate functions Sg(x) = (Sg1

(x), . . . ,Sgη
(x)) for output constraints

end except
//Choose and construct merit function:
if (Merit function = NQF) do

Ωy=Reduce domain(Ω)

ΩB
y =Solve LP(Ωy), (see Section 4.2.4)

Set Q(y) = γ(y)ϕ(Sg(y))

∫

ΩB
y

(UX(x) − UX∪y(x))ω(S(x))dx

else
// Merit function = NNQF

Set Q(y) = γ(y)ϕ(Sg(y))UX (y)ω(S(y))

end if
Calculate y∗ = argmax

y∈Ω

Q(y)

return y∗

The first time this function is called (Nb = 1,Np = 1) the surrogate functions for the
objective function and output constraints that were created initially are still valid. If not the
first time then the surrogates have to be recalculated. Then the form of the merit function
(quality function) is chosen, either the neighborhood method or the non-neighborhood method.
For both methods, the following factors have to be calculated: γ(y) for integer constraints,
ϕ(y) for output constraints, UX(x) − UX∪y(x) or UX(x) for spatial dependence and ω(x) for
dependence on surrogate function value. Additionally, for the integral method the domain is
reduced from Ω to Ωy and further to ΩB

y , see Section 4.2.4, and the integral has to be evaluated.
The implementation of these factors and their dependence on the choice of σ, σc are discussed

in the following sections. The function then calls the DIRECT global optimization solver to find
y∗ = arg maxy∈ΩQ(y) which is then returned.

As seen in Algorithm 4.1, the selected point y∗ is then checked for feasibility according to
some criteria. First it cannot be closer than δ to any point in X where δ is set to δ = d1/2/120 to

34

4.2 Finding new points: Implementation4 IMPLEMENTATION OF GENERAL ALGORITHM

ensure that if y∗ is given in hours then rounding y∗ to minutes will still ensure y∗ 6= xk ∀xk ∈ X.
Also the dimensions which are set as integer valued must be ensured to be so also for y∗. This
is further discussed in Section 4.2.3.

4.2.1 Weight function

As discussed earlier the weight function has the following form

ω(S(x)) = exp

(

−σ
S(x) − Smin

Smax − Smin

)

.

The range of ω(S(x)) is [e−σ , 1] where the lower bound is reached for S(x) = Smax and the
upper bound is reached for S(x) = Smin. Seen from another perspective, say that σ is very large
and fixed. In maximizing Q(y), points where ω(S(x)) is large are obtained, hence points will be
found whose surrogate values are close to Smin. Similarly, with a fixed low value of σ then ω(x)
is very flat and hence the value of S(x) has no real importance. Therefore, with low values of
σ, a space filling search will be conducted whereas with σ large the minimum of the surrogate
will be found. This is illustrated in Figure 9 where the surrogate function S(x) is shown as well
as the weight function for different values of σ. It can be seen that the weight function gets
increasingly localized at the minimum as σ increases.

This fact is utilized in the algorithm when choosing the value of σ. The surrogate model is
created from a set of points X and at an early stage of the procedure, when there are few data
points available, the uncertainty in the model will be large. At this point a local search, hence
finding the minimum of the surrogate, will in most cases not prove advantageous due to the
uncertainty of the model. Instead a global space filling search is preferred in order to increase
the trust that can be placed in the model and hence decrease the uncertainty. This corresponds
to first using σ = 0 where the surrogate’s value is disregarded and only a space filling search
is conducted in order to increase the accuracy of the model. Then σ is gradually increased,
creating a more accurate model only where the model predicts low values, and finally when σ is
very high the lowest predicted value is found.

As seen in Algorithm 4.1, σ is chosen for every Nb where Nb is the number of batches of jobs.
Therefore σ = σ(Nb) and in selecting σ, discrete levels are used. Namely, certain values of σ
are chosen, {0,5,10,20,50}, as well as the percentage of times they are supposed to be used, say
{20,15,25,25,15}. Then a vector is created where for Nb = 10 batches the vector would have the
form σ(10) = [0, 0, 5, 5, 10, 10, 10, 20, 20, 50]. For the case where the interest is not to find the
minimum value but only increase the reliability of the model (e.g. for the Prediction Model),
then σ is set very low, e.g. σ(10) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. With this setting, a space filling
search is conducted.

In working with black-box functions the parameters σ cannot be changed depending on the
problem but has to be selected using the method described above where the set of values and
the corresponding percentages are set heuristically. The heuristically chosen values are set as
above.

4.2.2 Output constraints function

The output constraints function has the following form

ϕ(Sg(y)) =

η
∏

i=1

min
{

1,e−σc(Sgi
(y)−ui)

}

min
{

1,e−σc(li−Sgi
(y))
}

(56)

and is created in analogy with the weight function. The parameter σc also has the similar
functionality as σ has for the weight function although here the uncertainty requiring σc to be

35

4.2 Finding new points: Implementation4 IMPLEMENTATION OF GENERAL ALGORITHM

Figure 9: A surrogate function S(x) as well as the weight function ω(S(x)) (in one dimension)
for different values of σ.

changed depends not only on the uncertainty of the surrogate model of the objective function
but also on the uncertainty of the surrogate model of the output constraints.

In Figure 10 a function is multiplied with the output constraints function (56) for different
σc with η = 1. The output constraints function is bounded above by u1 in such a way that x < 3
is infeasible. From (56) and Figure 10 it can be seen that using σc = 0 the output constraints
are entirely neglected hence the top graph in the figure with σc = 0 corresponds to the function
itself. From the figure it is clear that increasing σc will create a steeper barrier, which is the
sought property. Although, since the surrogate is an approximation of the real function, an error
in the surrogate could place the real optimal point on the wrong side of the barrier and hence not
be chosen. Therefore the value of σc is gradually increased, accounting for the uncertainties in
the surrogate models. This is done using a list of values and a list with frequency of occurrence
in analogy with the weight function where an example is σc = [0, 0, 2, 2, 2, 4, 4, 7, 7, 10].

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

P
en

al
iz

ed
 fu

nc
tio

n
va

lu
e

x

1

x
2

σ
c
=0

σ
c
=0.2

σ
c
=0.5

σ
c
=1

σ
c
=4

Figure 10: A function multiplied by the output constraints function ϕ(Sg(y)) (in one dimension)
for different values of σc where the bounds on D are such that x < 3 is infeasible.

The output constraints function is not integrated over since the feasibility of the surrounding
points does not necessary say anything about the feasibility of the point itself, where feasibility
means Sg(y) ∈ D. Moreover, in using the neighborhood quality function with the output
constraints function as a part of the integrand, the integration would be done over parts that
are penalized e.g. for the point x = 3 in Figure 10 one would integrate over [2, 3.5] (half
the distance to any other point, see Figure 6) where the value has been made lower in [2, 3].
Therefore, that point would not have been picked even though it is the most promising feasible
point.

36

4.2 Finding new points: Implementation4 IMPLEMENTATION OF GENERAL ALGORITHM

4.2.3 Integrality constraints function

The integrality constraints function is not a constraint per se but is used to try to gently push
the optimizer towards integer valued coordinates in some dimensions. These dimensions are
given by I as discussed before and the function used for this purpose is

γ(y) =
∏

j∈Imin
{

1,e−σint(∆j(y)−δ)
}

where
∆j(y) = min

ỹ∈Z |ỹ − yj | = min{⌈yj⌉ − yj, yj − ⌊yj⌋}

and whose graph is given in Figure 8. Here y = (y1, y2, . . . , yd) and δ is the neighborhood around
the integer where γ(y) = 1. In Figure 11 a function is multiplied with the integrality constraints
function for different values of σint. From the figure it is clear that increasing σint too much
will give a largely oscillating quality function which is not favorable since it is hard to optimize.
Instead with a lower σint, locally around every integer the maximum will be pushed towards the
integer while at the same time keeping a moderately oscillating quality function.

One setting for σint will obviously not work for all cases but for cases where the function
(integral over spatial term and weight function) changes moderately, the setting σint = 1 provides
good results. This setting is kept for all cases since too much oscillation will do more harm than
good.

Also, if the range of integer values for one dimension is large enough it can be argued that
that particular dimension could be relaxed to be seen as continuous. In fact, for dimensions j
where the range of values is large, then j has temporarily been removed from I when creating
γ(y).

0 1 2 3 4 5 6
5

10

15

20

25

30

35

40

45

P
en

al
iz

ed
 fu

nc
tio

n
va

lu
e

σ

int
=0

σ
int

=0.2

σ
int

=0.5

σ
int

=1

σ
int

=4

Figure 11: A function multiplied by the integrality constraints function γ(y) for different values
of σint.

4.2.4 Spatial function: Integration

The spatial function UX(x) − UX∪y(x) aims to put distance between points and it has been
shown that it is non-zero in a bounded polyhedron given by Ωy = {x : Dx ≤ e,x ∈ Ω} where
D·j = (xj − y)T and ej = 1

2 (xj − y)T (xj + y).
Using this, the integral part of the quality function can be expressed as

∫

Ωy

(UX(x) − UX∪y(x))ω(S(x))dx

but this also brings up a problem. The integral over Ω can be computed using Mote Carlo
integration according to (47) which is particularly easy since Ω is a hyper-box and it is easy to

37

4.3 Adaptation to multiobjective 4 IMPLEMENTATION OF GENERAL ALGORITHM

pick random points inside a hyper-box as well as to calculate its volume. However, neither are
simple for the polyhedron.

The reduction of domain from Ω to Ωy is done mainly in order to increase the accuracy of
the numeric integration. It also has the favorable feature that Ωy decreases as the number of
points in X increases hence the accuracy increases as the algorithm advances.

It would be preferred to integrate over a box while at the same time keep the higher accuracy
achieved through reducing to Ωy. However, integration over Ωy with the addition of some parts
of Ω\Ωy will only worsen the accuracy slightly. Therefore in creating the smallest possible box
that contains Ωy both the accuracy of Ωy and the simplicity of the box will be kept.

It is more practical not to create the smallest box possible that contains Ωy but the smallest
box containing Ωy that is aligned with the axes of the Euclidean coordinate system. In doing
so the max and min coordinates of the polyhedron in every dimension has to be calculated;

denote them q
(+1)
j and q

(−1)
j respectively for dimension j. For each j ∈ J , that problem can be

formulated as the following simple LP

q
(ξ)
j = argmax ξ ej · x ≡ ξχj

subject to
Dx ≤ e
x ∈ Ω.

(57)

where ej is the unit vector in the jth dimension, hence e.g. e3 = (0, 0, 1, 0, . . . , 0) and ξ is +1 or

−1. Using this, the box is given as ΩB
y = {x = (χ1, . . . ,χd) : q

(−1)
j ≤ χj ≤ q

(+1)
j , j ∈ J }.

Finding ΩB
y requires solving a number of 2d LP problems hence solving (57) for ξ = ±1 for

j ∈ J . For this the commercial LP solver Xpress is used where an mps file is automatically
written for every problem.

4.3 Adaptation to multiobjective

In adapting the single objective algorithm, Algorithm 4.1, to multiobjective optimization, little
has to be done in terms of algorithm structure. In algorithm 4.4 pseudo code for the multiob-
jective algorithm is shown.

38

4.3 Adaptation to multiobjective 4 IMPLEMENTATION OF GENERAL ALGORITHM

Algorithm 4.4: Multiobjective ()

Set/Choose Ω, I,D, ninit, Nb, Np, X as in the single objective case
Calculate values for output constraints and the objectives: (g, f) = send jobs(X)

for 1,2 . . . , Nb do
Calculate surrogate functions S(x) for objective functions
Calculate surrogate functions Sg(x) = (Sg1

(x), . . . , Sgη
(x)) for output constraints

Find the Pareto front S∗, make it denser and extend it
Find the max distance to the Pareto front, dist(S(x̃)): x̃ = argmax

x∈Ω

dist(S(x))

Chose σ, σc and set X0 = ∅
for 1,2, . . . ,Np do

y∗ = find new point(x̃,S∗,S(x),Sg(x), σ, σc, X)
Ensure that ‖y∗ − x‖ > δ ∀x ∈ X and some δ, and that y∗i ∈ Z for i ∈ I
Add y∗ to X0: X0 = X0 ∪ {y∗}

end for
Calculate new values for output constraints and the objectives: (g0, f0) = send jobs(X0)
Add the new points to g, f : g = g ∪ g0, f = f ∪ f0

Add X0 to X : X = X ∪X0

end for
Set Xf = {x ∈ X : Sg(x) ∈ D}: the set of feasible decision vectors

return evaluated Pareto points {xl ∈ Xf : ∄xk ∈ Xf s.t. f(xk) � f(xl)}

The only major difference from the single objective case is the weight function, which is why
the quality function was chosen as the merit function to begin with. As given in Section 3.5.2,
the weight function has the following form

ω(S(x)) = exp

(

−σ
dist(S(x))

dist(S(x̃))

)

where
dist(S(x)) = min

s∗∈S∗
‖S(x) − s∗‖S(Ω)

(58)

and where S∗ is the Pareto front and hence dist(S(x)) is the distance from S(x) to the Pareto
front. Also dist(S(x̃)) is the maximum distance from any point in the range of S(x) to the Pareto
front. The Pareto front is found using a Python implementation of MOEA, Multi Objective
Evolutionary Algorithm. More exactly, points T∗ ⊂ S∗ are found that approximate the Pareto
front, see Figure 12(a) which is the output from the MOEA solver. In order to get a more dense
and more well spread out set of points, additional points from S∗ are added to T∗ through linear
interpolation between the already existing points in T∗. From the nature of the Pareto front
this is a well defined action and the new points will either approximate the Pareto front well
or lay outside the set, as can be seen in Figure 12(b). Using the extended set T∗, the distance
function can easily be calculated as

dist(S(x)) = min
s∗∈T∗

‖S(x) − s∗‖S(Ω)

hence a minimum over a finite set T∗ instead of a non-linear minimization problem. The Pareto
front is extended upwards and to the right due to points x with high values for one output
surrogate S1(x) but whose value for the other output surrogate S2(x) is only slightly dominated.
This pair (S1(x), S2(x)) will then be far from the Pareto front even though a slight reduction of
S2(x), say for x = xnew would place (S1(xnew), S2(xnew)) at the Pareto front.

In Figure 12(a) the MOEA solver is used on the ZDT3 function, see Appendix E [ZDT00],
showing the Pareto front found by MOEA as well as the rest of the MOEA evaluated points
and the analytical boundary. The analytical Pareto front is of course a part of the analytical

39

4.4 DIRECT solver 4 IMPLEMENTATION OF GENERAL ALGORITHM

boundary. In Figure 12(b) the Pareto front, as given by the MOEA solver, is extended and has
been made more dense. Also, in Figure 12(b) the ZDT3 has been modified to the right of the
dashed vertical line in order to illustrate the necessity of an extended Pareto front as mentioned
earlier. The sampled points at the bottom right corner are close to the extended Pareto front
but far from the Pareto front found by MOEA.

If the multiobjective problem in question does not have a trade-off between the objectives,
hence they are highly (positively) correlated, then the Pareto front may consist of a singleton
and the problem is reduced to finding a minimum in analogy with the single objective case.

(a) Pareto front as given by the MOEA
solver.

(b) The more dense and extended pareto
front.

Figure 12: The Pareto front, found by the MOEA solver, compared to the extended and more
dense Pareto front where the points evaluated in MOEA and the boundary, and hence the
analytic Pareto front, are shown.

4.4 DIRECT solver

As mentioned in Section 4.2 the global optimization algorithm used to find y∗ = arg maxy∈ΩQ(y)
as well as Smin and Smax is the DIRECT method. It divides the sample space Ω into hyper-
rectangles, samples at their centers and divides if the criteria for potential optimality in (32) is
satisfied. In order to be independent of commercial software, an own version of the DIRECT
solver has been implemented in Python. In doing so a Matlab implementation by Finkel [Fin03]
was used as a template. The scheme for the DIRECT method is described in Section 2.4 but
the pseudo code is presented here in Algorithm 4.5 together with a short description.

Algorithm 4.5: DIRECT (f(x), bounds, options)

Normalize the domain to be Ω̂ = {x = (χ1, . . . ,χd) : 0 ≤ χj ≤ 1, j ∈ J } with center c1
Find f(c1), fmin = f(c1), its = 1, eval = 1
Evaluate f(c1 ± δej), j ∈ J , and divide hyper-cube
while its ≤ maxits and eval ≤ maxevals do

Identify the set H of all potentially optimal hyper-rectangles
for all Hk ∈ H

Identify the longest side(s) of hyper-rectangle Hk

Evaluate f at centers ck of new rectangles, divide Hk into smaller hyper-rectangles
Update fmin, xatmin and eval

end for
its = its + 1

end while
return xatmin

40

4.4 DIRECT solver 4 IMPLEMENTATION OF GENERAL ALGORITHM

In short words, the DIRECT algorithm begins by normalizing the space to be the unit cube
Ω̂ with center in c1. Further, function values: f(c1) and f(c1 ± δej), j ∈ J are found and the
hyper-cube is divided as described in Section 2.4.

The maximum number of iterations and the maximum number of evaluations are set in
options, and while they have not been exceeded, the following is done: all potentially optimal
hyper-rectangles H are located and for each Hk ∈ H the longest side dk is found, the function
is evaluated at the center ck of hyper-rectangle Hk giving f(ck) and then Hk is divided into
smaller hyper-rectangles. The sampled point x̄ = xatmin which has the lowest function value
f(x̄) is then returned.

41

5 IMPLEMENTATION IN RUSA

5 Implementation in RUSA

The constructed algorithm itself is fairly general and can be used for almost every black box
optimization problem. In order to use it on Jeppesen’s crew optimizers it was necessary to
among other things be able to open optimization jobs, choose parameters and in an automated
way send and run jobs and receive data from jobs. There is a program RUSA (Rule Sensitivity
Analysis), a thesis work in 2008 by Joel Driessen [Dri08], that takes care of most of these things.

So, through RUSA there is support for sending and rececing jobs and visualizing the results
which will be discussed in more detail in Section 5.1. This thesis work adds some more logic
to RUSA, namely trying to figure out which jobs that are worth evaluating in order to find the
best solution or to minimize the over-all error for a prediction model. The requirements for the
additions to the RUSA GUI are discussed in Section 5.2.

5.1 Original RUSA

The original RUSA [Dri08] consists of tabs 1,3,4,5,6 in Figures 13 and 14, hence the ones that
are not shown in the figures. The original RUSA, consisting only of tabs 1,3,4,5,6 (Planner,
Jobs, KPI Table, Visualization, KPI Correlations) works as follows:

0. Menu : Open experiment/ create new experiment

1. Planner : Choose parameters & rules and set the values they shall be evaluated at. Then
the jobs are generated as an outer product of the values chosen, hence d parameters each
with mj values j = 1,2, . . . ,d will generate

∏d
j=1mj jobs.

3. Jobs : The individual jobs can be viewed and removed before starting the optimization
and during the run the number of solutions can be presented.

4. KPI Table : For each job, the KPIs can be viewed

5. Visualization : The results can be plotted

6. KPI Correlations: The correlations between the KPIs can be calculated.

The RUSA software is divided into two parts: the GUI (Graphical User Interface) and the
application. The application part handles the data and logic whereas the GUI part handles the
user interface. A thorough description of RUSA and its structure is given in [Dri08].

5.2 Additions to RUSA GUI

RUSA was created from a specific requirement specification but the addition of the Parameter
Tuning puts other requirements on the program. The program’s structure therefore does not
provide simple support for all the additions required. The requirements for the GUI with the
addition of Automated Optimization and Prediction Model are summarized as follows:

• Setting parameters and domain: min, max

• Selecting KPIs as objectives/constraints and setting bounds on such constraints

• Choosing number of jobs to run

• Resume optimization (would be good)

• While algorithm is running:

42

5.2 Additions to RUSA GUI 5 IMPLEMENTATION IN RUSA

– Jobs are shown in the Jobs tab

– When jobs are finished the KPIs are shown in KPI Table

– Solution status updated in Jobs tab (would be good)

• The plotting tools in Visualization work as before

• Correlations can be calculated as before

• Solutions are saved continuously

• The prediction model: choosing a set of parameters and calculating the predicted KPIs

• The possibility to run the job corresponding to the estimation in the prediction model.
(would be good)

• After loading an experiment, all of the above shall function as well

• The original RUSA must work

In adding the Parameter Optimization functionality as well as the Prediction Model, while
at the same time keeping the original RUSA working, two new tabs were created: Automated
Optimization (Figure 13), and Prediction Model (Figure 14).

The original tabs in RUSA are intact but also used for the parameters in Automated Op-
timization. If intending to use the Automated Optimization, then when setting the values of
each parameter5 in the Planning tab, the range of those values is set at the bounds for that
parameter. They constitute the domain of the search and can be integer valued, Boolean as well
as Reltime (a measure of time rounded to minutes).

5.2.1 Automated optimization

In the upper left corner of Figure 13 a preliminary list of the available KPIs is found; a full
list can only be found after running a job with the original RUSA. From this list, KPIs can be
selected to the Selection area to the right by clicking Add Selected KPI and they can be set as
objectives or constraints using the check button. There can be at most two objectives and there
must be at least one. The upper and lower bounds for the KPI constraints are set to 0 and 1010

as default and they can be changed by clicking at them.
The Settings at the bottom left corner are used to govern the algorithm. Choosing General

Settings the user sets how many jobs the algorithm shall run in total whereas Detailed Settings
allows the user to choose the number of initial points ninit, the number of jobs to run simulta-
neously Np, constituting one batch of jobs, and the number of (serial) batches to run Nb. For a
given optimization problem, it is natural that the number of batches is the setting that has the
largest impact on the duration of the algorithm.

For each batch of jobs to run, the parameter σ is increased according to an empiric rule;
increasing σ will give a more local search and hence trusting the surrogate more. For the
prediction model case it might be more important to minimize the overall error, not just close
to the minima. In checking Do Only Prediction Model the parameter σ will be set to zero
and hence a space filling search is conducted. Checking Run Express Calculation will use the
non-neighborhood method for finding new points instead of the neighborhood method which is
chosen as default.

Before running the optimization, the chosen jobs can be viewed by pressing Show Jobs.
The jobs will then be presented in the Jobs tab. Run Optimization will run the automated

5RUSA also supports turning rules on and off but it is a functionality of RUSA that is not used in this thesis

43

5.3 GUI - Algorithm interface 5 IMPLEMENTATION IN RUSA

Figure 13: The new tab Automated Optimiza-
tion in RUSA

Figure 14: The new tab Prediction Model in
RUSA

optimization after asking which optimizer (i.e. pairing optimizer or rostering optimizer) and
which queue to use. The jobs will appear in Jobs and the number of solutions will be updated
automatically. When a batch of jobs has finished, the KPI values are shown in KPI Table and
the algorithm continues for as long as prescribed.

If the algorithm has terminated, hence running the number of jobs set by the user, and it
is of interest to continue finding better solutions or a more reliable prediction model, then the
user can do so by using Resume Optimization. Every setting in the current tab can be changed
in between optimizations although for the optimization to be resumed, the choice of parameters
in Planner cannot be altered.

5.2.2 Prediction model

To the left in Figure 14, the Parameters chosen in Planner are shown. Their values can be
changed by clicking at them, giving a parameter setting that one wishes to estimate. On the
right the selected KPIs are shown, hence the ones one wishes to investigate. The KPIs selected
for the optimization as objectives and constraints are set as default but more can be added from
the list of KPIs at the bottom left.

In pressing Calculate KPIs, the Prediction Model estimates the KPI values by evaluating the
surrogate function for the given parameter setting and presents them in the column Predicted
Value. To run this particular job; to see what the real KPI values are, just press Run Job and the
values will appear in the column Real values when the job is finished. If the job corresponding
to the chosen combination of parameters has already been run, Run Job can safely be pressed
and without running the job, the values will be presented. Note that at the points evaluated,
the surrogate model will always provide an exact answer since the surrogate is an interpolation
of the data given by the jobs that have been run.

5.3 GUI - Algorithm interface

In order to utilize the optimization algorithm discussed in the previous chapter on the Carmen
crew optimizers, parameters, KPI values and other settings that are set in the GUI are needed.
In order to keep the GUI user friendly and account for all the requirements discussed earlier,
this concerns a fairly large amount of code and a high-level algorithm connecting the RUSA GUI
to the solver can be seen in Algorithm 5.1.

44

5.3 GUI - Algorithm interface 5 IMPLEMENTATION IN RUSA

Algorithm 5.1: GUI-Algorithm connection ()

IN RUSA GUI:
Choose parameters and set bounds for them: [lvj , u

v
j], j ∈ J

Choose KPIs as objective(s) and constraints
Set bounds for constraints: [li, ui], i ∈ I
Select algorithm (NNQF or NQF) and job settings

if resume optimization then
Load X = xpts and (f ,g) = KPIvals

else Create initial points X = xpts

end if

if number of objectives = 1 then
Run single objective optimization (Algorithm 4.1)

else Run multiobjective optimization (Algorithm 4.4)
end if

return

Algorithm 5.1 shows the connection between the GUI and the algorithm. First, the input data
given by the user in the GUI is extracted and formatted to suit the algorithm. If resuming the
optimization then data is loaded and if not an initial set of points is created. Then, depending
on the number of objective KPIs, the single objective or multiobjective algorithm is called. Here
run single objective optimization and run multiobjective optimization are given by the pseudo
code in algorithm 4.1 and 4.4 respectively. The only interaction that the code for the single
objective and multiobjective optimization algorithms have with the main RUSA system and its
GUI, is the function send jobs given in algorithm 5.2. It is a function that sends the jobs given
by x pts and returns the KPI values.

Algorithm 5.2: send jobs (x pts = X0, all x pts = X,T)

Generate Jobs from x pts
Write generated jobs to file and execute in Studio
Generate all jobs from all x pts (for Jobs tab)
while Jobs not Done

Wait T seconds
Update Solution status in GUI
if Some jobs are not working

Cancel those Studio jobs
end if

end while
Extracting KPIs from all jobs (for KPI Table tab)
Getting the KPI values for the chosen KPIs
Updating the GUI

return KPI values (objectives, constraints)

RUSA is a fairly complex program with many functions dealing with the connection to
Studio, creating jobsets from parameters and rules etc. The old RUSA had only one thread
requiring all actions to be fast in order for the GUI not to freeze. For the implementation in
this project, the requirements for the GUI renders this impossible, hence multithreading had to
be implemented. Due to the single threading nature of RUSA there was no support for making
calls from the Application side to the GUI side, e.g. to update the GUI. This had to be done in
order to fulfill the requirements of the GUI. The connections to Studio needed not be changed

45

5.3 GUI - Algorithm interface 5 IMPLEMENTATION IN RUSA

but the already existing modules for that could be slightly altered to fit the new requirements.
The send jobs algorithm in Algorithm 5.2 uses just this.

In Algorithm 5.2, jobs are generated from the new points x pts = X0 and they are written to
file and executed in Studio. RUSA already contained modules for generating jobs, writing jobs
to file and executing jobs; these modules were slightly modified during the new project. Then
jobs are generated from all x pts = X since then they will all be shown in the Jobs tab. The
jobs are monitored using an apc lock -file and while there exists at least one unfinished job, the
thread waits a prescribed time and then updates the GUI. There are cases where the jobs do not
run properly or some of them end up in a long queue while others finish quickly. In order not
to wait for the jobs in long queues or for the program to stop working due to non-functioning
jobs, a heuristic is implemented to cancel the jobs that pose trouble.

When the jobs are done, the KPI values are extracted, showing them in the KPI Table after
the signal has been given for the GUI to update. Then the monitored KPI objectives and KPI
constraints are returned to the single/multiobjective optimization algorithm.

46

6 EVALUATING THE ALGORITHM

6 Evaluating the algorithm

In this section the single objective and multiobjective algorithms are tested on a small benchmark
problem. This is done in order to make sure that the algorithms are working as planned before
continuing with the Carmen crew problems. The single objective algorithm is tested in Section
6.1, the KPI constraints are tested in Section 6.2 and the multiobjective algorithm is tested in
Section 6.3.

6.1 Single objective algorithm

In order to evaluate the single objective algorithm, Algorithm 4.1, it is tested on the Branin test
function [Bra72]

f(x) =

(

x2 −
5

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(

1 −
1

8π

)

cos x1 + 10 (59)

which is defined on x1 ∈ [−5, 10], x2 ∈ [0,15]. This function has no local minima except for three
global minima, x∗ = (−π, 12.275), (π, 2.275), (9.425, 2.475) with f(x∗) = 0.398.

The level curves for (59) are shown in Figure 15(a) and the other figures in Figure 15 are
level curves for the surrogate functions. In Figures 15(b)-15(d) 10 initial points are used and
3 batches of 5 points are selected by the algorithm, a total of 25 points. The initial points are
marked with stars and the subsequent points are marked by circles.

Using σ = {0, 10, 50} for the three batches and using the NQF and NNQF methods yield
Figures 15(b), 15(c) and for space filling only, i.e. σ = {0, 0, 0} Figures 15(d) and 15(e) are
given. In comparing the NQF and NNQF methods with the level curves of the exact Branin
function, the NQF method captures more essential traits of the function than the NNQF method.
However increasing the number of points to evaluate to 3 batches of 10, a total of 40 points, see
Figure 15(f), provides results more similar to the exact solution for the NNQF method. The
NQF method also provides better results when it comes to the minimum value. All three global
minima are found and their values are not far away from the analytic minima. If a point close to
the minima is found, then points too close to that one with possibly lower values can be hard to
find due to the spatial part of the weight function. Although increasing σ reduces that problem.
The NNQF method provides inferior results also when it comes to finding the lowest objective
value and with the space filling method you are only lucky if a really low function value is found.

6.2 Output constraints

The output constraints part ϕ(Sg(y)) is tested on the Branin function with the constraints6

given by
{

g1(x) = x2 −
1
2 (x1 − 1)2

g2(x) = −x2 − 3x1/2 + 10
(60)

and g1(x), g2(x) ≥ 0. The analytical constraints are shown in Figure 16 but the shape of the
output constraints surrogate functions are not shown. In the figure the same evaluation is done
as without the constraints: 10 initial points followed by 3 batches of 5 points, a total of 25
points. As can be seen in the figure, besides the initial points all the points but one are sampled
within the area D given by the constraints. There is one sampled outside the feasible region
in the upper left corner and that is probably due to that the surrogate model Sg1

(x) does not
entirely mimic the shape of the output constraint g1(x).

6The constraints are not part of any benchmark test or taken from any published reference, but chosen by the
author.

47

6.2 Output constraints 6 EVALUATING THE ALGORITHM

−6−4−2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

8
.0
0
0

8
.0
0
0

8
.0
0
0

16.000

16
.0
00

1
6
.0
0
0

24.000

2
4
.0
0
0

32.000

32.000

40.000

40.000

48.000

48.000

56.000

56.000

64.000

64.000

72.000

72.000

80.000

80.000

88.000

88.000

96.000

96.000

104.000

104.000

112.000

112.000

120.000

120.000

128.000

128.000

1
3
6
.0
0
0

136.000

1
4
4
.0
0
0

144.000

1
5
2
.0
0
0

152.000

1
6
0
.0
0
0

160.000

1
6
8
.0
0
0

168.000

1
7
6
.0
0
0

176.000

1
8
4
.0
0
0

184.000

1
9
2
.0
0
0

192.000

2
0
0
.0
0
0

(a) The exact level curves to the Branin test function

−6−4−2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

0
.0
0
0

6
.0
0
0

6.000

6
.0
0
0

1
2
.0
0
0

1
2
.0
0
0

1
2
.0
0
0

18.000

18.000

2
4
.0
0
0

24.000

3
0
.0
0
0

30.000

36.000
36.000

42.000
4
2
.0
0
0

48.000

4
8
.0
0
0

54.000

5
4
.0
0
0

60.000

60.000

66.000

66.000

72.000

72.000

78.000

78.000

84.000

84.000

90.000

90.000

96.000

96.000

102.000

102.000

108.000

108.000

114.000

114.000

120.000

120.000

126.000

132.000

138.000

144.000
150.000

156.000
162.000
168.000
174.000
180.000
186.000

(b) Using the neighborhood (NQF) method

−6−4−2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

6
.0
0
0

12.00018.000

18.000

24.000

30.000

30.000

36.000

36.000

4
2
.0
0
0

42.000

4
8
.0
0
0

48.000

5
4
.0
0
0

54.000

6
0
.0
0
0

60.000

6
6
.0
0
0

66.000

7
2
.0
0
0

72.000

7
8
.0
0
0

78.000

8
4
.0
0
0

84.000

9
0
.0
0
0

90.000

9
6
.0
0
0

96.000

1
0
2
.0
0
0

102.000

1
0
8
.0
0
0

108.000

1
1
4
.0
0
0

114.000

1
2
0
.0
0
0

120.000

1
2
6
.0
0
0

126.000

132.000

138.000
144.000
150.000
156.000
162.000

168.000174.000180.000186.000192.000198.000

(c) Using the non-neighborhood (NNQF) method

−6−4−2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

0.
00
06.
00
0

12
.0
00

1
2
.0
0
0

12.000

1
8
.0
0
0

18.000

2
4
.0
0
0

24.000

3
0
.0
0
0

30.000

3
6
.0
0
0

36.000

4
2
.0
0
0

42.000

48.000

48.000

54.000

54.000

60.000

60.000

66.000

66.000

72.000

72.000

78.000

78.000

84.000

84.000

90.000

90.000

96.000

96.000

102.000

102.000

108.000

108.000

114.000

114.000

120.000

120.000

126.000

132.000
138.000

144.000
150.000
156.000
162.000
168.000
174.000

180.000
186.000

(d) Using the NQF method with only space filling.

−6−4−2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

8.
00
0

8
.0
0
0

16.000

1
6
.0
0
0

16.000

2
4
.0
0
0 24.000

32.000

32.000

40.000
40.000

48.000

48.000

56.000

56.000

64.000

64.000

72.000

72.000

80.000

80.000

88.000

88.000

96.000

96.000

104.000

104.000

112.000

112.000

120.000

120.000

128.000

128.000

136.000

136.000

144.000

144.000

152.000

152.000

160.000

160.000

168.000

168.000
176.000
184.000
192.000
200.000

(e) Using the NNQF method with only space filling.

−6−4−2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16
8
.0
0
0

8.000

8.000

16.000

16.000
24.000

24.000

3
2
.0
0
0

32.000

40.000

40.000

48.000

48.000

56.000

56.000

64.000

64.000

72.000

72.000

80.000

80.000

88.000

88.000

96.000

96.000

104.000

104.000

112.000

112.000

120.000

120.000

128.000

128.000

136.000

136.000

144.000

144.000

152.000

152.000

160.000

160.000

168.000

168.000

176.000

176.000

184.000

184.000
192.000

(f) Using the NNQF space filling method with a total
of 40 points: 10 initial and 3 batches of 10 points.

Figure 15: The surrogate functions level curves with initial points (stars) and chosen points
(circles) with 10 initial points and 3 batches of 5 points, a total of 25 points for all figures
but 15(f). The parameter σ was set σ = {0, 10, 50} except where space filling was used, then
σ = {0, 0, 0} .

48

6.3 Multiobjective 6 EVALUATING THE ALGORITHM

The best points selected give good objective values, even better than without the constraints.
With the constraints, the feasible search domain has been reduced leading to a more dense set
of points and hence a better approximation to the real objective function in the parts of the
domain that are of interest.

−6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

0.000

5.000
5
.0
0
0

10.000
1
0
.0
0
0

15.000

1
5
.0
0
0

2
0
.0
0
0

2
0
.0
0
0

2
5
.0
0
0

2
5
.0
0
0

30.000

3
0
.0
0
0

3
5
.0
0
0

3
5
.0
0
0

4
0
.0
0
0

40.000

45.000

45.000

50.000

50.000

55.000

55.000

60.000

60.000

65.000

65.000

70.000

70.000

75.000

75.000

80.000

80.000

85.000

85.000

90.000

90.000

95.000

95.000

100.000

100.000

105.000

105.000

110.000

110.000

115.000

115.000

120.000

120.000

125.000

125.000

130.000

130.000

135.000

140.000

Figure 16: Running the algorithm with 10 initial points (stars) and 3 batches of 5 points (circles)
using the constraints (60) given by the dotted lines.

6.3 Multiobjective

To test the multiobjective algorithm, test functions ZDT1 and ZDT2 were used, see Appendix
E. In their original form the parameter space has dimension 30 and domain [0,1]30 but here
the tests are performed with dimensions 3 and 5 hence domains [0,1]3 and [0,1]5 respectively.
Function ZDT1 is convex and ZDT2 is concave as seen in Figure 17. Unless otherwise stated, 10
initial points are used followed by a number of batches Nb each containing 5 points (10+Nb×5).
In figures 17(a)-17(g) the filled line shows the analytical Pareto front and the stars show the
Pareto front given by the algorithm. The diamonds shown are evaluated solutions.

In figures 17(a)-17(d) ZDT1 is used; in the first two figures with d = 3 and the following two
with d = 5. With d = 3 it is sufficient with 20 points to capture large parts of the Pareto front
in a good way whereas for d = 5 that is not the case even for 75 points. In figures 17(e)-17(g)
ZDT2 is used with d = 3. It can be seen that 20 points provide a good approximation of the
Pareto front and that 4 points have been sampled with objective values close to the Pareto
front. In increasing the number of points to 100, as in Figure 17(g), more points are sampled
with objective values close to the front.

49

6.3 Multiobjective 6 EVALUATING THE ALGORITHM

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) ZDT1: d = 3, 15 points

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) ZDT1: d = 3, 20 points

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) ZDT1: d = 5, 30 points

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) ZDT1: d = 5 , 75 points

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(e) ZDT2: d = 3, 15 points

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(f) ZDT2: d = 3, 20 points

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(g) ZDT2: d = 3, 100 points

Figure 17: The multiobjective algorithm applied to the ZDT1 and ZDT2 functions with d = 3
and d = 5 parameters (dimensions) and different number of points (function evaluations). The
filled line is the analytical Pareto front, the stars correspond to the Pareto front given by the
algorithm and the diamonds are evaluated solutions.

50

7 RESULTS: EVALUATING ADDITIONS TO RUSA

7 Results: Evaluating Additions to RUSA

In evaluating the additions to the RUSA program: Parameter Optimization and Prediction
Model, a few test cases are considered. In particular, for the Parameter Optimization there
were three Pairing test cases available during this project, all of which have one objective,
five parameters and five output constraints. The difference between the cases is the range of
the output constraints, hence the set D is different. The test settings for the parameters and
output constraints are presented in Appendix A and the results are presented in Section 7.1 and
Appendix C.1.

For the Prediction Model, the same test case is used but with D = R5, hence no output
constraints. The results are presented in 7.2

Since the Rostering and Pairing problems are quite different in structure, RUSA is also
tested for a Rostering optimization problem. The test description and parameters are presented
in Section 7.3 together with the results for the rostering problem. The best found solutions are
presented in Appendix C.2. For the rostering problem the domain consists of five parameters
where three of them are Boolean and two are integer valued, with no KPI (output) constraints
present.

7.1 RUSA automated optimization

The following Pairing tests consist of one objective KPI and five KPI constraints as seen in
Appendix A. However, in Section 7.1.1 all, or some, KPI constraints are relaxed in order to
analyze how the solver handles the structure of the problem as well as for reference. In Section
7.1.2 the results for the three main test cases, seen in Appendix A, are presented and lastly, in
Section 7.1.3, multiobjectivity is tested.

The three main test cases are denoted T1, T2 and T3 respectively and if more than one test is
run for a particular test case, then those are enumerated by super scripts (T 1

1 , T 2
1). The relaxed

problems are denoted T0.1, T0.2.
Unless stated otherwise, the results are produced using 10 initial points (ninit = 10) followed

by 18 batches of 5 points (Nb = 18, Np = 5) which is abbreviated 10 + 18 × 5. Also, the
setting used for σ is the one given in Section 4.2.1, hence for 10 runs the following is used
(0,0,5,5,5,10,10,20,20,50) unless stated otherwise.

7.1.1 Single objective: Relaxing some KPI constraints

Two tests are performed with relaxed KPI constraints. First, for reference, no KPI constraints
are used to get a feeling of what the best possible solution is.

T0.1 All KPI Constraints Relaxed.

With no KPI constraints there are no further restrictions on the domain Ω except for integrality
in some dimensions. Comparing the results for T0.1 in Table 2 with the three test cases in Table
6 it is notable that if this test was done for test cases 1 and 2 then all KPI values except for
aircraft changes would have been within the bounds D. However, aircraft changes is exceeded
by quite a large amount and all the solutions with low APC Total Rule Cost have a high value
for aircraft changes as seen in Figure 25(a). Also a large duty time per working day is better for
the APC Total Rule Cost as seen in Figure 25(b). These two figures have correlations very close
to −1 hence comparing duty time per working day and aircraft changes as done in Figure 25(c)
they are highly positively correlated. Since there is a lower bound on duty time per working day
(for Cases 1,2) and an upper bound on aircraft changes, these are conflicting and hence there
must be a trade-off. With a high correlation, the dependencies are easier to deal with if they

51

7.1 RUSA automated optimization 7 RESULTS: EVALUATING ADDITIONS TO RUSA

20 40 60 80 100
Number of jobs

2700000

2800000

2900000

3000000

3100000

3200000

3300000

A
P
C

 T
o
ta

l
C

o
st

Min value
Mean 5 lowest values

(a) 10 initial runs and 18 batches of
5 runs.

10 15 20 25 30 35 40 45
Number of jobs

2700000

2800000

2900000

3000000

3100000

3200000

3300000

A
P
C

 T
o
ta

l
C

o
st

Min value
Mean 5 lowest values

(b) 10 initial runs and 18 batches of
2 runs.

10 20 30 40 50
Number of jobs

2700000

2800000

2900000

3000000

3100000

3200000

3300000

A
P
C

 T
o
ta

l
C

o
st

Min value
Mean 5 lowest values

(c) 10 initial runs and 5 batches of 8
runs.

Figure 18: The development of the minimum value of APC Total Rule Cost as a function of the
number of jobs. Also the mean of the five lowest values is presented.

would have been investigated by hand. Although, looking at how APC Total Rule Cost depends
on Number of 4-day trips in Figure 25(d) the dependence is more complicated. Also Number of
4-day trips and aircraft changes have a non-trivial dependence, see Figure 25(e). In reducing
the upper bound of both these KPIs, which is done in Test Case 2 and 3, there are very few of
the parameter settings in test T0.1 that will be feasible, as seen in Figure 25(e).

Table 2: Consider the two relaxed optimization problems T0.1 and T0.2. For each of these two
optimization problems, the table shows KPI values for the best feasible solutions found.

KPI T0.1 T0.2

APC total rule cost 2 703 312 2 710 072
average block time per working day 4:24 4:24
deadhead time 44:35 46:10
aircraft change 308 299
duty time p.w.d 8:01 8:02
Number of 4-day trips 75 77

For the results in Table 2, 10 initial points have been used followed by 18 batches of 5 points.
It is of interest how fast the lowest value is found and this is done for test T0.1 with three different
settings: 10 initial points and then 18 batches of 5 points (10 + 18 × 5) as well as 10 + 18 × 2
and 10 + 5 × 8 points. Figure 18 shows the results. The minimum objective function value is
shown together with the mean of the five lowest objective function values. In Figure 18(a), with
18 batches of 5 jobs, the achieved minimum objective function value (2 703 312) is reached after
70 jobs and when σ increases, the mean of the five lowest objective function values decreases
and is very close to the minimum value. In figure 18(b) with 18 batches of 2 jobs the achieved
minimum objective function value (2 707 299) is reached after 28 jobs. Also here the mean is
catching up with the minimum objective function value when σ is increased. In figure 18(c),
with 5 batches of 8 jobs, the achieved minimum objective function value (2 707 051) is reached
after 42 jobs.

The NNQF method was used to produce the results in Table 2. The reason for that is dis-
cussed near the end of Section 7.1.2. The parameter settings for those results can be found in
Appendix C.1. Since aircraft changes is the main bottleneck, at least for Test Cases 1 and 2,
test T0.2 is run.

52

7.1 RUSA automated optimization 7 RESULTS: EVALUATING ADDITIONS TO RUSA

T0.2 Relaxing the KPI Constraint aircraft changes for Test Case 1

As seen in Table 2, the feasible solution to the relaxed problem T0.2 with the lowest objective
value, is 0.25% higher than the feasible solution to the entirely relaxed problem T0.1 with the
lowest objective value. There is also a solution whose objective value is 0.05% lower than the best
found in T0.1, however for that, deadhead time is above the upper bound, 50:00. There are many
jobs run with deadhead time close to 50:00, both above and below, which could be attributed
to the error in the surrogate modeling. So, limiting the domain through KPI constraints that
do not impose much constraint on the best parts of the domain, can actually help guiding the
solver towards better minima. This was also seen when evaluating the algorithm in Section 6.2.

7.1.2 Single objective: Using all KPI constraints

With the relaxed tests in Section 7.1.1 as reference and with some knowledge about the trade-offs
in the problem, the three main test cases are run:

T1 Test Case 1

For test case 1, two tests (T 1
1 , T 2

1) are performed, for reasons that will be explained below. Table
3 shows that test T 1

1 gives a best objective value that is 2.2% higher than the best found in the
relaxed test T0.2. As a reference, the best obtained objective value is also 2.2% higher than the
best for T0.1.

The toughest constraint, aircraft changes, is not fulfilled since there are 25 aircraft changes
too many but it is a lot closer to feasibility than before. Not a single solution is entirely feasible
when it comes to KPI constraints although some are very close. When running an additional 20
batches of 5 jobs, several feasible solutions arise and the best one is T 2

1 which has an objective
value that is 4.1% larger than that in T0.1. With 10 initial runs followed by 5 batches of 8 jobs
the best feasible solution found has an objective value that is 2.3% higher than the objective
value for the best feasible solution found for test T1.

T2 Test Case 2

In test T2 the same solution as in T 1
1 is found although it also finds a feasible solution which is

the one presented in Table 3. The objective value for this solution is 6.2% higher than the best
for the entirely relaxed problem T0.1. The KPI aircraft changes is in this case the constraint
that puts most restriction on the feasible domain close to the optimum. With 10 initial runs
followed by 5 batches of 8 jobs the best feasible solution found has an objective value that is
0.9% higher than the objective value for the best feasible solution found for test T2.

T3 Test Case 3

For test T3 the best feasible solution found is presented in Table 3 and the corresponding objective
value is 19.4% higher than the best objective value found for T0.1. It is notable that 70% of
the sampled points are feasible where most non-feasible points are sampled when σc = 0, hence
when the KPI constraints are not used. The KPI constraint aircraft changes is active but also
Number of 4-day trips is close to its bound. With 10 initial runs followed by 5 batches of 8 jobs,
the best feasible objective value found was 2.2% higher than the objective value for the best
feasible solution found for test T3.

In Figure 19 the aircraft changes vs APC Total Rule Cost is plotted for tests T0.1, T1 and
T3. From having a large emphasis on the interval 200-300 in Figure 19(a) the plot has been
shifted to the left as the upper limit on aircraft changes is lowered in the subsequent figures. In

53

7.1 RUSA automated optimization 7 RESULTS: EVALUATING ADDITIONS TO RUSA

Table 3: KPI values for tests T 1
1 , T 2

1 , T2 and T3 for the Automated Optimization where T 1
1 and

T 2
1 are two tests instances for test T1.

KPI T 1
1 T 2

1 T2 T3

APC total rule cost 2 762 307 2 812 856 2 861 166 3 226 121
average block time p.w.d 4:14 4:06 4:02 3:27
deadhead time 44:40 40:30 44:00 40:15
aircraft change 215 180 164 95
duty time p.w.d 7:45 7:31 7:25 6:22
Number of 4-day trips 68 74 64 27

0 100 200 300
aircraft changes

2500000

3000000

3500000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to aircraft changes

(a) APC Total Rule Cost vs air-

craft changes for T0.1

0 100 200 300
aircraft changes

2500000

3000000

3500000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to aircraft changes

(b) APC Total Rule Cost vs air-

craft changes for T1.

0 100 200 300
aircraft changes

2500000

3000000

3500000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to aircraft changes

(c) APC Total Rule Cost vs air-

craft changes for T3.

Figure 19: APC Total Rule Cost vs aircraft changes for no KPI constraints in a), Test Case 1
in b) and Test Case 3 in c).

Figure 19(b), for T 1
1 , the upper limit on the KPI constraint in question is 190 and the interval

which is sampled most frequently is 150-220 and in particular 150-180. In Figure 19(c), for T3,
the upper limit on the KPI constraint is 100 and a clear shift to the left can be noted with the
most prominent region being 60-90.

As noted earlier these results have been produced using the NNQF method. This is due to
that fact that the NQF has produced inferior results for these test cases. In fact the results with
the NQF were in average 2% higher than those using the NNQF method. In some cases they
were the same but never better.

Changing the values of σ in a different way e.g. cycling using the vector (0,5,10,10,10,20,
20,20,50,50) instead of (0,0,5,5,5,10,10,20,20,50) provided a new best found solution with ob-
jective value 2 698 552 for test T0.1 but for other tests the results were slightly worse. The
development of the minimum value as a function of the number of evaluations is seen in Figure
20(a) where the rapid convergence should be noted.

A space filling test was also performed with σ = (0,0,0,0,0,0,0,0,0,0). The best objective
value was more than 2.5% higher (2 771 731) than the best found and the following four best
solutions are significantly higher. In Figure 20(b) the difference between the minimum value
and the mean of the five lowest values shows just this.

7.1.3 Multiobjective optimization

The multiobjective algorithm is tested on the same main problem as earlier. From the figures in
Figure 25 the most interesting multiobjective cases, amongst those combinations of KPIs shown
in the figures, are Figures 25(d) and 25(e). The other plots are too highly correlated. Using
Number of 4-day trips and aircraft changes as objectives the results can be seen in Figure 21.

54

7.2 RUSA prediction model 7 RESULTS: EVALUATING ADDITIONS TO RUSA

20 40 60 80 100
Number of jobs

2700000

2800000

2900000

3000000

3100000

3200000

3300000

A
P
C

 T
o
ta

l
C

o
st

Min value
Mean 5 lowest values

(a) Test with a different σ cycling.

20 40 60 80 100
Number of jobs

2700000

2800000

2900000

3000000

3100000

3200000

3300000

A
P
C

 T
o
ta

l
C

o
st

Min value
Mean 5 lowest values

(b) Space filling test.

Figure 20: The development of the minimum value of APC Total Rule Cost as a function of the
number of jobs. Also the mean of the five lowest obtained values is presented. Both (a) and (b)
correspond to test T0.1 which has no KPI constraints.

The reference case with APC Total Rule cost in 21(a) (the same as 25(e)) can be compared to
the multiobjective case in Figure 21(b). The multiobjective plot captures what seems to be the
Pareto front in a good way although it is not very well spread out. In Figures 21(c) and 21(d)
the same is done for the KPIs Number of 4-day trips and APC Total Rule cost. The algorithm
focused solely on one part of the Pareto front namely in the lower left corner.

7.2 RUSA prediction model

The prediction model aims at, as accurately as possible predict the behavior of KPIs for any
given combination of parameters. Therefore the error in the model is observed: comparing the
surrogate and the real function, as the algorithm progresses. The KPI for which the error is
calculated is APC Total Rule Cost. The error e(x) is calculated as the difference between the
value of an evaluated point and what the prediction model predicted beforehand. It is also
normalized in some way according to one of e1(x) and e2(x) given in (61) where fmin and fmax

are the minimum and maximum of the evaluated objective values respectively.

e1(x) =
|S(x) − f(x)|

f(x)
, e2(x) =

|S(x) − f(x)|

fmax − fmin
(61)

Recall from Algorithm 4.1 the definition of X0 as the set of points constituting a batch of
jobs to be run simultaneously. Running Np jobs simultaneously (X0 = {x1,x2, . . . ,xNp}) and
calculating the error for each point as described earlier, then for each batch of jobs, the vector
of errors is given by eX = (ek(x1), ek(x2), . . . , ek(xNp)) for some k ∈ {1,2}.

As a measure of the total error, the norms ‖eX‖t are used with t ∈ {1,2,∞}. These norms
are calculated for each batch of Np jobs and plotted against number of iterations as a measure
of how the error in the model changes. With no KPI constraints, the error, as described above,
is shown in Figure 22 where also the trends are shown by the dashed lines.

A setting for the prediction model is space filling and with that setting the plots in Figure
26(a) in Appendix D are created. Both measures of error are decreasing as the number of jobs
increase. The error for the non-space filling method is slightly lower than for the space filling
method when comparing Figures 22 and 26(a) although the error varies between batch. These
tests are resumed and used in Figures 26(b) and 26(c) to investigate the error if adding 10
additional batches of 5 points in a space filling manner. In Figure 26(b), the space filling test in

55

7.2 RUSA prediction model 7 RESULTS: EVALUATING ADDITIONS TO RUSA

0 100 200 300
aircraft changes

−20

0

20

40

60

80

100

120

N
u
m

b
e
r

o
f

4
-d

a
y
 t

ri
p
s

Distribution of Number of 4-day trips
relative to aircraft changes

(a) Number of 4-day trips vs aircraft changes with APC

Total Rule cost as objective.

−50 0 50 100 150 200 250 300
aircraft changes

−20

0

20

40

60

80

100

N
u
m

b
e
r

o
f

4
-d

a
y
 t

ri
p
s

Distribution of Number of 4-day trips
relative to aircraft changes

(b) Multiobjective case with number of 4-day trips and
aircraft changes as objectives.

−20 0 20 40 60 80 100 120
Number of 4-day trips

2500000

3000000

3500000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to Number of 4-day trips

(c) Number of 4-day trips vs APT Total Rule cost with
the latter as objective.

−20 0 20 40 60 80 100
Number of 4-day trips

2600000

2800000

3000000

3200000

3400000

3600000

3800000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to Number of 4-day trips

(d) Multiobjective case with number of 4-day trips and
APC Total Rule cost as objectives.

Figure 21: Comparing the KPIs Number of 4-day trips and aircraft changes in the case of no
KPI constraints and APC Total Rule cost as objective in (a) and the multiobjective case with
the two KPIs as objectives in (b). Plots (c) and (d) are created in analogy with the two previous
plots but for KPIs Number of 4-day trips and APC Total Rule cost.

56

7.3 RUSA: Rostering test case 7 RESULTS: EVALUATING ADDITIONS TO RUSA

Figure 26(a) has been resumed, and it is clear that the trend is a continuing decrease in error.
In Figure 26(c), which is a continuation of Figure 22, it is apparent that the error increases by
a substantial amount, at least initially when adding the extra points.

20 30 40 50 60 70 80 90 100
Number of jobs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
P
C

 T
o
ta

l
C

o
st

Error in 1-norm

Error - e_1

Error - e_2

20 30 40 50 60 70 80 90 100
Number of jobs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Error in 2-norm

Error - e_1

Error - e_2

20 30 40 50 60 70 80 90 100
Number of jobs

0.00

0.05

0.10

0.15

0.20

0.25
Error in max-norm

Error - e_1

Error - e_2

Figure 22: For no KPI constraints, hence test T0.1: the measures of error e1 and e2 given in
(61) for 10 initial points followed by 18 batches of 5 points. The dashed lines show the linear
regression trends.

7.3 RUSA: Rostering test case

The rostering test case used in this thesis work was set up in such a way that only five of all the
algorithm parameters were allowed to change values; these five parameters are presented in Table
4 together with their ranges. The parameters are anonymous and named Rostering parameter1-
Rostering parameter5. All five parameters are integer valued where three are Boolean and one
of the other two has a range that is large enough to allow for that variable to be treated as a
continuous variable. There are no KPI constraints and the goal is to find the solution with the
lowest KPI Cost.

Table 4: Parameters used and their ranges

Parameter Min Max Type

Rostering parameter1 0 100 Int
Rostering parameter2 False True Bool
Rostering parameter3 False True Bool
Rostering parameter4 False True Bool
Rostering parameter5 1 5 Int

The jobs took 40-100 minutes to complete and the problem was larger than the down-scaled
pairing problem discussed earlier. The lowest objective value found was 664574 and it was
found both with the usual σ-cycling method and the space filling method. However, for the
space filling method it is found in the last batch as can be seen in Figure 23. The parameter
settings for these solutions can be found in Appendix C.2. The solutions differ in the value
for Rostering parameter5, however, the parameter Rostering parameter4 has been set to “False”
causing Rostering parameter5 to have no effect on the results.

The best solution found can be compared to the results using the standard settings for
the matador script: the so called matador standard script. The cost corresponding to the
matador standard is 693878 which is 4.4% higher than the best found using RUSA. In Figure
27 in Appendix F the progress of the cost during the optimization can be seen for the matador

57

7.3 RUSA: Rostering test case 7 RESULTS: EVALUATING ADDITIONS TO RUSA

standard as well as for the best found solution. The matador standard script finished after 60
minutes and hence it was run twice in order to be able to make a fair comparison with the best
found solution using RUSA, which ran for 110 minutes.

The error for these runs is presented in Figure 24 together with the linear regression trend.
For the space filling, the error decreases whereas it increases for the non-space filling test. It
should be noted that the rostering optimizer is based on a local search principle and is quite
heuristic in nature. The objective value obtained can often vary quite a lot depending on small
changes in input for the optimizer. Examples of such small changes are a small change for
the value of an algorithm parameter or just a change of the random seed used for the random
generator that is used in the rostering optimizer. This is further discussed at the end of Section
8.

20 40 60 80 100
Number of jobs

664000

666000

668000

670000

672000

674000

676000

678000

A
P
C

 T
o
ta

l
C

o
st

Min value
Mean 5 lowest values

(a) The usual σ-cycling.

20 40 60 80 100
Number of jobs

664000

666000

668000

670000

672000

674000

676000

678000

A
P
C

 T
o
ta

l
C

o
st

Min value
Mean 5 lowest values

(b) Space filling.

Figure 23: The development of the minimum value of Cost for the rostering test case as a
function of the number of jobs where also the mean of the five lowest values is presented. There
are 10 initial runs followed by 18 batches of 5 runs.

20 30 40 50 60 70 80 90 100
Number of jobs

−0.02

0.00

0.02

0.04

0.06

0.08

0.10
Error in 2-norm

(a) The usual σ-cycling.

20 30 40 50 60 70 80 90 100
Number of jobs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
Error in 2-norm

(b) Space filling.

Figure 24: The error e1(x) as described in (61) for each batch of jobs for the rostering test case,
as a function of the number of jobs. There are five jobs in each batch

58

8 DISCUSSION AND FUTURE RESEARCH

8 Discussion and future research

The goal of this project was to create and implement a functioning parameter optimization
algorithm, as well as a prediction model tool, into a GUI to be used on the pairing and rostering
optimizers at Jeppesen Systems. The requirements in particular have been discussed earlier and
concern among other things KPI constraints, integrality constraints and several objectives. The
RUSA GUI that was used, and to which the Automated Optimization and Prediction Model
parts were added, was written in Python. The necessary additions needed to be very entangled
into the already existing code hence it was decided that the project should be written in Python.

This section will discuss the results presented in the previous section and the algorithm in
general, namely the algorithm construction in Section 8.1, the algorithm results in Section 8.2
and the RUSA results in Section 8.3.

8.1 Algorithm construction

The Quality function was chosen for its flexibility, especially when it comes to extending to
the multiobjective case. The cycling between global and local search is easily done using a
parameter σ which is also a measure of trust that can be placed in the surrogate model. This
is also done in most other methods but in different ways. Increasing σ too fast can lead to
premature convergence with too much focus on local search whereas increasing it too slow can
cause the algorithm to focus extensively on global search.

In order to deal with the output constraints, a multiplicative penalty function was chosen
instead of a more traditional additive penalty function as in (8). This decision removed the choice
of penalty parameters but instead introduced σc to account for the trust that can be placed in
the KPI constraint surrogate. By implementing the constraints in this way, a constraint cannot
be penalized individually but all constraints are penalized by the same amount, which could
be seen as a draw-back. Individual values for σc for each constraint could be implemented,
depending on some measure of trust that can be placed in each surrogate, hence making it more
adaptive. Another method for adaptivity would be to place more points where the function
varies a lot. It could be implemented in a function similar to ϕ(·) and depend on S(x) and X.
There are adaptive methods whose adaptive features perhaps could be fitted to this problem
e.g. the ARBF algorithm [HQE08, Qut09].

Not allowing connections to TOMLAB, which is a MATLAB module that has a variety of
global optimization solvers and even some black-box solvers, due to licensing reasons rendered
the necessity for some other stand alone Global Optimization Solver. The simplest solution was
to code one in Python and the DIRECT method was fairly simple to understand an implement.
The performance of this global optimization solver is therefore not as good as for commercial
solvers but it proved sufficiently good for some initial tests. The problem with the whole quality
function method combined with the DIRECT solver is that when increasing σ the weight function
ω(S(x)) gets increasingly narrow around the surrogates minima. This would be a problem for
any Global optimization solver and in particular this one. When finding the x corresponding to
the minimum of the surrogate it is therefore better to minimize S(x) than ω(S(x)) with σ = ∞.

In incorporating the integrality constraints into the algorithm it would have been favorable
to pass them along to a Global optimization solver that handles integrality constraints (as well
as non-linear constraints). However, the algorithm at hand was the DIRECT algorithm which
has no such features and hence a penalty function was introduced to push the points in the right
direction, followed by rounding to the nearest integer. The problem with an overly oscillating
function to maximize is eminent hence caution has to be taken. For parameters which are integer
valued but have a large range in values they are seen as continuous. This is done in order to
help the DIRECT solver deal with fewer oscillations and since in most cases that continuous

59

8.2 Algorithm evaluation 8 DISCUSSION AND FUTURE RESEARCH

relaxation is a good approximation.

8.2 Algorithm evaluation

In testing only the algorithm on the Branin function, as in Section 6.1, the results were good.
The minimum objective values were close to the analytical one and points were sampled close
to all three global minima of the function. This test was primarily made to make sure that the
algorithm was working as expected, not for comparison. However, comparing with the results
given in [JPRW09] their results gave a faster convergence when it comes to the number of points
sampled and a higher accuracy. This may to some extent be attributed to the DIRECT solver
used but also that in this project several points are chosen to be processed in parallel which does
not allow for the surrogate model to gradually converge. However, running several parallel jobs,
the same amount of time will allow considerably more data to be collected, therefore the tests
are not really comparable. The NQF provided better results than the NNQF as can be seen in
Figure 15, however increasing the number of points resulted in a decreased difference.

The output constraints were added in Section 6.2 and they reduced the feasible domain very
efficiently making the algorithm sample points only in, or close to the boundary of the feasible
domain. The idea of the output constraints function seems to be working well, although the
constraints were not very complicated.

The multiobjective case was not the main use case in this project and the scope was limited
to two objectives. The algorithm was tested on test functions as seen in Section 6.3. For the
lower dimensional cases, but still two objectives, the algorithm provided results that were close
to the analytical Pareto front. For higher parameter dimensions the algorithm had a harder
time capturing the Pareto front. Since TOMLAB was not available, a Python MOEA solver
was used to find the Pareto front of any given function. The solver worked well as seen in figure
12(a) but it is not as good as commercial solvers such as those in the TOMLAB package.

When dealing with the task of finding or approximating the Pareto front, hence multiob-
jective optimization, it is usually of interest to find a well spread out set of solutions along
the Pareto front. This is not directly considered in the algorithm but is considered indirectly
through UX(x) if the Pareto optimal set of points is clustered in Ω. Consider a case where the
Pareto front is not approximated as continuous, even though it is. Instead the Pareto front is
approximated as disjoint clusters; this is the case in most figures in Figure 17. In such a situa-
tion there is a higher probability that points with objective values close to the non-continuous
Pareto front are picked by the algorithm. That does in general not lead to a well spread out
set of Pareto optimal points. Making the Pareto front more dense and extending it in between
points fixes this to some extent but in e.g. Figure 17(c) it does not. Also, extending it upwards
and to the right is a good idea in principle although as can be seen in Figure 17(c), it does not
always work. In that case, extending it along the tangent of the Pareto front would have proven
more effective.

8.3 Evaluation of additions to RUSA

In order to evaluate the additions to RUSA, several tests were considered where the Pairing
tests are discussed first. The unconstrained case was assumed to provide the best result when
it comes to the KPI objective APC7 Total Rule cost, at least mathematically. However, adding
constraints that do not impose restrictions on the parts of the domain where the best solutions
exist seem to help the solver towards better solutions. This was also seen when testing on
the Branin function. The addition of non-active constraints only caused the objective value
corresponding to the best solution to improve by a fraction of a percent. The seed for the

7APC=Automatic Paring Construction

60

8.3 Evaluation of additions to RUSA 8 DISCUSSION AND FUTURE RESEARCH

random number generator used when selecting the initial set of points also had an effect on the
result that was of the same, or slightly lower, magnitude.

For these runs 10 initial points followed by 18 batches of 5 points was used (10+18×5). This
may be too many to use in some cases hence it is of interest to see how the algorithm performs
with a different number of points. In Figure 18 the development of the minimum objective value
is shown, depending on the number of jobs: 10 + 18 × 5 as well as 10 + 18 × 2 and 10 + 5 × 8.
All three provide similar results and the first one which has twice the amount of points is only a
fraction of a percent better than the other two. The fraction of global to local search is the same
for the three different sampling settings hence with more batches the global search is conducted
for more points. Therefore a solution with 50 points can not be compared with the value after
50 points for a run with 100 points: the local search has simply not started yet. It seems that
fewer points do not provide much worse results and also small batches give a faster convergence
when it comes to the number of points. However, in using smaller batches for a fixed number of
points, the whole algorithm run takes longer to complete.

The KPI constraint that appears to be the constraint that puts most restrictions on the
feasible region close to the optimum was aircraft changes. That KPI constraint is active8, or
almost active, in all three major test cases seen in Appendix A and in each test case the upper
bound for aircraft changes is lowered. Judging from Figure 25(a), this fact should apriori mean
that the APC Total Rule cost gets higher and the results confirm that hypothesis. From Figure
19 it is clear that the KPI constraints function is working as it should with many sampled points
with the KPI aircraft changes below its upper bound. When using 10 + 5× 8 points the results
were 1− 2% worse than when using 10 + 18× 5 points which probably stems from the fact that
the solver does not have time to sufficiently refine the surface in order to accurately capture
the parts of the domain where the good solutions are. With no KPI constraints, the way the
sampling was done did not have an equally large effect on the results, as mentioned earlier.

It seems as if the algorithm finds a KPI value of 156 where 190 is the maximum limit (as in
T1) then many other points will be sampled with KPI value around or equal to 156. Finding
something closer to 190 has been proven difficult. It may be the surrogate model that oscillates
or the fact that there are not enough sampled points where the result would show a value of 190
and so the surrogate falsely predicts that the value is too high and hence penalizes that region.
There will always be an uncertainty in the model and hence using the KPI constraints it can
never be ensured that no feasible points are penalized. In cycling σc this is taken into account
but the problem is still there.

Using a different cycling scheme for the weight function, hence changing σ in a different
way enabled the solver to find a slightly better solution although the same discussion as earlier
concerning the seed is also true for this case. Also, the setting for σ that provided better results
for the case with no KPI constraints did not do so in the other test cases; then the results were
instead slightly higher which could be attributed to too rapid convergence in the wrong areas.
The KPI constraints obviously make the problem significantly harder than the box-constrained
case with no KPI constraints. An improvement for the GUI and the algorithm would be to allow
the user the option of changing the way that σ is cycled. Also, the current construction does
not allow for a KPI to be both a constraint and an objective, something that may be of use.
That is however not too hard to implement.

As noted on earlier, the NNQF provided superior results in comparison with the NQF for the
RUSA cases but for the Branin tests it was the other way around. In addition, the NQF requires
more CPU time since it involves numerical integration and solving LP problems, making it even
less favorable. The most plausible explanation for the difference in performance between the

8An active constraint is an inequality constraint that holds with equality (at a point). The set of all active
constraints generally includes equality constraints too.

61

8.3 Evaluation of additions to RUSA 8 DISCUSSION AND FUTURE RESEARCH

Branin and RUSA cases is the fact that the Branin test function is a smooth function whereas the
Carmen test cases have a few complicating features. One of those is that the Studio jobs, hence
the function evaluations, do not run until optimality is reached. As a consequence, sometimes
a slight change in parameter values might trigger a better solution to be found. This is a larger
factor for Rostering than for Pairing but it can still have an impact on these results, e.g. for an
integer valued parameter with range 20000, a change from 5 to 6, or 5 to 4, creates a change in
output value (APC Total Rule cost) that cannot be seen as smooth. This causes the surrogate
to oscillate in a non-preferable way. To account for this, the interpolation requirements could
have been relaxed allowing the surrogate not to pass through each point. There are methods for
that e.g. in [JPRW09]. An initial assumption was that since the Carmen crew optimizers are
deterministic they do not contain noise, although judging from the results they can be seen as
doing so. A relaxed interpolation requirement would create a smoother surface although since
the solutions have proven discontinuous at times, essential traits of the function could be lost.
This is a problem, in particular for the Prediction Model. Also different transformations of the
objective function have been considered although none were implemented in the final RUSA
program.

The Prediction Model was evaluated measuring the error in the objective KPI between the
predicted value and the outcome. For the space filling search as well as the case with no KPI
constraints, the error decreased. For the case of no KPI constraints the results are somewhat
misleading since points may be sampled very close to each other when σ increases but for the
space filling it is a good measure of the over-all error in the surrogate model. Continuing with 10
batches of 5 points in a space filling manner shows that the test that did not have space filling
initially gave a large error whereas the error for the space filling test continued to decrease. This
is logical and proves that space filling should be used for the Prediction Model. When using
the Prediction Model tab in RUSA, the problem mentioned above with an oscillating surrogate
function can be observed. However, the Prediction Model gives an estimate of what the observed
KPI values are and there is always the possibility of checking the results by running the job. It
would have been informative to test the performance of the Kriging Surrogate method compared
with the RBF as well as other radial functions such as thin plate spline for the Carmen test cases.
Since this was not assumed to vastly improve the results and there are excellent comparisons in
the literature [Jon01], this was not pursued.

The multiobjective algorithm is very similar to the single objective algorithm which is also
why the weight function was chosen to begin with. There are no analytical solutions to com-
pare the results in Figure 21(b) with although in comparing with Figure 21(a) the results are
promising. Though, the drawback with a non-well spread out set of points as discussed earlier
can be seen in Figure 21(d) where there is only a part of the Pareto front sampled. The spatial
function UX(x) aims at putting distance between evaluated points in the domain. In general,
the spatial function does not, however, give a well spread out set of points in the co-domain of
the objective functions. Therefore, something similar could be constructed for the co-domain of
the objective functions and included as a penalty function.

The rostering test case was not as extensive as the Pairing test case which has been rather
thoroughly discussed and analyzed above. A few things can be said about the results: most
of which concern the structure of the Rostering Optimizer. The error in the space filling test
decreases as would be expected although it is increasing for the non-space filling test. An expla-
nation for this could be found analyzing the structure of the Rostering problem and Rostering
optimizer. As discussed earlier, a small change in parameter values can trigger the optimizer
to find a solution that differs considerably. For the Rostering optimizer this is a large issue,
especially for the surrogate modeling since then the “real objective function” is highly discon-
tinuous, much more so than in the Pairing case. This causes an oscillating surrogate function

62

8.3 Evaluation of additions to RUSA 8 DISCUSSION AND FUTURE RESEARCH

where points are selected close to each other leading to large errors. In increasing σ, points are
usually selected close to each other where the value is predicted as low and hence then the error
is large. For the space filling test this does not happen to the same extent which can be reflected
in the results. However, the fact that the error is larger in the non-space filling case than in the
space filling case does not automatically mean that the end result will be worse. With a high σ,
the algorithm samples at a point where the value is predicted low. If the prediction is wrong in
such a way that a predicted value is much too low, the real value may still be very good.

Even though there are problems arising because of the structure of the rostering problem,
the objective value for the best rostering solution found was considerably better than the best
objective value using the matador standard settings. Changing the random seed for the Rostering
optimizer gives different results, however in average the best found solution is still better than
the one found using matador standard. Also, in changing the seed, the problem changes and
there is no way that the best setting for one problem can be guaranteed as being good for a
different problem. If there is a different seed, then there is probably another best solution and
the algorithm would find solutions close to that one instead.

Matador standard runs only for 60 minutes whereas the best found parameter setting makes
the optimizer run for 110 minutes. The script was therefore run twice for matador standard
in order to compare the results. As can be seen in Figure 27 in Appendix F, the cost for the
tuned solution was also lower than the cost for matador standard after 60 minutes. Moreover,
in the interval 60-110 minutes, the tuned solution gives a larger improvement than the matador
standard settings. Manual tuning of the matador standard script by experienced engineers would
most definitely lower the cost when comparing to matador standard but their results would not
necessarily be lower than the best solution found using RUSA. Even if the manual tuning would
provide a better solution than the automated search using RUSA, that should not diminish the
RUSA results since the largest advantage of the algorithm is that no manual tuning is needed.
After the automatic tuning is done, hopefully giving a good solution, manual fine tuning could
follow in order to see if even better neighboring solutions exist.

The additions to the RUSA GUI was not the main focus of this thesis but a lot of effort
has been spent on making the additions (the Automated Optimization and Prediction Model
tabs) work and making them user friendly. Besides the possible additions mentioned earlier, in
particular relaxing the interpolation requirements, and a few non-essential bugs, the subjective
view of the author is that there are not that many more features and fixes that the GUI would
benefit from in its present state. Hopefully it will be of use and added to if necessary.

Final note from the author: In writing one of the final sentences of this thesis I noticed that in
one of the last paragraphs in [JPRW09] the addition of expensive black-box constraints to the
algorithm is briefly discussed.

63

REFERENCES REFERENCES

References

[AJD06] Charles Audet and Jr J.E. Dennis. Mesh adaptive direct search algorithms for constrined optimiza-
tion. SIAM Journal of Optimization, 17(1):188–217, 2006.

[AO06] Charles Audet and Dominique Orban. Finding optimal algorithmic parameters using derivative-free
optimization. SIAM Journal of Optimization, 17(3):642–664, 2006.

[BHH87] George E.P. Box, William G. Hunter, and J. Stuart Hunter. Statistics for Experimenters: An

introduction to Design, Data Analysis, and Model Building. Wiley Series in Probability and Math-
ematical Statistics. John Wiley & Sons, 1987.

[BP76] Egon Balas and Manfred W. Padberg. Set partitioning: A survey. SIAM Review, 18(4):710–760,
1976.

[Bra72] F.H. Branin. A widely convergent method for finding multiple solutions of simultaneous nonlinear
equations. IBM Journal of Research and Development, 16(5):504–522, September 1072.

[CL05] Carlos A. Coello Coello and Gary B. Lamont, editors. Applications of multi-objective evolutionary

algorithms. World Scientific Publishing Co Pte Ltd, 2005.

[dHMHvD07] Dick den Hertog, Hans Melissen, Bart Husslage, and Edwin van Dam. Maximin latin hypercube
design in two dimensions. Operations Research, 55(1):158–169, 2007.

[Dri08] Joel Driessen. The rule sensitivity analysis project. Master’s thesis, Uppsala University, 2007-2008.

[Fas03] Greg Fasshauer. Handout: 603 multivariate meshfree approximation, positive definite and com-
pletely monotone functions. Depertment of Applied Mathematics, Illiniois Institute of Technology,
2003. Available at: http://amadeus.math.iit.edu/∼fass/603 ch2.pdf (2010-07-13).

[Fin03] D. E. Finkel. Direct optimization algorithm user guide. Technical report, North Car-
olina State University, Center for Research in Scientific Computation, 2003. Available at:

http://www4.ncsu.edu/∼ctk/Finkel Direct/DirectUserGuide pdf.pdf (2010-07-13).

[FK90] Marshall L. Fisher and Pradeep Kedia. Optimal solutions of set covering/partitioning problems
usign dual heuristics. Management Science, 36(6):674–688, June 1990.

[FK06] D. E. Finkel and C. T. Kelley. Additive scaling and the direct algorithm. Journal of Global

Optimization, 36(4):597–608, December 2006.

[GK01] J.M. Gablinsky and C.T. Kelley. A locally-biased form of the direct algorithm. Journal of Global

Optimization, 21:27–37, 2001.

[GS09] Ahmed Ghoniem and Hanif D. Sherali. Complementary column generation and bounding ap-
proaches for set partitioning formulations. Optimization Letters, 3(1):123–136, January 2009.

[Gus99] Tomas Gustavsson. A heursitic approach to column generation for airline crew scheduling. Li-
centiate thesis, Department of Mathematics, Chalmers Univeristy of Technology and Göteborg
University, Göteborg, Sweden, 1999.

[Gus09] Tomas Gustavsson. Orbit. Svenska Operationsanalysföreningen, December 2009.

[Gut99] H.-M. Gutmann. A radial basis function method for global optimization. Technical Report DAMTP
1999/NA22, Department of Applied Mathematics and Theoretical Physics, University of Cam-
bridge, England, 1999.

[Gut01] H.-M. Gutmann. A radial basis function method for global optimization. Journal of Global Opti-

mization, 19:201–227, 2001.

[HQE08] Kenneth Holmström, Nils-Hassan Quttineh, and Marcus M. Edvall. An adaptive radial basis algo-
rithm (arbf) for expensive black-box mixed-integer constrained global optimization. Optimization

in Engineering, 9:311–339, 2008.

[INF10] Informs prize, 2010. Available at: http://www.informs.org/Recognize-Excellence/INFORMS-
Prizes-Awards/INFORMS-Prize (2010-08-20).

[Jep] Jeppesen. Jeppesen Training for Carmen Products: Introduction to Pairing and Pairing I.

[Jon01] Ronald R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal

of Global Optimization, 21(4):345–383, December 2001.

[JPRW09] S. Jakobsson, M. Patriksson, J. Rudholm, and A. Wojciechowski. A method for simulation based
optimization using radial basis functions. Optimization and Engineering, pages 1–32, 2009.

[JSW98] D.R. Jones, M. Schonlau, and W.J. Welsh. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13:445–492, 1998.

64

REFERENCES REFERENCES

[KK04] Niklas Kohl and Stefan E. Karisch. Airline crew rostering: Problem types, modeling, and opti-
mization. Annals of Operations Research, 127:223–257, 2004.

[Let09] Adam N. Letchford. Mixed-integer non-linear programming: a survey. 1st LANCS Work-
shop on Discrete and Non-Linear Optimisation, Southampton, February 2009. Available at:

http://www.lancs.ac.uk/staff/letchfoa/talks/MINLP.pdf (2010-06-18).

[MBC79] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics, 21:239–245, 1979.

[Mic86] Charles A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive
definite functions. Constructive Approximation, 2:11–22, 1986.

[MMS00] A. Messac, E. Melachrinoudis, and C. P. Sukam. Aggregate objective functions and pareto frontiers:
Required relationships and practical implications. Optimization and Engineering, 1(2):171–188,
July 2000.

[PJS93] C.D. Perttunen, D.R. Jones, and B.E. Stuckman. Lipschitzian optimization without the lipschitz
constant. Journal of Optimization Theory and Application, 79(1):157–181, October 1993.

[Pow92] M.J.D. Powel. The theory of radial basis function approximation in 1990. In W. Light, editor,
Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis

Functions, pages 105–210. Oxford University Press, 1992.

[Pow99] M.J.D. Powell. Recent research at cambridge on radial basis functions. Technical Report DAMTP
1998/NA05, Department of Applied Mathematics and Theoretical Physics, University of Cam-
bridge, England, June 1999.

[Qut09] Nils-Hassan Quttineh. Algorithms for Costly Global Optimization. Licentiate thesis, School of
Education, Culture and Communication, Division of Applied Mathematics, Mälardalen University,
Väster̊as, Sweden, 2009.

[Raj68] Des Raj. Sampling Theory. McGraw-Hill Book Company, 1968.

[RS05] Rommel G. Regis and Christine A. Shoemaker. Constrained global optimization of expensive black
box functions using radial basis functions. Journal of Global Optimization, 31:153–171, 2005.

[RW07] Johan Rudholm and Adam Wojciechowski. A method for simulation based optimization using
radial basis functions. Master’s thesis, Chalmers University of Technology and Göteborg University,
Göteborg, Sweden, 2007.

[SdHSV03] Erwin Stinstra, Dick den Hertog, Peter Stehouwer, and Arjen Vestjens. Constrained maximin
designs for computer experiments. Technometrics, 45(4):340–346, Nov 2003.

[SdM01] Alexander Shapiro and Tito Homem de Mello. On rate of convergence of monte carlo approxima-
tions of stochastic programs. SIAM Journal on Optimization, 11(1):70–86, 2001.

[Tor97] Virginia Torczon. On the convergence of pattern search algorithms. SIAM Journal of Optimization,
7(1):1–25, 1997.

[VH08] Roshan Joseph V. and Ying Hung. Orthogonal-maxmin latin hypercube designs. Statistica Sinica,
18:171–186, 2008.

[vVL00] David A. van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary algorithms: Analyzing
the state-of-the-art. Evolutionary Computation, 8(2):125–147, 2000.

[ZDT00] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary computation, 8(2):173–195, 2000.

65

B KPI PLOTS

A Test cases

For the evaluation of the Parameter Optimization part of RUSA, three pairing test cases were
used. There were five parameters constituting the search space as can be seen in Table 5 together
with their ranges. The type Time is seen as continuous and is written as hours:minutes.

Table 5: Parameters used and their ranges

Parameter Min Max Type

topmodule.exp max duty flight time 8:00 10:00 Time
topmodule.exp max duty time 11:00 13:00 Time
topmodule.exp max duty nr of ac changes 1 3 Int
topmodule.glc1 pen 1 20’000 Int
tpomodule.glc2 pen 1 20’000 Int

Parameters 4 and 5 are penalty parameters and hence the Key Performance Indicator “TO-
TAL COST” which includes the penalties cannot be used as an objective. Instead “APC 9 total
rule cost” is used which does not include the penalties. The range of the second penalty param-
eter has been adjusted to [1,9999] since the name for the job with a parameter setting given by
the max parameter values would be z a10-00 b13-00 c3 d20000 e20000 which is 32 characters
and the maximum name length for Studio jobs is 31 characters.

The KPI constraints used are presented in Table 6 together with the bounds for the different
cases.

Table 6: Objective KPI as well as KPI constraints used and their ranges

KPI Type Case 1 Case 2 Case 3

APC total rule cost Obj. - - - - - -
average block time per working day Time ≥ 3:50 ≥ 3:20 ≥ 3:00
deadhead time Time ≤ 50:00 ≤ 60:00 ≤ 100:00
aircraft changes Int ≤ 190 ≤ 170 ≤ 100
duty time per working day Time ≥ 7:30 ≥ 6:20 ≤ 7:00
Number of 4-day trips Int ≤ 100 ≤ 80 ≤ 30

Here “≥ 3:50” means that the KPI should be equal to or larger than 3:50 and vice verse for
the opposite inequality. In this case ≥ 3:50 means setting the lower bound to 3:50 and the upper
bound to something large. It should be noted that“ac”in topmodule.exp max duty nr of ac changes
means aircraft changes hence that parameter is very much connected to the KPI aircraft changes.

B KPI plots

The following KPI plots, Figure 25, are taken from the RUSA software for the case described in
Appendix A but with no KPI constraints.

9APC=Automatic Pairing Construction

66

B KPI PLOTS

0 100 200 300
aircraft changes

2500000

3000000

3500000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to aircraft changes

(a) APC Total Rule Cost vs aircraft changes

5 6 7 8
duty time per working day

2500000

3000000

3500000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to duty time per working day

(b) APC Total Rule Cost vs Duty time p.w.d.

0 100 200 300
aircraft changes

5

6

7

8

d
u
ty

 t
im

e
 p

e
r

w
o
rk

in
g
 d

a
y

Distribution of duty time per working day
relative to aircraft changes

(c) Duty time p.w.d vs aircraft changes

−20 0 20 40 60 80 100 120
Number of 4-day trips

2500000

3000000

3500000

4000000

 A
P
C

 t
o
ta

l
ru

le
 c

o
st

Distribution of APC total rule cost
relative to Number of 4-day trips

(d) APC Total Rule Cost vs Number of 4-day trips.

0 100 200 300
aircraft changes

−20

0

20

40

60

80

100

120

N
u
m

b
e
r

o
f

4
-d

a
y
 t

ri
p
s

Distribution of Number of 4-day trips
relative to aircraft changes

(e) Number of 4-day trips vs aircraft changes.

Figure 25: KPI plots for test T0.1 with no KPI constraints. The figures are generated by RUSA.

67

C BEST SOLUTIONS FOUND

C Best solutions found

C.1 Pairing

Here, the parameter settings corresponding to the solutions with the lowest objective values are
presented for tests T0.1, T0.2, T1, T2 and T3 where two tests, T 1

1 and T 2
1 , are run for test case T1

with different numbers of jobs. The test perimeters for T1, T2 and T3 are given in Appendix A
and tests T0.1 and T0.2 are relaxations of T1. The results for the relaxed test cases are presented
in Section 7.1.1 and the results for the other test cases are given in Section 7.1.2.

Table 7: Parameter values used for the solutions with the lowest objective values for tests
T0.1 − T3.

Parameter T0.1 T0.2 T 1
1 T 2

1 T2 T3

topmodule.exp max duty flight time 9:33 9:20 9:40 9:07 9:40 9:06
topmodule.exp max duty time 13:00 13:00 12:53 13:00 12:53 13:00
topmodule.exp max duty nr of ac changes 3 3 2 3 3 3
topmodule.glc1 pen 2 3 1112 2233 2593 4569
tpomodule.glc2 pen 1 355 556 1 556 4465

C.2 Rostering

The following parameters correspond to the best solutions found for the Rostering test case.
Tests are performed usign the space filling method and the usual σ-cycling.

Table 8: Parameter settings for the solutions with the lowest objective values for the Rostering
test case.

Parameter Space filling Non-Space filling

Rostering parameter1 71 71
Rostering parameter2 True True
Rostering parameter3 False False
Rostering parameter4 False False
Rostering parameter5 1 5

68

D PLOTS OF PREDICTION MODEL ERROR

D Plots of Prediction model error

20 30 40 50 60 70 80 90 100
Number of jobs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
A

P
C

 T
o
ta

l
C

o
st

Error in 1-norm

Error - e_1

Error - e_2

20 30 40 50 60 70 80 90 100
Number of jobs

0.00

0.01

0.02

0.03

0.04

0.05
Error in 2-norm

Error - e_1

Error - e_2

20 30 40 50 60 70 80 90 100
Number of jobs

0.00

0.05

0.10

0.15

0.20
Error in max-norm

Error - e_1

Error - e_2

(a) No KPI constraints and using the space filling method.

20 40 60 80 100 120 140
Number of jobs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

A
P
C

 T
o
ta

l
C

o
st

Error in 1-norm

Error - e_1

Error - e_2

20 40 60 80 100 120 140
Number of jobs

0.00

0.01

0.02

0.03

0.04

0.05
Error in 2-norm

Error - e_1

Error - e_2

20 40 60 80 100 120 140
Number of jobs

0.00

0.05

0.10

0.15

0.20
Error in max-norm

Error - e_1

Error - e_2

(b) Continuing from a) with 10 batches of 5 points with space filling method.

20 40 60 80 100 120 140
Number of jobs

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
P
C

 T
o
ta

l
C

o
st

Error in 1-norm

Error - e_1

Error - e_2

20 40 60 80 100 120 140
Number of jobs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Error in 2-norm

Error - e_1

Error - e_2

20 40 60 80 100 120 140
Number of jobs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Error in max-norm

Error - e_1

Error - e_2

(c) Continuing from Figure 22 with 10 batches of 5 points with space filling method.

Figure 26: The measures of error e1 and e2 given in (61) for no KPIs as well as space filling.
Using 10 initial points followed by 18 batches of 5 points (10+18×5) with space filling in a) and
additional 10 batches of 5 points with space filling in b). In c) test T0.1 is performed (10+18×5)
with the addition of 10× 5 points with space filling. The dashed lines show the linear regression
trends.

69

E ZDT MULTIOBJECTIVE TEST FUNCTIONS

E ZDT multiobjective test functions

The ZDT test functions [ZDT00] are used to test multiobjective algorithms. There are six
functions named ZDT1-ZDT6 but only the three first are presented here. For the three first
test functions there are n = 30 decision variables x1, . . . , xn although that number is reduced
considerably for the tests in this thesis. All decision variables take values in the unit interval:
xi ∈ [0,1] ∀i. All of the three test functions defined below are structured in the same way and
consist of the three functions f1, g, h:

Minimize T (x) = (f1(x1), f2(x))
subject to f2(x) = g(x2, . . . xn)h(f1(x1), g(x2, . . . , xn))
where x = (x1, . . . , xn)

(62)

The problems consist of two objectives and n decision variables where function f1 is a function
of the first decision variable only, g is a function of the remaining n − 1 variables and h is a
function of f1 and g.

• The test function ZDT1 has a convex Pareto front:

f1(x1) = x1

g(x2, . . . xn) = 1 + 9 ·
∑n

i=2 xi/(n − 1)

h(f1, g) = 1 −
√

f1/g

(63)

• The test function ZDT2 is the nonconvex (concave) counterpart to ZDT1:

f1(x1) = x1

g(x2, . . . xn) = 1 + 9 ·
∑n

i=2 xi/(n − 1)
h(f1, g) = 1 − (f1/g)

2
(64)

• The test function ZDT3 has a Pareto front which consists of several non-continuous convex
parts:

f1(x1) = x1

g(x2, . . . xn) = 1 + 9 ·
∑n

i=2 xi/(n− 1)

h(f1, g) = 1 −
√

f1/g − (f1/g) sin (10πf1)

(65)

For all three functions, the Pareto front is formed with g(x) = 1.

70

F ROSTERING: COMPARING BEST SOLUTION WITH MATADOR STANDARD

F Rostering: Comparing best solution with Matador standard

In Figure 27 the progress of the cost for a solution is shown for the matador standard settings
as well as for the best solution found for the Rostering test case, shown in Appendix C.2.

Figure 27: Plot of the development of the Cost as a function of the CPU time for the Rostering
test problem. The figure shows the matador standard run (upper green line) and the best
parameter setting found using RUSA (lower blue line). The matador standard ran for only 60
minutes but the script was run again to compare with the results for the tuned settings after
110 minutes.

71

