
Thesis for the Degree of Master of Science

Derivative-free Algorithms in
Engineering Optimization

Anders Holmström

Göteborg, October 2000

ii

Abstract

Algorithms for derivative free optimization are overviewed, summarized and examined. Among the
methods studied are Quasi Newton methods, the Nelder Mead Simplex algorithm, the
Multidirectional search algorithm, Trust-region methods, the Response surface methodology and
Model based optimization. A best and worst choice has been indicated for problems with certain
specific characteristics.
Model based optimization is studied in more detail, as it seems to have wide applicability in solving
problems of relevancy in industry. Furthermore, a new model based optimization algorithm have
been developed and evaluated. The initial results are promising.

iii

Acknowledgements

First I want to thank my supervisor, Sven Ahlinder, at Volvo Technological Development for
suggesting the subject area and contributing ideas along the way. I also want to thank Michael
Patriksson, my supervisor at Chalmers University of Technology, for valuable insight in the subject
of optimization and for constructive criticism concerning this report. For valuable ideas and
inspiration I would furthermore like to thank Lennart Lunqvist at Volvo Technology Development
and Göran Axbrink at Volvo Truck Corporation. For linguistic improvements and encouragement I
would finally like to thank Arne Holmström.

iv

Contents

1 INTRODUCTION.. 1

2 AVAILABLE METHODS FOR DERIVATIVE FREE OPTIMIZATION.. 2

2.1 THE FIRST CLASS. NEWTON BASED METHODS .. 3
2.1.1 Quasi Newton methods, as described in (Nash and Sofer 1996) ... 3

2.2 THE SECOND CLASS. PATTERN SEARCH METHODS.. 7
2.2.1 The Nelder Mead simplex algorithm.. 7
2.2.2 The multidirectional search algorithm .. 11

2.3 THE THIRD CLASS. METHODS THAT APPROXIMATE THE OBJECTIVE OVER A REGION .. 13
2.3.1 Trust-region algorithms ... 13
2.3.2 Response surface methodology as described in (Box, Hunter et al. 1977) .. 15
2.3.3 Model based optimization .. 22

3 THE DESCRIBED OPTIMIZATION METHODS ABILITY TO HANDLE OBJECTIVE FUNCTIONS
WITH SPECIFIC CHARACTERISTICS AND DEMANDS PUT FORWARD BY THE USER.......................... 24

3.1 WHEN TO USE MODEL BASED OPTIMIZATION.. 25

4 DESCRIPTION OF A NEW MODEL BASED OPTIMIZATION METHOD .. 25

4.1 GENERATING STARTING POINTS ... 25
4.2 THE MODEL.. 26
4.3 METHOD TO SEARCH THE MODEL ... 27
4.4 PLACING THE NEXT POINTS IN THE OPTIMIZATION PROCESS ... 27

5 TWO EXPERIMENTS WITH THE NEW MODEL BASED OPTIMIZATION METOD.......................... 28

5.1 EXAMPLE 1... 28
5.1.1 Observations .. 32

5.2 EXAMPLE 2... 33
5.2.1 Observations .. 34

6 CONCLUSIONS AND FUTURE WORK.. 35

6.1 CONCLUSIONS .. 35
6.2 FUTURE WORK.. 35

REFERENCES .. 36

NOTATION ... 37

APPENDIX... 38

1

1 Introduction

This work has been carried out at Volvo Technology Development where I participate in
development activities mainly concerning diesel combustion engines. Here, a lot of conflicting
demands are put forward already in the choices governing the technical performance, which in turn
have to be matched against economical considerations both from the manufacturer and the future
vehicle owner. Last but not least, the environmental requirements put forward by the authorities
have to be met. Therefore we almost always face optimization problems.

The first stage of this diploma work was devoted to summarizing published methods for
optimization of objective functions where derivatives are not available. The insights gained from
this work then served as a foundation for suggesting a new model based optimization algorithm,
which was subsequently evaluated trough numerical studies of two examples.

The main purpose of the overview is to provide an engineer with the options that are available so as
to enable an improved optimization. It may also contribute to the successful solution of problems
not readily solvable by standard methods.

Engineering objective function values are in most cases obtained as a result of either computer
simulations or measurements in a rig. Computer simulations usually don’t return derivative
information. Furthermore it may impose further obstacles in that the accuracy is often limited to a
few digits and in unfavorable cases result in data subject to noise.

An engineering problem that was solved during this work is to adjust some unknown parameters in
the simulation software GT-Power such that the result from the simulation corresponds to the
measured data. GT-Power models the combustion and gas-exchange process in an internal
combustion engine. A typical and very informative output from such a simulation is cylinder
pressure, as a function of crank-angle, which was used to calculate the mean square error, relative
to measurements, that is used as objective function. The unknown parameters influence the
combustion rate calculated by GT-Power.
The Matlab algorithm FMINS is used to solve this minimization problem. FMINS uses a Nelder
Mead Simplex optimization technique that is described on page 7. When adjusting 6 parameters in
GT-Power the optimizer converges after 5 minutes and 100 simulations. 5 minutes is an acceptable
amount of time for this task.

 Measurements in a rig always behave stochastic, ally consequently alleviating the definition of
derivatives. Often the objective function is so time consuming to evaluate that the remaining
numerical computations carried out by the optimization algorithm constitute only a minor part of
the total work. Therefore the time that is required for numerical computations in the optimization
algorithm is not critical to the overall performance of the method.

Most engineering tasks can be translated into an optimization problem with simple constraints on
the variables, such as the example below. Therefore, more complex constraints are not included in
this study.

minimize ()
nx R

f x
∈

subject to l x u≤ ≤

2

Model based optimization is according to my opinion a method with potential for wide applicability
in solving engineering problems relevant to industry. This is my reason for studying this area in
greater detail and also evaluating it by numerical examples.

2 Available methods for derivative free optimization

Derivative free optimization methods have a long history, see (Dixon 1972), (Himmelblau 1972)
and (Polyak 1987) for extensive discussions and references. These methods come essentially in
four different classes, a classification strongly influenced by (Conn and Toint 1996).

The first class contains algorithms which use finite-difference approximation of the objective
function's derivatives in the context of a gradient based method, such as nonlinear conjugate
gradients or quasi-Newton methods (see, for instance (Nash and Sofer 1996)).

The methods in the second class are often referred to as pattern search methods, because they are
based on the exploration of the variable space using a well-specified geometric pattern, typically a
simplex. The algorithm described in (Nelder and Mead 1965) is still the most popular minimization
technique in use today in this context. More recent developments of pattern search methods include
proposals by (Torczon 1991).

The methods of the third class are, for example, based on the progressive building and updating of
a model of the objective function. Design of Experiment and interpolation models are proposed by
for example (Owen 1992), (Booker 1994), (Mitchell, Sacks et al. 1989), (Morris, Currin et al. 1991)
and (Sacks, Wynn et al. 1992). Response surface methodology is described in (Box, Hunter et al.
1977). Trust-region methods also belong to this class, see (Nash and Sofer 1996) and (Conn and
Toint 1996).

The fourth class of optimization algorithms consists of methods that don’t utilize either a model or
a direction. Simulated Annealing, Genetic Algorithms, and Grid Search are methods that belong to
this class, which is not further described in this work.

3

2.1 The first class. Newton based methods

2.1.1 Quasi Newton methods, as described in (Nash and Sofer 1996)
These methods need derivative values. Since we can’t get the derivatives from the simulation
software they need to be approximated. This is often done by finite differences using a step length
h . The step length should depend on the machine accuracy machε to get the best possible
approximation. A simple relation is,

machh ε≈ .
In one dimension the finite difference approximations based on forward differences are

h
xfhxfxf)()()(−+≈′ ,

2

)()(2)()(
h

hxfxfhxfxf ++−+≈′′ .

The derivatives of multidimensional functions can be estimated by applying the finite difference
formulas to each component of the gradient and the hessian matrix.
If we define the vector

T
ie)0...010...0(=

having a one in the i-th component and zeros elsewhere, then the gradient can be approximated by

[]
h

xfhexfxf i
i

)()(
)(

−+
≈∇ 1,...,i n= .

If the gradient is known then the hessian can be approximated via

[] []
h

xfhexf
xx
xfxf ij

ji
ij

)()()()(
2

2
∇−+∇

≈
∂∂

∂=∇ 1,...,i n= 1,...,j n= .

In many dimensions this approximation demands many objective function evaluations.

Newton's method is an algorithm for finding a solution to the equation 0)(=xg .
In one dimension the method can be described by

)(
)(

1
k

k
kk xg

xg
xx

′
−=+ 0,1,...k = ,

 see Figure 1,

4

Figure 1

so in many dimensions we get

[])()(1
1 kkkk xgxgxx −

+ ∇−= .

In optimization Newton’s method is used to find a local minimizer to the objective function. A
local minimizer is a point *x that satisfies the condition

)()(* xfxf ≤ for all x such that ε<− *xx

for all 0ε > that are sufficiently small. If f is differentiable and its first and second derivatives are
continuos in a neighborhood of *x then the first and second order necessity of a local minimizer
can be derived using Taylor series expansion around *x . The first order necessary condition is

0)(* =∇ xf ,

and the second order necessary condition is further that

)(*
2 xf∇ is positive semidefinite.

To use Newton's method for optimization, we apply it to the first-order necessary condition for a
local minimizer:

0)()(=∇= xfxg .

Since)()(2 xfxg ∇=∇ , this leads to the formula

[])()(12
1 kkkk xfxfxx ∇∇−= −

+ .

Newton's method is often more generally written as

kkk pxx +=+1 , 0,1,...k = ,

5

in its standard form kp is the solution to the system of equations

)()(2
kkk xfpxf −∇=∇ .

There are many different methods based on approximating the hessian)(2
kxf∇ by another matrix

kB , that is available within fewer objective function evaluations. Then the search direction is
obtained by solving

)(kkk xfpB −∇= .

The steepest descent method may be interpreted as a quasi-Newton method where the hessian
)(2

kxf∇ is approximated by the identity matrix

IBk = .

Quasi-Newton methods are generalizations of a method for one-dimensional problems called the
secant method. The secant method uses the approximation

1

1)()(
)(

−

−

−
′−′

≈′′
kk

kk
k xx

xfxf
xf .

In the multidimensional case, we write it

).()())((11
2

−− ∇−∇≈−∇ kkkkk xfxfxxxf

From this we obtain a condition used to define the quasi-Newton approximations kB :

)()()(11 −− ∇−∇=− kkkkk xfxfxxB

We call this the secant condition. This is not sufficient to determine kB ; for further details see
(Nash and Sofer 1996).

In order to prove that the algorithm converges it is a necessity that the search direction is a descent
direction, which is enforced by requiring that 0)(<∇ k

T
k xfp .

After introduction of a step length kα

kkkk pxx α+=+1

where kα is a scalar chosen so that)()(1 kk xfxf <+ it will be possible to guarantee that the method
will converge to a stationary point and possibly a local minimizer. The technique is called a “line
search” because a search for a new point 1+kx is carried out along the half line k kx pα+ , 0α ≥ .
Intuitively we would like to choose kα as the solution to

6

0
min ()k kf x p
α

α
≥

+ .

That is kα would be a result of a one-dimensional minimization problem.

Usually we don’t search the line exactly but rather estimate the optimal α , perhaps through
interpolations; a simple line search method is described below. The sufficient-decrease condition
on kα ensures that some nontrivial reduction in the function value is obtained at each iteration. The
reduction is predicted in terms of the Taylor series. A linear approximation to ()k kf x pα+ is
obtained from

)()()(k
T
kkkk xfpxfpxf ∇+≈+ αα .

In the line-search we will demand that the step length kα produce a decrease in the function value
that is at least some fraction of the decrease predicted by the above linear approximation. More
specifically we require that

)()()(k
T
kkkkkk xfpxfpxf ∇+≤+ µαα (*)

where µ is some scalar satisfying 0< µ <1, see Figure 2. When µ is smaller this condition is easier
to satisfy since only a small decrease in the function value is required. A simple means to satisfy
(*) is to use backtracking: define kα to be the first element of the sequence

,...2,...,
4
1,

2
1,1 i−

to satisfy the sufficient decrease condition. If the descent direction condition, 0)(<∇ k
T
k xfp , is

satisfied then it is possible to prove that there exists a finite i which satisfies (*).

Figure 2

7

2.2 The second class. Pattern search methods

2.2.1 The Nelder Mead simplex algorithm
Here is the description of the simplex algorithm as described in (Nelder and Mead 1965).
We consider, initially, the minimization of a function of n variables, without constraints. The
method is based on different geometrical operations on a simplex. The simplex consists of (n+1)
points and can in two dimensions be interpreted as the corners of a triangle. Three geometrical
operations are used — reflection, expansion and contraction. All these operations will be defined
by replacing the worst point in the simplex, hP , with one new point, but if the contraction failed
then all points but the best point, lP , are replaced. The operations are defined as follows.

Initialization

nPPP ,...,, 10 are the)1(+n points in n-dimensional space defining the current simplex. We write

if for the objective function value at iP , and define
h as the index such that)(max iih ff =

and
l as the index that)(min iil ff = .

Further we define P as the centroid of all points iP satisfying hi ≠ .

Reflection
 The reflection of hP is denoted by *P and it is defined by the relation

hPPP αα −+=)1(* ,
where α is a positive constant, the reflection coefficient. The objective value in *P is denoted *f .
If *f lies between hf and lf , then hP is replaced by *P and we start again with the initialization
of the new simplex.

Expansion
If lff <* , that is, if the reflection has produced a new minimum, then we expand *P to **P by the
relation

PPP h)1(** γγ −+= ,
where the expansion coefficient 1>γ . If lff <** we replace hP by **P and restart the process,
but if lff >** then we have a failed expansion, and we replace hP by *P before restarting.

Contraction
If on reflecting P to *P we find that iff >* for all hi ≠ , i.e. that replacing P by *P leaves *f
at the maximum, then we define a new hP to be either the old hP or *P , whichever has the lower
f value, and form

PPP h)1(** ββ −+= .
The contraction coefficient β lies between 0 and 1. We then accept **P for hP and restart unless

),min(*** fff h> , i.e. the contracted point is worse than the better of hP and *P .

8

Failed contraction
For such a failed contraction we replace all the iP by () / 2i lP P+ and restart the process.

Typical parameter values
The coefficients γβα ,, give the factor by which the volume of the simplex is changed by the
operations of reflection, contraction or expansion respectively. Typical coefficient values are

2,
2
1,1 === γβα .

The stopping criterion
The stopping criterion is based on comparing the standard error of the f ’s with the preset value ε ;
terminate if

() ε<−�
+

=

1

1

21 n

i
i ff

n
.

A numerical example
The Matlab function FMINS is an implementation of the algorithm described above. This Matlab
function is used to illustrate the method on the optimization problem.

2
minimize () T

x R
f x x x

∈
=

with the initial solution
0 [1 1]Tx = .

The iterations is visualized in Figure 3 to Figure 5, Figure 3 shows the starting simplex and the
following iterations. The starting simplex in the algorithm consists of the initial point 0x and two
additional points: T]05.11[and T]105.1[. In the figures every objective function evaluation is
numbered by the order in which they were evaluated. Additionally a description of how the
algorithm proceeds is given next to each figure.

9

Figure 3

The description of how the algorithm proceeds is constructed as follows. <i,j,k> marks the points in
the simplex at every new iteration, underline marks the worst point hP in the simplex. Reflection,
expansion or contraction is indicated with r, e and c.

In Figure 3 the steps are
<1,2,3>r <1,2,4>e <1,6,4>r <1,6,7>e <9,6,7>r <9,6,10>e

10

In Figure 4 it can be seen how the simplex is deformed on its way towards the optima.

The algorithm proceeds with the subsequent steps
< 9, 6,10>e < 9,12,10>r < 9,12,13>e <15,12,13>r <15,12,16>r <15,17,16>r <15,17,19>c.

Figure 4

11

Figure 5 illustrates how the simplex is contracted close to the optimal solution. The steps are
<15,17,19>c <21,17,19>r <21,17,22>c <21,24,22>c <21,24,26>c <21,28,26>c
<30,28,26>.

The algorithm will continue in a similar way until the stopping criterion is met.

Figure 5

Other numerical experiments have shown that the Nelder Mead Simplex algorithm does not always
converge to a local optimum. This shortcoming can be handled by restarting the algorithm with the
previous result as the initial solution until no further improvement is made.

2.2.2 The multidirectional search algorithm
The multidirectional search algorithm was introduced by Dennis and Torczon in 1989 (Torczon
1989) as a step towards a general-purpose optimization algorithm with promising properties for
parallel computation.

According to (Dennis and Torczon 1991) the Nelder-Mead Simplex algorithm can converge to non-
minimizers when the dimension of the problem becomes large enough. This behavior occurred
even on such a simple problem as

xxxf T

Rx n
=

∈
)(min

for 16≥n . One of the advantages of the multidirectional search is that unlike the Nelder-Mead
simplex algorithm, it is backed by convergence theorems that numerical testing also indicate are
borne out in practice (Dennis and Torczon 1991).

If the method is appropriately designed, and if the function f is continuously differentiable, then it
is possible to prove that

12

0)(inflim =∇
∞→ kk

xf ,

where kx is the trial point at the k-th iteration.
An iteration of the basic multidirectional search algorithm begins with a simplex S in nR , with
vertices nvvv ,...,, 10 . The best vertex 0v is designated to be a vertex for which)()(0 jvfvf ≤ for

nj ,...,1= . We now describe a complete iteration to arrive at a new simplex +S . The first move of
the iteration is to reflect nvv ,...,1 through the best vertex 0v . Figure 6 illustrates an example for

2=n .

Figure 6

Continuing with n=2, the reflected vertices are labeled 1r and 2r . If a reflected vertex gives a better
function value than the best vertex, then the reflection step is deemed successful and the algorithm
tries an expansion step. The expansion step consists of expanding each reflected edge)(0vrj − to
twice its length to give a new expansion vertex je . Above the expansion vertices are labeled 1e and

2e . In an iteration of this basic algorithm, the expansion step would be tried only if the reflection
step was successful, and it would be taken only if some expansion vertex was better than all the
reflection vertices. Thus, if we try the expansion step, then the new simplex +S is either the
expansion simplex >< 210 ,, eev or the reflection simplex >< 210 ,, rrv .
The other branch of the basic algorithm is the case where the reflection step was unsuccessful, i.e.,
no reflection vertex has a better function value than)(0vf . In this case, we take +S to be the
contraction simplex formed by replacing each vertex of the worst n -face in the original simplex by
the point midway from it to be the best vertex. Thus, the contraction step takes +S to be

>< 210 ,, ccv .
To complete the iteration of the basic algorithm, we take +

0v to be the best vertex of +S .

13

2.3 The third class. Methods that approximate the objective over a region

2.3.1 Trust-region algorithms
Some of the algorithms in this class use the trust region approach to guarantee convergence. The
convergence proof relies on that the model can be trusted inside the trust-region. As described in
(Nash and Sofer 1996). Trust-region methods make explicit reference to a model of the objective
function. For Newton’s method this model is a quadratic model derived from the Taylor series for
f about the point kx .

pxfppxfxfp k
TT

kkk)(
2
1)()()(2∇+∇+=ϕ .

In the method this model will only trusted within a limited neighborhood, the trust-region, of the
point kx , defined by the constraint

kp ∆≤ , 0>∆ k .

Where ⋅ denotes Euclidean norm. This will serve as the limit to the size of the step taken from kx
to 1+kx , see Figure 7. The value of k∆ will be adjusted based on the agreement between the model

kϕ , at p , and the objective function f , at pxk + . If the agreement is good, then the model can be
trusted and k∆ will be increased.

Here follows a more detailed description of the algorithm. The notations below are the same as in
chapter 2.1.1.

The Trust-Region algorithm described in, (Nash and Sofer 1996), in more detail
Specify some initial guess of the solution 0x . Select the initial trust-region bound .00 >∆ Specify

the constants 10 <<< ηµ i.e. 4
1=µ and 4

3=η .

For k=0,1…
If kx is optimal, stop.
Solve

)(min p
p

ϕ

subject to kp ∆≤
for the trail step kp .
Compute

reduction predicted
reduction actual

)()(
)()(

k =
−

+−
=

kkk

kkk

pxf
pxfxf

ϕ
ρ

If µρ ≤k then kk xx =+1 (unsuccessful step), else kkk pxx +=+1 (successful step).

14

Figure 7

Update k∆ :

kkk ∆=∆�≤ + 2
1

1µρ

kkk ∆=∆�<< +1ηρµ

kkk ∆=∆�≥ + 21ηρ

The value of kρ indicates how well the model predicts the reduction in the function value. If kρ is
small (µρ <k) , then the actual reduction in the function value is much smaller than that predicted
by)(kk pϕ , indicating that the model cannot be trusted for a bound as large as k∆ . In this case the
step kp will be rejected and k∆ will be reduced. If kρ is large (ηρ ≥k), then the model is
adequately predicting the reduction in the function value, suggesting that the model can be trusted
over an wider region. In this case the bound k∆ will be increased.

More recent Trust-region methods
More recent work, e.g. (Conn and Toint 1996), develop trust region methods that don’t use finite
differences to make a model but use interpolating models instead. This makes the algorithm more
robust towards noise. Some potential new problems are instead introduced. Enough points p

)2)(1(
2
1 ++= nnp

to determine a quadratic function is needed and they must support a quadratic model since 6 points
on a line in two dimensions isn’t enough to construct a quadratic model. A method for determining
the support of a quadratic function is presented in (Conn and Toint 1996).

A promising method called The Filter Method is described in (Conn, Gould et al. 2000). It is
advantageous because of the way the algorithm handles constraints. The Filter Method

15

approximates the constraints in the optimization problem separated from the objective function
instead of adding a penalty to the objective function. It is called The Filter Method because the
method rejects points that don’t improve either the objective function value or the constraints
unfeasibility value.

For most, Trust-region algorithms, it can be established that

0)(lim =∇ kxf .

2.3.2 Response surface methodology as described in (Box, Hunter et al. 1977)
This method focuses on optimizing measured systems and is based on experimental design. When
applying it to simulation software it is not desirable to use replicated points if the software is
deterministic and always gives the same answer for the same input. After determining which
variables are important, the experimenter first employs the method of steepest ascent to get close to
the maximum and then approximates the surface in the vicinity of the maximum with a fitted
second-degree equation. The first-order and second-order models of the objective function are
called the response surface. See Figure 8 for an overview of the method. Some of the techniques in
the overview are not further described in this work (i.e. blocking variables and randomized
experiments), for details see (Box, Hunter et al. 1977).

16

Define objective of
investigation

Select responses to
 be measured,

variables to be studied,
and ranges to be covered.

Construct first-order
 design, randomize,

perform experiments,
collect data, and fit
first-order model.

Is there still
 lack of fit?

Is there
 serious lack of fit?

no

Try transformations
of one or more
variables and/or

response.

no

yes

Is there
 suffificent precision?

Increase replication
by performing additional

experiments. Perhaps
look for blocking

variables, or expand size of design.

Can we go further ?

Pr
ob

le
m

 d
ef

in
iti

on

Write report

Is there
 lack of fit?

Increase replication by
performing additional
experiments. Perhaps

look for blocking variables,
or expand size of design.

Augment design to second-order
 design, randomize, perform

 experiments, collect data
 and fit second order model.

Do we need
further confirmation of the
characteristics of surface

yes

Se
co

nd
-o

rd
er

 st
ra

te
gy

Fi
rs

t-o
rd

er
 st

ra
te

gy

Is there
 sufficient precision?

Try transformations of one
 or more variables

 and/or response, or
 fit different model.

Perform additional suitably
located runs, refit model,

and construct contour plot of
response surface.

Do canonical analysis
and construct contour plots of

response surface
no

yes

yes no

no

yes

no

no

yes

yes

Figure 8

Illustration of response surface methodology, a chemical example (Box, Hunter et al.
1977).
The objective of the following laboratory investigation was to find settings of time(t) and
temperature (T) that produced maximum yield subject to constraints discussed later. The best
conditions known at the beginning of the work were t=75minutes , T=130C, and past experience
had suggested that the experimental error standard deviation was about 5.1=σ .

17

A first order Design
Taking as a starting point the best conditions known by the investigator time varied from 70 to 80
minutes and temperature from 127.5 to 132.5 C according to the design shown in the Table below.

Run time temperature 1x 2x f
--

1 70 127.5 -1 -1 54.3
2 80 127.5 +1 -1 60.3
3 70 132.5 -1 +1 64.6
4 80 132.5 +1 +1 68.0
5 75 130.0 0 0 60.3
6 75 130.0 0 0 64.3
7 75 130.0 0 0 62.3

--

The levels of the variables in coded units are

,
5
75

1
−= tx

5.2
130

2
−= Tx .

The design employed was a 22 factorial design with three center points. It is called a first order
design because it allows efficient fitting and checking of the first-degree polynomial model,

0 1 1 2 2f x xβ β β= + +

It was chosen because, at this stage of the investigation, the experimenter believed, but was not
certain, that he was some distance away from the maximum (some way down the hillside that
represents the true response surface). In these circumstances it would be likely that the predominant
local characteristics of the surface were its gradients and that the local surface could be roughly
represented by the planar model having slope 1β in the 1x direction and slope 2β in the

2x direction. If this idea was correct, by estimating 1β and 2β it would be possible to follow a
direction of increasing yield up the hillside f . The design chosen:

1) Allows the planar model to be efficiently fitted
2) Allows checks to be made to determine whether the planar model is representationaly adequate
3) Provides some estimate of the experimental error

Least squares fit
The least squares estimate of 1β is

35.2)0.686.643.603.54(4
1

1 =+−+−=b
The coefficient 1β is the change in the response when 1x is changed by one unit. The linear main
effect in a factorial design is the change in response when 1x is changed from –1 to +1, that is, by
two units. Thus 1b is half the linear main effect obtained from the difference of average at the
shorter and longer reaction times. Similarly 2b is 4.50. The least squares estimate of 0β is the
average of all seven observations, 62.01. We thus obtain the fitted equation

18

)75.0()75.0()57.0(
50.435.201.62ˆ

21

±±±
++= xxf

where the standard errors, shown beneath the coefficients of the equation, are calculated based on
the assumption that 5.1=σ . Although least squares calculations tentatively assumes adequacy of
the first-degree (planar) model, the design was chosen to allow checks of this assumption to be
made.

Interaction check
The planar model supposes that the effects of the variables are additive. Interaction between the
variables would be measured by the coefficient 12β of an added cross-term 21xx in the model. This
coefficient is estimated by

65.0)0.686.643.603.54(4
1

12 −=+−−=b
The standard error of this estimate is 0.75, the same as it for 1β and 2β (we use 5.1=σ as before).

Curvature check
Another check of local planarity is supplied by comparing ff , the average of the four points of the

22 factorial, with cf , the average at the center of the design. By thinking of the design as sitting on
a saucer-like surface, it is seen that cf ff − is a measure of overall curvature of the surface . It can

also be shown that, if 11β and 22β are coefficients of the terms 2
1x and 2

2x , this curvature measure
will be an estimate of 2211 ββ + . Thus the estimate of the “overall curvature” is

50.0)3.643.623.60()0.686.643.603.54(3
1

4
1

2211 −=++−+++=+ bb

Using 5.1=σ , we obtain 1.15 for the standard error of this estimate.
In summary then, the planarity checking functions are

75.065.012 ±−=b , 15.150.02211 ±−=+ bb

and there is no reason to question the adequacy of the planar model since the estimated values are
smaller than the standard error for the estimates.

Estimation of error
An estimate of the experimental error variance, which is very approximate since it has only two
degrees of freedom, is obtained from the replicate observations at the center.

0.4
2

3/)9.186(3.643.623.60 2222
2
1 =−++=s

Thus
0.21 =s

This agrees fairly well with the preliminary value of 5.1=σ used above.

Path of steepest ascent
The path of steepest ascent, which is perpendicular to the contour lines, can be calculated as
follows. Starting at the center of the experimental region, the path is followed by simultaneously

19

moving 5.42 +=b units in 2x for every 35.21 +=b units moved in 1x . A convenient set of points on
the path of steepest ascent is shown in table below.

Run 1x 2x time temperature f
--

5,6,7 0 0 75 130.0 62.3 (Average)
8 1 1.91 80 134.8 73.3
9 5 9.57 100 153.9 58.2
10 3 5.74 90 144.4 86.8

--

Runs made at points 8,9, and 10 gave yields as indicated. Run 8 (f=73) was encouraging and led to
a large jump being taken to run 9. This yield(f=58.2) was low, however, indicating that too large a
move had been made. Run 10 (f=86.8) at intermediate conditions proved a very substantial
improvement over any results obtained so far. This result suggests that subsequent experiments
should be made in the neighborhood of run 10.
As the region of interest moves up the surface, it can be expected that first-order effects will
become smaller. Since the blurring effects of experimental errors have to be faced, the opportunity
may be taken at this time to increase the second design by a factor of, say, two to increase the
absolute magnitude of the effects in relation to the error.
(Furthermore, as a region of interest moves up the surface, the possibility increases that a second-
degree approximation will be needed. Expanding the design is also sensible in this eventuality
because a second-degree approximation should provide an adequate representation over a larger
region than a first-degree approximation.)

A second design
A new 22 factorial design with two center points situated close to run 10 had coded variables

10
90

1
−= timex ,

5
145

2
−= etemperaturx

The data obtained from the six runs performed in random order are shown in the table below.
Analyzing this second first-order design, we obtain the following results.

20

Run time temperature 1x 2x f
--

11 80 140 -1 -1 78.8
12 100 140 +1 -1 84.5
13 80 150 -1 +1 91.2 second
14 100 150 +1 +1 77.4 first-order
15 90 145 0 0 89.7 design
16 90 145 0 0 86.8

--
17 76 145 2− 0 83.3 runs
18 104 145 2+ 0 81.2 added
19 90 138 0 2− 81.2 from a
20 90 152 0 2+ 79.5 composite
21 90 145 0 0 87.0 design
22 90 145 0 0 86.0

--

Least squares fit
On the assumption that a first-degree polynomial model is again applicable, least squares
estimation yields the fitted equation

0.75)(0.75)(0.61)(
325.1025.273.84 21

±±±
+−= xxf

Interaction and Curvature checks
The checking functions yield the values

75.088.4'12 ±−=b ,
from which it is evident that in the present region the first-degree equation is quite inadequate to
represent the local response function.

Augmenting the design to Fit a second order model
Since the first–degree polynomial approximation had been shown to be quite inadequate the new
experimental region, a second degree polynomial approximation

2112
2
222

2
11122110 xxxxxxf ββββββ +++++=

was now contemplated. To estimate efficiently all six coefficients in the model and to provide for
appropriate checking and error determination, the second factorial group of points(runs 11 through
16) was augmented with a “star “ design consisting of four axial points and two center points(runs
17 trough 22).

Least Sqaures Fit
The second-degree equation fitted by least squares to the 12 results from the composite design
(runs 11 through 22) is

21
2
2

2
121 88.412.315.237.039.136.87ˆ xxxxxxf −−−+−=

21

Checks
We have seen that the first-order design was chosen so that estimates of selected second-order
terms or combinations of them could be isolated and thereby supply checks on the adequacy of the
first-degree equation. The composite design has been chosen in the same way so that selected
combinations of third-order terms can be isolated and check the adequacy of the second-degree
equation. For example, consider the distribution of points along the 1x axis. If the surface is exactly
quadratic in this direction, it can be shown that the estimate of the slope obtained from the axial
points 17f and 18f will be the same as that obtained from the factorial points 14131211 ,,, ffff . A
measure of the discrepancy in the two measures of slope is

)(()(
8

1
131114124

1
1718 ffffff −−+−− .

We will denote this measure by 122111 ββ − (where 111β and 122β are coefficients of 3
1x and 2

21xx
respectively, in a third-degree polynomial). Both of the latter coefficients would be zero if the
surface were described by a second-degree equation. If we consider the distribution of points along
the 2x axis, a similar estimate 112222 bb − of 112222 ββ − is obtained. For this estimates we find.

06.193.1
06.128.1

112222

122111

±−=−
±=−

bb
bb

There is an indication of some slight model inadequacy in the 2x -direction, but we shall ignore it in
this elementary account1.

Nature of the fitted surface
Before attempting to interpret the fitted surface, we need to consider whether or not it is estimated
with sufficient precision. This can be done by a special application of the analysis of variance (Box
and Wetz 1973). However, in this present short survey we approach the problem from a simpler but
equivalent point of view.
It can be shown that, no matter what the design, the average variance of the fitted values f̂ is

n
pfV

n
fV

n

i
i

2

1

_

)ˆ(1)ˆ(σ== �
=

where p is the number of parameters fitted. In this example 6=p and 12=n , so that the average

variance of the fitted value is 125.1
12

)5.1(6 2

= , and the corresponding average standard error of the

f̂ ’s range from 77 to 90. Thus in this example (1) we have failed to show any substantial lack of
fit, and (2) the predicted change of f̂ is 12 times the average standard error of f̂ . It therefore
appears worthwhile2 to interpret the fitted surface.

Maxima, Ridges and canonical analyses
The strategy we have outlined (1) uses first-order designs to determine the local slope of the
surface, (2) employs steepest ascent to approach a maximal region, and (3) uses a second order

1 When a particular mode does not fit adequately, instead of immediately considering a higher order polynomial model
it is often advantageous to contemplate improvements by transformations of the variables or response, or to consider
some entirely different form of model.
2 A common misapplication of response surface methodology is to interpret an inadequately estimated response
function.

22

design to obtain a local representation of this maximal region. We now concider this fitted second-
degree equation somewhat more carefully, using for illustration the case of just two variables.
The fitted equation will be of the form

2112
2
222

2
11122110

ˆ xxbxbxbxbxbbf +++++=
Now, depending on the coefficients ,,,,,, 122211210 bbbbbb this equation can take a number of
different forms.

Canonical analysis consists of (1) shifting the origin to a new point S and (2) rotating the axes so
that they correspond to the axes of the contours. The rotated axes with the new origin are labeled

1X and 2X . When related to this new system of axes, the various forms of the second-order
equations are greatly simplified and the geometrical nature becomes obvious. Our object here is to
explain the ideas. Details of the necessary calculations will be found in indicated references.

Consider, for example, the fitted second-degree equation shown on page 20. It may be shown that
we can compute a new origin S’ lying on the ridge at minimum distance from the design center and
also calculate a rotation of axes so that 2X lies along the ridge. The fitted equation then becomes

2
22

2
1 15.04.212.52.88ˆ XXXf −+−=− .

In this equation the term 15.022 =B is negligible so that, by inspection of this form of the equation
only, we know that the system is closely approximated by a rising ridge. It is also possible to
calculate the equation of the ridge:

033.077.063.0 21 =++ xx
and thus, if we wish, conduct experiments along it.
In this example the canonical analysis merely confirms what we can observe from a contour
diagram. The importance of canonical analysis is that it enables us to analyze systems of maxima
and minima in many dimensions and, in particular to identify complicated ridge systems, where
direct geometric representation is not possible.

Using this method in many dimensions, it is important to make ‘reduced experimental designs’.
The first-degree design should contain more than)1(+n observations and the second-degree
design should contain more than 2/)2)(1(++ nn observations. This method does not converge to a
local minimizer rather it has a high probability of reaching a major decrease in the objective
function within few objective function evaluations.

2.3.3 Model based optimization
This section contains information summarized from several sources, i.e. (Booker, Dennis et al.
1999). The author makes himself some of the comments.

Basic strategy
Model based optimization solves optimization problems using the basic strategy outlined below.
1) Place a number of starting points
2) Evaluate the objective function at these points
3) Make a model of the objective function using all available points
4) Place a number of points depending on the model and previous function evaluations
 Go to 2

23

Generating starting points
Make a designed experiment. There are some choices, D-optimal design, factorial design, space
filling design or latin square design. A valuble reference is (Box, Hunter et al. 1977). If a high
probability of finding the global optimum is crucial then it is necessary to place many starting
points.

The model
It is a major advantage if the model is fast to evaluate.
If the shape of the objective function is unknown then it is necessary to have a very flexible model
that can adjust to any shape of the objective. In that case Moving Least Square or Radial Basis
Function regression is preferred, see (Mitchell 1997).

The more that is known about the objective function the more efficient optimization methods can
be designed, an example being if the objective is well approximated with a polynomial.
Determining the coefficients of the polynomial can then solve the optimization problem. Ideally the
function is previously known in its form but a few parameters need to be adjusted. The
optimization problem is then solved using a designed experiment with the same number of runs as
there are unknown parameters.

If the objective are subject to noise (as in the case when the objective function is constructed from
measured data) or a rounding off error (as in the case when the objective function is constructed
from computer calculations) it is appropriate to make more runs than there are parameters in the
model.

Method to search the model
If time is not critical the best choice is to search the whole region of interest on a grid. The step
length in the grid should be chosen to meet the need of accuracy in the objective. With a grid search
the risk of making a local optimization of the model is minimized. A more time efficient method is
to use many local optimizers starting at points that are experimentally designed. An appropriate
number of optimizers could be 3 times the number of dimensions of the problem.

Placing the next points in the optimization process
When deciding where to put the next points in the optimization process there are two conflicting
demands:
• firstly; we want to improve the accuracy of the model
• secondly; we want to explore the most promising regions suggested by the model.

The conflict can be handled in two ways:
• either; let every new point be a compromise between these to demands
• or; determine the criteria determining when to improve the model and when to explore

promising regions.

How the algorithm handles these demands should be governed by the problem solvers need for
local or global optimization. Anyway, it is important to start with improving the model and end
with exploring interesting regions. The starting points are, as a matter of fact, placed to support the
best possible model 3.

3 In the author’s opinion that is almost the same as not placing any starting points and initially improving the model
with the same number of points as was originally placed as starting points.

24

3 The described optimization methods ability to handle objective
functions with specific characteristics and demands put forward by
the user

Depending on the problem that should be solved there are several criteria that should be met by an
optimization method. Some valuable characteristics are listed below. If a specific characteristic is
very important compared to the others a suggestion of the best and the worst choice of optimization
method is made. There hasn’t been enough time, or resources to numerically verify these choices so
the suggestions are based on the authors own experiences from industrial work.

1) High initial improvement is wanted.
Best choice; a method that test which variables are of importance, i.e. Response surface
methodology
Worst choice; Multidirectional search

2) High probability of finding the globally best region is wanted.
Best choice; methods with many well spaced starting points, i.e. Model based optimization.
Worst choice; methods with one starting point, i.e. Quasi Newton method.

3) It is possible to do objective function evaluations in parallel.
Best choice; Model based optimization
Worst choice; Simplex method

4) A convergence proof to a local optimum is wanted.
Best choice; Multidimensional search, Quasi Newton method or Trust-region methods
Worst choice; Response surface methodology or Simplex method

5) High efficiency on stochastic objective function is wanted.
Best choice; Model based optimization
Worst choice; Quasi Newton method

6) The algorithm should be able to handle discontinuous objective functions.
Best choice; Simplex method or Multidimensional search
Worst choice; Model based optimization with a model that can’t handle discontinuity

7) High efficiency is wanted when the objective function is unknown (i.e. unknown weights).
Best choice; Model based optimization
Worst choice; not any particular

8) The algorithm should be easy to implement.
Best choice; Simplex method or Multidirectional search
Worst choice; Response surface methodology or Model based optimization.

9) The objective function is only accurate to a few digits.
Best choice; a method that uses well spaced points, i.e. Pattern search methods
Worst choice; a method that uses finite differencing, i.e. Quasi Newton methods

10) The objective function is convex.
Best choice; a method that converges to a local optima, i.e. Quasi Newton methods
Worst choice; not any particular

25

3.1 When to use model based optimization
Some remarks on cases when it is appropriate to choose model based optimization are given below.

• First we have the case when it is favorable to evaluate several objective function values at the
same time. Such is the case when a large parallel computer is available. Then model based
optimization is time efficient since the evaluations to determine the model can be executed in
parallel.

• Another instance may be when a large number of optimization problems are to be solved using
different constraints or weights in the objective function. This is the case when the objective
function can be described as (())f g x where ()g x is expensive to evaluate and several
different 'f s are to be evaluated. Then a fast model ˆ ()g x , that approximates ()g x sufficiently
well, is constructed and many different ˆ(())f g x can be evaluated with very little extra effort.

• Model based optimization is furthermore useful when optimizing an objective function that is
based on measurements that are subject to noise. The model is in such a case used to diminish
the noise in the measured data.

• It is also an advantage that the models that are created by the algorithm can be used to illustrate
the optimization problem in a way understandable to the problem solver and others. This helps
the problem solver to see through the problem at hand.

4 Description of a new model based optimization method

Here a model based optimization algorithm is suggested. It is an implementation based on the
method described in section 2.3.3.

4.1 Generating starting points
The idea behind this algorithm is to place some well-spaced points that can be used to create the
best possible model over the whole region of interest. All points, but one point, are placed on a
hypersphere and the remaining point is placed in the center of the hypersphere. The method to
spread the points on the hypersphere is by minimizing the maximal correlation between directions
to points. The directions are defined from the center-point to the points on the hypersphere. This
idea was implemented after suggestions from S Ahlinder who had noticed that almost every
experimental design is constructed in such a way that the points are placed in order to minimize the
maximal correlation between any two points. The Matlab implementation is named
‘min_corr_design’ and it is presented in appendix 2. The algorithm can shortly be described as
follows;

Place all, but one, points randomly
Move the points so that the centerpoint is zero

Do for every point
Do for every possible rotation (every combination of two
variables)

If a positive or negative rotation makes the maximal
correlation between directions decrease, make that rotation.

Stop when time limit is reached or further improvement is not possible.

Place a centerpoint at the origin.

26

Figure 9 shows a typical result when running the ‘min_corr_design’ algorithm in 2 dimensions with
6 points.

Figure 9

4.2 The model
The model that is used here is usually referred to as Moving Least Square or Locally Weighted
Regression. A usual method to approximate data with a model is by solving

()2

1

ˆmin (,)
n

i i
i

f f x
β

β
=

−� ,

where if is the dependent variable and ix are the corresponding independent variables in the

measurements. The model is denoted f̂ and it contains the unknown parameters β .

In locally weighted regression the weighted variant

()2
2

1

ˆmin (,)
n

i i i
i

w f f x
β

β
=

−� (*)

is used. The weights are local because iw is defined monotonically decreasing as function of the
distance between the modeled point x and the measured point ix

)(iii xxww −= .

27

The following conditions also have to be met by w.

(0) 1iw = , () 0iw ∞ =

1
number of parameters, , in the model

n

i
i

w β
=

=�

When the minimization problem (*) is solved it results in a linear polynomial, f̂ , which is used to
approximate the objective function. This is done every time the model is evaluated. The model can
approximate any continuous objective function sufficiently well because in a small region the
continuos objective function will be well approximated by a linear model. When the model is
evaluated at x, only the same number of points that are needed to determine a linear polynomial
will be used. The points used are the ones closest to x, so with sufficiently many well-spaced points
the points that support the linear model will be situated in a sufficiently small region around x that
the approximation of f is guaranteed to be good. More discussions about Locally Weighted
Regression can be found in (Mitchell 1997).

4.3 Method to search the model
The model is searched on a rectangular grid with 11 levels for each variable. It is supposed that the
interesting region can be transformed into 1 1x− ≤ ≤ .

4.4 Placing the next points in the optimization process
In my algorithm a point is placed either at the optimum predicted by the model or at a point that
have maximal distance to the nearest evaluated point. A parameter λ is used to direct the algorithm
in such a way that:
• When 0λ = the algorithm places the next point at the optimum predicted by the model, (a local

optimization method).
• On the other hand when 1λ = the algorithm tries to explore new areas and the next point to

evaluate will be the one with maximal distance to nearest evaluated point, (a global
optimization method).

Before running the algorithm, λ is set by the problem solver.

28

5 Two experiments with the new model based optimization metod

In order to estimate the performance of the new algorithm an optimization problem in two
dimensions has been evaluated. Example 1 illustrates how the algorithm works when 0=λ and in
example 2 the case when 1=λ is treated.
The objective function is an interpolation of the points given in Appendix 3. The interpolation was
done with the Matlab function griddata. This is a triangle-based linear interpolation which is
discontinuous in both the first and zero-th derivative.

5.1 Example 1

Layout of figures
In the upper left box the already evaluated points and the next point to be evaluated are shown as
stars, with the new point being given above the box. The grid illustrates the mesh points where the
model is evaluated.
The upper right box shows the model evaluated (in all the mesh points). The model is always based
on all evaluated points. The mesh point that minimizes the model is given above the box.
In the lower left box the true objective function is shown (for all mesh points). The mesh point that
minimizes the true objective function is shown above the box.
The lower right box shows the distance to the nearest evaluated point for all mesh points. The mesh
point that has the longest distance to the nearest evaluated point is shown above the box.

Figure 10 shows the results after the first iteration. The model is based on 6 starting points. These
starting points are shown in the upper left box. They are not located in such away that they
coincides with the mesh points. The information about distance to nearest evaluated point is not
utilized in example 1.

29

Figure 10 Numerical experiment, example 1, iteration 1

In Figure 10 the 6 starting points are symmetrically spaced in order to get the best chance of
catching the basin that contains a global optimum. The model in the upper right box is visualized
with contour lines. Only the lines on level 3 and 4 are marked. The model predicts high values at
(x1=low, x2=low) and (x1=high, x2=high), low values are predicted at (x1=high, x2=low) and
(x1=low, x2=high). When the mesh points are searched the minimum to the model was found at
(x1=-0.8, x2=1).

30

The next iteration where all 7 evaluated points are used to make up the model is shown in Figure
11.

Figure 11 Numerical experiment, example 1, iteration 2

The point (x1=-0.8, x2=1) reveals that the corner where x1 is low and x2 is high is not the optimal
solution. A basin seems however to be situated in the neighborhood of (x1=-0.5, x2=0.5) and we
can easily verify that this is the case by comparing with the true objective function in the lower left
box.The corner where (x1=high, x2=low) is still unexplored and according to the model this is a
very promising region. So when the model is searched the optimum is found at (x1=1, x2=-1). This
point is hardly visible in Figure 11 but there is an indication at (x1=1, x2=-1) in the upper left box.

31

Figure 12 Numerical experiment, example 1, iteration 3

When the point at (x1=1, x2=-1) is used to update the model the result is shown in the upper right
box in Figure 12. In very few (8) objective function evaluations the algorithm has detected the two
basins in the objective function. At the present stage the most promising point is located at (x1=0.6,
x2=-0.2); this point is very close to one of the starting points, but the algorithm did not detect this
so in spite of this fact the point is evaluated.

32

Figure 13 Numerical experiment, example 1, iteration 4

After the point in (x1=0.6, x1=-0.2) had been evaluated, the new status is as shown in Figure 13. As
expected the model hasn’t changed much since the previous iteration. The optimum of the model is
still predicted to be in (x1=0.6, x2=-0.2); then the algorithm chooses to evaluate the second best
mesh point. According to the model that is (x1=0.8, x2=-0.2).
This point is in fact the global optimum of the objective function.

5.1.1 Observations
The algorithm detects promising regions very early in the process, but the depth of these regions is
not especially well predicted.

In the 4’th iteration the algorithm suggests the next point to be a point which already has been
evaluated. This is maybe a good stopping criterion or a stage where the strategy should be
reconsidered.

If the model deviated much from the objective function where the next point is to be placed the
algorithm takes a large step forward towards the objective function in the region under evaluation.

When there only are a few objective function values then the approximation will be close to linear
and therefore often has the optimum in a corner. Many corners will be searched until the model can
have its optimum inside the region. This is a potential problem when n is large, since number of
corners are n2 .

33

5.2 Example 2

By setting 1=λ the next point to evaluate will be chosen as the point with the largest distance to
the nearest evaluated point. In doing so an approximation of a space filling design is sequentially
reached. The primary goal of this strategy is to find new interesting areas to explore. The first point
is placed at (x1=1, x2=-1), a little indication is shown in Figure 14.

Figure 14 Numerical experiment, example 2, iteration 1

Figure 15 Numerical experiment, example 2, iteration 3

After evaluating 9 points (the 6 starting points included) the algorithm detects and localizes the
basin to the right, see Figure 15.

34

Figure 16 Numerical experiment, example 2, iteration 6

Figure 17 Numerical experiment, example 2, iteration 9

After evaluating 12 points (Figure 16) the algorithm has detected both basins. At this stage the
objective function is modeled with good agreement over the whole region and little further
improvement can be expected, see Figure 17.

5.2.1 Observations
Two favorable characteristics of the method are shown in example 2. Firstly the method could
detect new interesting regions after one minimum had been fully explored. Secondly, the method
can be used to sample an object and continuously monitor how large the difference is between the
next predicted model value and the objective function. After that a number of consecutive points

35

have been predicted with good precision the sampled system is represented with sufficient
accuracy. Then optimization is carried out on the model, which is a great advantage.

6 Conclusions and future work

6.1 Conclusions

Optimization using models is indeed a very flexible way to construct an optimization algorithm.
Since the algorithm can be tailor-made to a certain problem it can be adjusted to perform both
rapidly and adequately on that specific problem.

The model based algorithm uses all the objective function values that have been evaluated so far in
every step. No other optimization method described in this report does that. But this does not result
in faster optimization methods, as indicated in Appendix 1.

Here I will try to answer the question: ”Why is it not improving the algorithm if every already
evaluated point is considered equally when choosing the next point to be evaluated?”

The problem is similar to the one described above where a choice has to be made between a local
and a global optimization algorithm. If one uses all evaluated points in each iterate then one has
constructed a global optimization method. If a local optimization method is wanted instead, the
points that support the model should be chosen so that predictions will be the best possible in the
most promising regions, and not elsewhere.

If one wants to have an algorithm with the highest convergence speed and little fuzz in a sequential
case then the reasonable choice is not really a model based algorithm. If however objective function
evaluations can be made in parallel or if we want to solve many different optimization problems
with only minor changes in the objective function or if we have the case when the objective
function is subject to noise, then the model based algorithm might be the best choice.

6.2 Future work

The model based optimization algorithm should be tested on several engineering optimization
problems and the characteristics of these problems should be examined: Some characteristics that
should be considered are mentioned in section 3.

The model based optimization method should be improved. The questions to be addressed in
particular are:
• Where should the next objective function evaluation take place?
• How could a stable continuous approximation of the objective function be reached?

It should be possible to measure an optimization algorithm’s ability to handle a certain problem
with specific characteristics. If the ability to handle the characteristics in section 3 could be
quantified it should facilitate the choice of the appropriate optimization method.
If a well-defined problem for each characteristic could be constructed then it should be possible to
compare all available optimization methods for this characteristic by running the algorithms on this
problem. Such an achievement would be welcome.

36

References

Booker, A. J. (1994). D O E for computer output. Technical Report BCSTECH-94-052, Boeing
Computer Services.

Booker, A. J., J. E. Dennis, et al. (1999). “A Rigorous Framework for Optimisation of
Expensive Functions by Surrogates.” Structural Optimization 17(1): 1-13.

Box, G. E. P., W. G. Hunter, et al. (1977). Statistics for Experimenters. An
Introduction to Design, Data Analyses, and Model Building. New York, John Wiley & Sons.

Box, G. E. P. and J. Wetz (1973). Criteria for Judging Adequacy of Estimation by an
Approximating Response Function. University of Wisconsin-Madison, Department of
Statistics.

Conn, A. R., N. I. M. Gould, et al. (2000). Trust-Region Methods. Philadelphia, MPS-SIAM
Series on Optmization.

Conn, A. R. and P. L. Toint (1996). An algorithm using quadratic interpolation for
unconstrained derivative free optimization. Nonlinear Optimization and Applications. G.
D. Pillo and F. Giannessi, Plenum: 27-47.

Dennis, J. E. and V. Torczon (1991). “Direct search methods on parallel machines.” SIAM
Journal on Optimization 1(4): 448-474.

Dixon, I. C. W. (1972). Nonlinear Optimization. London, The English Universities Press
Ltd.

Dixon, I. C. W. and G. P. Szegö (1978). Towards Global Optimization 2. Amsterdam, North
Holland.

Himmelblau, D. M. (1972). Applied Nonlinear Programming. New York, McGRAW-HILL.

Mitchell, T. J., J. Sacks, et al. (1989). “Design and analysis of computer experiments.”
Statistical science 4(4): 409-435.

Mitchell, T. M. (1997). Machine Learning. New York, McGraw-HILL.

Morris, M., C. Currin, et al. (1991). “Bayesian prediction of deterministic functions,
with applications to the design and analysis of computer experiments.” Journal of the
American Statistical Association 86(416): 953-963.

Nash, S. G. and A. Sofer (1996). Linear and Nonlinear Programming. Singapore, McGRAW-
HILL.

Nelder, J. A. and R. Mead (1965). “A Simplex method for function minimization.” Computer
Journal 7: 308-313.

Owen, A. B. (1992). “Orthogonal arrays for computer experiments, integration and
visualisation.” Statistica Sinica 2: 439-452.

Polyak, B. T. (1987). Introduction to Optimization. New York, Optimization Software Inc.

Sacks, J., H. P. Wynn, et al. (1992). “Screening predicting and computer experiments.”
Technometrics 34(1): 15-25.

Torczon, V. (1989). Multi-directional search: A direct search algorithm for parallell
machines. Department of Mathematical Sciences. Houston, Rice University.

Torczon, V. (1991). “On the convergence of the multidirectional search algorithm.” SIAM
Journal on Optimization 1(1): 123-145.

37

Notation

α (1) Step-length for standard Newton method 1≡α
 (2) The reflection coefficient in the Nelder Mead simplex algorithm
β (1) The contraction coefficient in the Nelder Mead simplex algorithm

(2) Coefficients in the Response Surface model
∆ The size of the trust region in the Trust-region algorithm
γ The expansion coefficient in the Nelder Mead simplex algorithm
ρ Actual reduction divided by predicted reduction in the Trust-region algorithm
ϕ The model in the Trust-region algorithm

B Approximation of)(2 xf∇
c Contraction vertex in the Multidirectional search algorithm
e Expansion vertex in the Multidirectional search algorithm
f Objective function
g Any function
k Iteration number
l Lower limit for x
n Dimension of x
p (1) Step direction, the solution to)(kk xfpB −∇= in the Newton algorithm

(2) Step (kk xx −+1) in the Trust-region algorithm
P Points in the Nelder Mead simplex algorithm
r Reflected vertex in the Multidirectional search algorithm
u Upper limit for x
t Time in Response Surface Method
T Temperature in Response Surface Method
v A vertex in the Multidirectional search algorithm
x Any variable

*x Local minimum to)(xf

38

Appendix

Appendix 1 Benchmark
Appendix 2 Matlab implementation of min_corr_design
Appendix 3 Objective function data

39

Appendix 1 Benchmark

The Hartman function with 6 variables as presented in (Dixon and Szegö 1978) has been used as
test-problem. The Matlab routine that is used to evaluate this function is shown in Figure 18.

function f = hartman6(x)
% f = hartman6(x)
% x is a 6 element row vector 0 < xi < 1
% f is scalar
% The six variable Hartman problem
% A testproblem in global optimization
% Discribed in Towards Global Optimization 2
% edited by L.C.W. Dixon and G.P. Szegö, North-Holland 1978
[row,col]=size(x);
if row~=1 | col ~=6

error('argument should be of size 1x6')
end

m=4;
a=[10 3 17 3.5 1.7 8

.05 10 17 .1 8 14
3 3.5 1.7 10 17 8
17 8 .05 10 .1 14];

c=[1 1.2 3 3.2]';

p=[.1312 .1696 .5569 .0124 .8283 .5886
.2329 .4135 .8307 .3736 .1004 .9991
.2348 .1451 .3522 .2883 .3047 .6650
.4047 .8828 .8732 .5743 .1091 .0381];

f = 0;
for i = 1 : m
f=f - c(i) * exp(- sum(a(i,:) .* ((x - p(i,:)).^2)));
end

Figure 18

In (Booker, Dennis et al. 1999) the Hartman function is minimized with two model based
optimization algorithms (MMF/MP) and (MMF/DACE) as well as one Trust-region algorithm
(DFO). All these optimization algorithms belong to the third class, see page 13.

To be able to compare these algorithms with standard optimization methods such as Newton type
methods (first class) and the Nelder Mead Simplex method (second class), three algorithms,
FMINS, FMINU, and CONSTR, included in Matlabs optimization toolbox, were tested.

FMINS is a simplex type algorithm described in (Nelder and Mead 1965). If the optimization
problem is n dimensional, the Simplex algorithm uses n+1 points to search for better solutions as
described on page 7. FMINU and CONSTR are Newton type algorithms. This type of algorithm is
described on page 3 and more detailed description can be found in (Nash and Sofer 1996). The
difference between FMINU and CONSTR is that CONSTR is especially designed to handle
constraints.

40

As shown in Figure 19, MMF/MP and MMF/DACE both reached the objective value -3 in 50
evaluations and they converged to the optimum after 70 evaluations. As shown in Figure 19 the
convergence speeds of both MMF/MP and MMF/DACE are comparable to FMINU. DFO
converged after 100 evaluations which is comparable to CONSTR.

Figure 19

The above results show that these model based algorithms do not converge faster then standard
Newton type algorithms on a mathematical test-problem. Further does the Nelder Mead Simplex
algorithm converge slower then the Newton type algorithms on this problem.

41

Appendix 2 Matlab implementation of min_corr_design
function [X,corr_mat]= min_corr_design(n_var,n_points)
% [X,corr_mat]=gen_tetraed(n_var,n_points)
% fast if n_var+1 == n_points
% otherwise iterates until tolerans tol or toltimelimit maxtime is achieved
% corr_mat holds the correlation number for every combination of points

if n_var+1==n_points
c=cos(15*pi/180);s=sin(15*pi/180);
X=c^(n_var-1)*s*ones(n_var,n_var);
for i=1:n_var

X(i,i)=c^n_var;
end
X=[zeros(1,n_var);X];

% center the near tetraed
for i=1:n_var

X(:,i) = X(:,i)-sum(X(:,i))/n_points;
end

%normalize all vectors
for i=1:n_points

X(i,:) = X(i,:) / (sqrt(sum(X(i,:).^2)));
end

corr_mat=0;
ii=0;
for i = [1:n_points-1]

for j= i+1:n_points
ii=ii+1;

corr_mat(ii)= (X(i,:)*X(j,:)') /(norm(X(i,:))*norm(X(j,:)));
end

end

else
tic

tol = 0.05
maxtime = 120
%rotating angle
ang = 5

giv_pos = [cos(ang*pi/180) sin(ang*pi/180)
-sin(ang*pi/180) cos(ang*pi/180)];

giv_neg = [cos(ang*pi/180) -sin(ang*pi/180)
sin(ang*pi/180) cos(ang*pi/180)];

X=rand(n_points,n_var)*2-1;

% normailze all vectors
for i=1:n_points

X(i,:) = X(i,:) / (sqrt(sum(X(i,:).^2)));
end

corr_mat=[1 0]
while max(max(corr_mat))-min(min(corr_mat)) > tol & toc < maxtime

% do for every point

42

for p = 1:n_points
corr_sum = cal_corr_sum (X,p);

% do for every rotating direction

for i=1:n_var-1
for j=i+1:n_var

rot_mat = eye(n_var);

rot_mat([i,j],[i,j]) = giv_pos;
Xpos = X;
Xpos(p,:)=(rot_mat * X(p,:)')';

pos_corr_sum = cal_corr_sum (Xpos,p);

rot_mat([i,j],[i,j]) = giv_neg;
Xneg = X;
Xneg(p,:)=(rot_mat * X(p,:)')';
neg_corr_sum = cal_corr_sum (Xneg,p);

if pos_corr_sum < corr_sum
X = Xpos;
corr_sum = pos_corr_sum;

elseif neg_corr_sum < corr_sum
X = Xneg;
corr_sum = neg_corr_sum;

end
end

end
end
%calculate correlation between every point

corr_mat=0;
ii=0;
for i = [1:n_points-1]

for j= i+1:n_points
ii=ii+1;

corr_mat(ii)= (X(i,:)*X(j,:)') /(
norm(X(i,:))*norm(X(j,:)));

end
end

end
end

43

Appendix 3 Objective function data

x1 x2 f(x)

-1.13 1.15 5.00
1.18 1.15 5.00
1.25 -1.15 5.00
-1.15 -1.25 5.00
-0.57 0.50 0.00
-0.53 0.83 3.00
-0.81 0.45 4.00
-0.70 -0.04 5.00
-0.73 -0.70 4.00
-0.28 -0.63 3.00
0.32 -0.58 2.00
0.10 -0.10 3.00
0.05 0.60 4.00
0.54 0.32 3.00
0.86 -0.28 0.00
1.24 -0.27 2.00

