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Abstract

Doggy AB is the only Swedish producer of tinned pet food. In the food process
a large amount of cold water is needed at the stage when the boiled tins are
cooled. Doggy’s problem is to get sufficient amounts of cold water with a low
enough temperature. The aim of the thesis is to minimise the usage of fresh
water in the cooling process and to analyse the result.

We build a simulation model in Simulink, that describes the flows of wa-
ter within the system of tanks supplying the cooling process with water. The
optimisation problem is to find a set of parameters that gives the optimal out-
come of the simulation. Our problems shows to be nonconvex and also non-
differentiable at some points.

For the optimisation, we use the built-in MATLAB function fminon and
TOMLAB with the solvers snopt, onSolve nlpSolve. The algorithms used
in these solvers are all based on sequential quadratic programming but they use
different methods to fulfill the constraints. The different methods for the con-
straints make the solvers give different results; some of the solvers prioritise
feasibility, while some allow infeasible solutions.

Our conclusion is that if Doggy circulates the water in an optimal way, the
only fresh water that needs to be added is the water lost in the system; i.e., no
fresh water should be added for the sole reason of decreasing the temperature.
The most important change we suggest is to use the cold fresh water as late as
possible in the cooling process. With the above changes, the temperature of the
cooling water can be lowered with up to 6.5 ÆC.

Sammanfattning

Doggy AB är den enda svenska producenten av konserverat djurfoder. I kon-
servmatsproduktionen behövs stora mängder kallt vatten då de kokta burkarna
ska kylas. Doggys problem är att få tillräcklig mängd kallt vatten med tillräckligt
låg temperatur. Målet med detta examensarbete är att minimera användningen
av färskvatten och analysera resultatet.

Vi skapar en simulering i Simulink, som beskriver vattenflödena i det tanksys-
tem som försörjer kylprocessen med kallvatten. Vårt optimeringsproblem är
därmed att finna parametervärden som ger en optimal simulering. Vårt problem
visar sig vara ickekonvext och icke-differentierbart i vissa punkter.

För att lösa optimeringsproblemet använder vi den inbyggda MATLAB-funk-
tionen fminon samt TOMLAB med olika lösare: snopt, onSolve och nlp-Solve. Algoritmerna som används i de olika lösarna bygger alla på sekventiell
kvadratprogrammering, men använder olika metoder för att uppfylla bivillko-
ren. De olika metoderna för bivillkoren gör att lösarna ger olika resultat; vissa
prioriterar tillåtenhet, medan andra tillåter otillåtenhet. Detta beror på skill-
nader i de straffunktioner som används, för bivillkoren, i algoritmerna.

Vår slutsats är att om Doggy cirkulerar vattnet på ett optimalt sätt, så kom-
mer det enda färskvatten som behöver sättas in vara det som går förlorat i sys-
temet; med andra ord ska inget färskvatten användas enbart för temperatursänk-
ning. Den viktigaste förändringen vi föreslår är att tillsätta färskvattnet så sent
som möjligt i kylprocessen. Med ovan nämnda förändringar kan temperaturen
på kylvattnet sänkas med upp till 6.5 ÆC.
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1 Introduction

1.1 About Doggy AB

Doggy AB is one of the main producers of pet food in Sweden. The factory is
located in Vårgårda, 70 km north east of Gothenburg, and produces both pel-
lets and tinned food. Doggy’s factory makes about 70 % of the pellets and 100
% of the tinned pet food produced in Sweden. The primary market is Sweden,
but Doggy also exports, mainly to England and Germany.[Pet05] In the tin pro-

duction, one production cost stems from the input of extra water in the cooling
of the boiled food. The aim of the project, which is made on behalf of Doggy,
is to minimise the total amount of added water and to find its optimal use. The
factory is divided into two sub factories: one for the pellets food and one for the
tinned food. This thesis will only consider the tin production so from now on, we
will focus on this part of the factory, which is split into two parts, one for the pro-
duction of the original aluminium tins and one for a recently started Tetra Pak
production line. The food is boiled in the tins (both the aluminium and Tetra
Pak) and thereafter cooled for handling reasons. The cooling of the tins has to
finish within 35 minutes, due to hygiene restrictions and time constraints. To
achieve a sufficient cooling, large quantities of cold water are needed. The cool-
ing water can be reused by going through a heat exchanger and a series of tanks.
During the summer when the temperature in the system is generally higher, it is
difficult to lower the temperature of the food sufficiently and efficiently. A sim-
ple but expensive solution to decrease the temperature of the cooling water is to
add cold fresh water. Some fresh water must be inserted, since there is a loss of
water in the production, but apart from that, excessive water will just be lost to a
nearby narrow river. An optimisation of the circulation of the cooling water will
bring down the usage of fresh water, which is the objective of this thesis.

The circulation of the water can be controlled by changing the parameters in
the regulations of the system. The problem has several constraints: the cooling
of the tins has to finish within 35 minutes (which can be achieved only if the
temperature of the cooling water is below 20 ÆC), the tanks are not allowed to
run empty and there are pumps and pipes in the systems with limited capacities.

1.2 The aim of the project

The goal of this thesis is to minimise the waste of fresh water and to keep the
cooling water at a low temperature, by finding an optimal circulation of the wa-
ter in the tin production. Flows going into and out from the system can be rear-
ranged as long as necessary constraints are fulfilled.

We will not consider very drastic solutions, for example significant rebuild-
ings of the factory. Even very expensive solutions are ignored; even though some
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kind of electrical cooling system would work, the cost of it would vastly exceed
the money saved from the decreased water usage.

1.3 Methods

In this project, a broad range of tasks has been necessary to perform: from
measurements to advanced calculations. The first thing we did was getting an
overview over the system by mapping it out. This part of the project was merely
done at the factory where we measured flows, looked at blueprints over the tank
system, and registered temperatures. We measured the flows with a flow mea-
surement tool during a day with normal production.

The next part of the project is to model the system mathematically. The equa-
tions describing the problem are non-linear and time dependent and set up as a
system of ordinary differential equations (ODEs). This system is very complex
and it is too difficult, if not impossible, to solve it explicitly. Therefore, we per-
form a simulation of the problem to be used as a "black-box" in the optimisation.
Our task is then to find the ingoing parameters to the simulation that result in
the optimal circulation of the water. We get an optimisation problem where the
constants and some variables are set by us, and other variables are obtained from
the simulation. The modelling and simulation of the problem is made with the
MATLAB toolbox Simulink and to solve the optimisation problem, MATLAB is
used with different solvers. We have chosen to use the built-in MATLAB func-
tion fminon, and also use three of TOMLAB’s solvers: snopt, onSolve
and nlpSolve.

1.4 Outline

In the next section a more detailed description of the production is presented,
especially of the tanks and the cooling process. The equations describing the
system are presented in Section 3, where we also discuss the properties of the
problem. A description of the Simulink simulation is shown in Section 4. In Sec-
tion 5 the optimisation problem is discussed and analysed and some solvers are
presented. The differences between the solvers are also discussed. In Sections 6
and 7 the results of the optimisation are shown and discussed. Finally, in Section
8 further developments of the system are suggested. In Appendix A and B some
derivations of mathematical expressions are shown; the constants used are found
in Appendix C and in Appendix D some term descriptions are explained.

2 The production

Cat and dog food is made out of different kinds of meat and additives, for ex-
ample vitamins. The ingredients are mixed and poured into tins before the boil-
ing procedure takes place in an autoclave.[Pet05] An autoclave is a closed sys-
tem where physical reactions take place with a high temperature and under high
pressure.[NE05] To the left in Figure 1 below some autoclaves are shown. There
are five autoclaves for the aluminium tins and three for the Tetra Pak packages.
The picture to the right in Figure 1 shows the Tetra Paks on their way to distri-
bution.

2



Figure 1: To the left, we can see the autoclaves for the aluminium tin production.

The opened autoclaves are empty and the closed one is in use. To the right the

boiled and cooled Tetra Pak packages are lined for distribution.

The tins are heated until the center of the tin has a temperature of about
130 ÆC (403 K), a process which takes approximately one and a half hours. The
hot tins have to be cooled to about 30 ÆC for handling and packaging reasons.
Post boiling, the water in the autoclave is lowered in temperature in a plate heat
exchanger, called Heat Exchanger AC, see Figure 2.[Pet05]

Figure 2: The dark boxes, lined on the floor, are the Heat Exchanger(s) AC.

The eight autoclaves have one such heat exchanger each, but we refer to
them all as Heat Exchanger AC, since they are identical and assumed to run one
at a time. A plate heat exchanger is a special type of heat exchanger where fluids
of different temperatures are separated with plates. That way, the fluids never
mix, but heat is transferred between them.

In one hour, up to two and a half boilings of aluminium tins and one boiling
of Tetra Pak are carried out, and the production runs for 17 hours a day, five days
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a week.
The production of pet food is subject to certain hygiene restrictions; therefore

the cooling time is limited to 35 minutes, which can be achieved only when the
temperature of the cold stream going into Heat Exchanger AC (CSin in Figure
3) has a temperature of 20 ÆC or less.

CS_out

CS_in

Autoclaves
of tanks
A system

WS_in

WS_out

Heat Exchanger(s) AC

Figure 3: The connection between the autoclaves, Heat Exchanger AC and the sys-

tem of tanks. The arrows illustrate the water flow direction, where WSin, WSout,CSin and CSout is the warm stream in and out and the cold stream in and out

respectively.

The stream CSin is pumped from a tank, called Tank C, which belongs to a
system of five water tanks with individual temperatures. When this stream has
passed Heat Exchanger AC, it is substantially warmer and is led to one of the
other tanks in the system. Figure 4 shows the connection between the autoclaves,
the Heat Exchanger AC and the system of tanks.

River

River

Autoclaves

Tank 4 Tank C
Steam

Tank 3 Tank 2 Tank 1

Heat Exchanger(s) AC

Heat Exchanger TS
   fresh water

Clean

Figure 4: A schematic illustration of the connection between the tanks and between

the tank system and the autoclaves as the system is today. The arrowed lines show

the direction of the water flows.

Since the water in the autoclaves gets cooler during the 35 minutes cooling
process, the streamCSout is warmer at the beginning of the process than towards
the end. Hence, the temperature of this outgoing stream can be described as a
function of time, plotted in Figure 5. One curve in the figure is plotted with
experimental values on CSout that we measured and the other curve is fitted by
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Figure 5: The temperature curve of the water returning from Heat Exchanger AC

to the system of tanks where the temperature is a function of time. The dashed

curve shows the fitted curve.

regression. The curve fitting is made with the MATLAB function nlinfit. The
equation for the fitted curve is represented asT (t) = 303 + 86:1e �t370 ; (1)

where T is the temperature [K] and t is the time [s]. Which tank the outgo-
ing water is led into is dependent on the temperature of the flow and therefore
(according to the time dependence) on the time the cooling process has been
running.

In the text, we have used ÆC as the unit for temperature, since it is easy to
relate to, but in the calculations we use the SI-unit Kelvin.1

2.1 Tank 1

In the first minutes of the cooling process, the water returning to the tank system,
from Heat Exchanger AC, is very hot (up to 120 ÆC), see the left picture in Figure
6 below.

At this stage, the returning water goes into the first tank, Tank 1, until it has
decreased in temperature to a certain preset temperature, Tset1 , when a valve
opens to the next tank, Tank 2. It is easy to change the preset temperatures; they
are connected to a digital regulator, shown to the right in Figure 6 below.

Some water from Tank 1 is used to produce steam, as shown in Figure 4. The
steamer is also in use during the night and is at this time the only flow connected
to this tank. This will cause a low water level in the morning. If the flow from
Heat Exchanger AC exceeds the flow to the steamer, then the water level will
increase and eventually water in Tank 1 will overflow into Tank 2.

1SI-unit, with the designation K for thermo dynamic temperature (absolute temperature). 0 K is
273.15ÆC
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Figure 6: To the right the opening of Tank 1. The water in this tank is hot; notice

the steam coming out of the tank! To the right the display, where the temperature

limits can be changed, is shown.

Tank 1 is not allowed to run empty since this could damage the pump to the
steamer, so if the water level falls too low, a signal will activate an insertion of
fresh water to fill the tank. Today, the net loss in the tank system is inserted in
Tank 1. The ingoing and outgoing flows of Tank 1 are shown in Figure 7.

Tank 1Overflow to Tank 2
Flow to steamer

Flow from Heat Exchanger AC 
Fresh water flow

Figure 7: Tank 1 with its ingoing and outgoing flows.

2.2 Tank 2

The second warmest tank, Tank 2, has two incoming flows: water from Heat
Exchanger AC and water overflowing from Tank 1. Valves switch the water
from the autoclaves; it will be led into Tank 2 when its temperature is betweenTset1 and Tset2 . Water is taken from Tank 2 to be used in the cleaning of the
factory, even the part that produces pellets. The cleaning is also done during the
night and is at this time the only flow connected to this tank. This will cause a
low water level in the morning. This tank can also overflow, to Tank 3, when the
water level is too high.

Tank 2 is not allowed to run empty (due to the pump for the cleaning) so if
the water level is too low, a signal will activate an insertion of fresh water to fill
the tank. The ingoing and outgoing flows of Tank 2 are shown in Figure 8.
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Tank 2
Flow used for cleaning 

Overflow to Tank 3 Overflow from Tank 1
Flow from Heat Exchanger AC
Fresh water flow

Figure 8: Tank 2 with its ingoing and outgoing flows.

2.3 Tank 3

The water coming from Heat Exchanger AC, which has a temperature betweenTset2 and the next limit, Tset3 , is led into the largest tank, Tank 3. The only
flow leaving Tank 3 is the water overflowing to the next tank, Tank 4. Another
flow of water going into Tank 3 is a flow coming from the air conditioning of the
computer rooms. The ingoing and outgoing flows of Tank 3 are shown in Figure
9.

Tank 3 Overflow from Tank 2

Flow to and from

(night time)

Overflow to Tank 4

Flow from air condition 
of computer rooms

Flow from Heat Exchanger AC

Heat Exchanger TS

Figure 9: Tank 3 with its ingoing and outgoing flows.

2.4 Tank 4

At the end of the cooling process, when the temperature of the stream from Heat
Exchanger AC is lower than Tset3 , the stream goes to Tank 4, which is the last
tank in the series with incoming water from the cooling process.

The water from the tanks is reused in the cooling process, where the cooling
water has to have a temperature below 20 ÆC. To achieve this, the water in Tank
4 is pumped through a heat exchanger, called Heat Exchanger TS. Note that
Heat Exchanger TS has nothing to do with the heat exchangers connected to the
autoclaves, Heat exchanger AC. The cooled water going out of Heat Exchanger
TS goes into a tank, Tank C, from which water is taken to the cooling of the
autoclaves; see Figure 4. The cold stream in Heat Exchanger TS is water from a
nearby narrow river. One of the reasons that the cooling is less efficient in the
summer is the relatively high temperature of the river at that time of the year.
Heat Exchanger TS is shown in Figure 10 below.

Water flows into Tank 4 from Tank 3 and Tank C. When Tank 4 fills up to
the brim, water overflows out to the river, and is thereby lost. Tank 4 has an
incoming flow from a process in the pellets factory.

A tap is connected to Tank C to be opened whenever the level of Tank 4 is
too low. The ingoing and outgoing flows of Tank 4 are shown in Figure 11.

A high temperature of the river gives a negative result in the cooling process
in two ways: the temperature gradient in Heat Exchanger TS is small (because
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Figure 10: To the left, we can see Heat Exchanger TS and to the right the plates

are visible.

Tank 4 Overflow from Tank 3
Flow from pellets factory

Overflow to river
Flow to air condition

of comuter rooms

Overflow from Tank C

Flow from Heat Exchanger ACFlow to Heat Exchanger TS

Figure 11: Tank 4 with its ingoing and outgoing flows.

the temperature difference between the two streams is small), which decreases
the cooling effect of the water and at the same time algae create an isolating
layer on the plates in the heat exchanger which decreases its efficiency.

2.5 Tank C

Ideally, the water going out of Heat Exchanger TS into Tank C is below 20 ÆC.
As previously stated, this is not always the case, especially in the summer. There
are several options to lower the temperature of the water going to the cooling
process; dilution, night cooling and batch; see the next subsections.

A tap is connected to this tank and is opened whenever the level of Tank 4 is
too low, since Tank C overflows into Tank 4. The ingoing and outgoing flows of
Tank C are shown in Figure 12.

Tank COverflow to Tank 4 Flow from Heat Exchanger TS
Flow to Heat Exchanger AC Fresh water flow

Figure 12: Tank C with its ingoing and outgoing flows.
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2.5.1 Dilution

A fast option to cool the flow going from Tank C to the Heat Exchanger AC is
to dilute it with cold fresh water. The fresh water is added directly into the pipe
leading to the autoclaves. The result is an immediate lowering of the tempera-
ture, but it can be necessary to add large amounts of fresh water.

2.5.2 Night cooling

Since the tanks are connected to each other and overflow into each other, a low
starting temperature in any tank is beneficial for the cooling. To achieve this, the
water in Tank 3 can be cooled over night, when the production is not running.
When this is done, a valve redirects the flow to Heat Exchanger TS so that water
from Tank 3 is cooled against the water in the river, see Figure 13. Possibly,
a continuous flow through the heat exchanger can also prevent the growth of
algae.

Tank 3

Day time

Heat Exchanger TS

Night time

Heat Exchanger TS

Tank CTank 4

Figure 13: When the factory uses night cooling, a valve switches the ingoing flow

to Heat Exchanger TS so that the water in Tank 3 is cooled.

2.5.3 Batch

The tap opened at a low level of Tank 4 can also be used when the temperature
in Tank C is high, to add cold fresh water. A timer is connected to a button, so
when the button is pushed, water will be added into Tank C for 30 minutes. The
button is only used for emergency purposes, when all other methods to cool the
water are insufficient.

3 The mathematical model

3.1 General expressions

The properties of the system can be modelled as a system of time dependent
equations. ODEs describing the changes in mass and temperature of the tanks
are derived by writing mass and heat balances. The general balances over a tank
are written as dmdt =Xi Wini �Xj Woutj ; (2)

9



dTdt = PiWini(Tini � T )m ; (3)

where
PiWini and

Pj Woutj are the sums of water flows going in and out of the
tank, Tini is the temperature of the i:th ingoing flow and T is the temperature of
the water in the tank. The derivation of the heat balance equation is shown in
Appendix A; the derivation of the mass balance equation is analogous.

If equation (2) is divided by �A it can be rewritten asdhdt = PiWini �Pj Woutj�A ; (4)

where h is the height of the water level, � is the density of water [kg/m3℄ and A
is the bottom area [m2] of the tank. The height of the water level is compared
to the height of the pipe leading to the next tank, H . If h is larger than H , water
will overflow, see Figure 14.

h

h_min

H

Figure 14: A tank viewed from the side. h is the current water level, H is the height

of the pipe leading to the next tank and hmin is the minimum water level allowed.

In this case, the pressure of the water at H will be large when the differenceh�H is large, and with increased pressure, the outgoing flow will increase:Woverflow = woverflowApipe��; (5)

where woverflow =p2g(h�H):
The area of the pipe is Apipe ([m2]) and � is a dimensionless factor used to calcu-
late the decrease in flow when the edges of the pipe are not smooth. The value
of � can be between 0 and 1, but is typically around 0.6 for sharp edges.[EG94] A
derivation of equation (5) is shown in Appendix B.

3.2 Equations describing the system of tanks

The objective function is to minimise the total amount of added fresh water
(mfresh [kg]):

minimise mfresh: (6)

The sum of the water added into the pipe (Wdilute [kg/s]) and the water added
directly into Tank 1, Tank 2 and Tank C (Wextra1, Wextra2 and WextraC [kg/s])

10



gives the total amount of fresh water added to the system from a given starting
time, �0, to some finite time � :mfresh = Z �t=�0(Wdilute +Wextra1 +Wextra2 +WextraC) dt: (7)

The necessary mass flow of water to add in the pipe at a too high temperature
can be calculated as Wdilute = WaTa �WCoutTCTfresh ; (8)

where Wa [kg/s] is the flow needed in the cooling process (illustrated as WSin
in Figure 3), Ta [K] is the temperature of this flow, WCout [kg/s] is the mass flow
pumped from Tank C, TC [K] is the temperature of Tank C, and Tfresh [K] is the
temperature of the fresh water.

To get a fast enough cooling of the autoclaves, there is a certain demand of
cooling water. The demand from the autoclaves for the aluminium tins (Datin
[kg/s]) is different from the demand from the Tetra Pak autoclaves (Datetra
[kg/s]). The demands are calculated assuming a fixed number of boilings per
hour, and the flow to the autoclaves is assumed to be exactly the demand:Wa = Datin +Datetra ; (9)

where Wa = Wdilute +WCout: (10)

Equations (2) and (3) are used to calculate the mass and heat balances for
Tank C and give dmCdt = Wool �WC4 �WCout +Wextra; (11)dTCdt = Wool(Toolout � TC) +Wextra(Tfresh � TC)mC ; (12)

where Wool [kg/s] is the flow of water going through Heat Exchanger TS andWC4 [kg/s] is the water flow overflowing from Tank C to Tank 4. Toolout [kg/s]
is the temperature of the outgoing water from Heat Exchanger TS.

There are no exact relations between the in- and outgoing temperatures and
flows for plate heat exchangers that can be used in our simulations. The model
for Heat Exchanger TS is therefore derived from calculations done by Alfa
Laval. How the simulations of the heat exchanger are done is unfortunately
not known to us, since the simulation programs are confidential. Alfa Laval’s re-
sults are calculated with variable values of the flow of the warm stream (which is
called Wool, since it is the water used to cool the autoclaves). The values of the
flow of the cold stream and of the ingoing temperature are kept constant in each
simulation, but some different cases, with different values on these parameters,
are tested.[Las05] The equation for the temperature of the outgoing cooling water,
calculated via curve fitting, isToolout = 287 + (0:0271Tin � 7:8128)Wool: (13)
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In Figure 15 the temperature of the outgoing flow from the heat exchanger is
plotted against the flow of the warm stream. The x-axis corresponds to the flow
through the heat exchanger in the interval between the lower and upper bounds.
The lower bound is the demand to Heat Exchanger AC from Tank C and the
upper bound is given by the pump capacity. The y-axis is the temperature of
the outgoing water when the water is exchanged against 15 ÆC cold water. (If
the river would be at 17 ÆC, the temperature of the outgoing warm stream from
Heat Exchanger TS would be about 1 ÆC higher for all x-values in the interval.)

11 12 13 14 15 16 17 18 19 20 21
291.5

292

292.5

293

293.5

294

294.5

295

295.5

Flow of the warm stream, W
cool

O
ut

go
in

g 
te

m
pe

ra
tu

re
 o

f t
he

 w
ar

m
 s

tr
ea

m
, T

co
ol

ou
t

Relation between the flow and the outgoing temperature of the warm stream.

Figure 15: The temperature of the outgoing flow from the heat exchanger plotted

against the flow of the warm stream.

The calculation of the mass and temperature changes in Tank 4 are analogous
to the ones in Tank C:dm4dt = W4in +W34 +WC4 +Wpellets �Wool �W4river �Womputer ; (14)dT4dt =W4in(T4in�T4)+W34(T3�T4)+WC4(TC�T4)+Wpellets(Tpellets�T4)m4 ;

(15)
where W4in [kg/s] is the flow of water coming from the autoclaves, T4in [K] is
the temperature of this flow, Wpellets [kg/s] is the flow of water coming from the
pellets factory, Womputer is the flow of the water going to the air conditioning of
the computer room, Tpellets [K] is the temperature of the flow from the pellets
factory, and W4river [kg/s] is the water flowing out to the river. T3 [K] and T4 [K]
are the temperatures of the water in Tank 3 and Tank 4, respectively.

The calculations of the mass and temperature changes in Tank 3, 2 and 1 are
analogous to the above tanks. For Tank 3, we have thatdm3dt = W3in +W23 �W34 +Womputer; (16)
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dT3dt = W3in(T3in � T3) +W23(T2 � T3) +Womputer(T5 � T3)m3 : (17)

In the equations for Tank 2, the term describing the flow used in the cleaning
of the factory is included (Wlean [kg/s]):dm2dt =W2in +W12 +Wextra2 �Wlean �W23; (18)dT2dt = W2in(T2in � T2) +W12(T1 � T2) +Wextra2(Tfresh � T2)m2 : (19)

The equations for Tank 1 are analogous to the above calculations, except that
the hot water from Tank 1 is used for the steamer (Wsteam [kg/s]):dm1dt = W1in +Wextra1 �Wsteam �W12; (20)dT1dt = W1in(T1in � T1) +Wextra1(Tfresh � T1)m1 : (21)

The equations (1)–(21) represent the system as it is today. In this system,
Tank 2 runs empty in the evening since a lot of water is used in the cleaning
process. The low water level gives a low starting temperature in the tank since
fresh water is added to increase the height, which also results in cold cleaning
water. To solve this problem, we take the water for the cleaning process from
Tank 3 instead, which will change equations (16) and (18) to:dm3dt = W3in +W23 �W34 +Womputer �Wlean +Wextra3 ; (16’)dm2dt =W2in +W12 +Wextra2 �W23: (18’)

Figure 16 illustrates where each equation belongs in the system. There are
two equations for every tank, one for the change in mass and one for the change
in temperature. Two systems are represented here: the system as it looks to-
day and the system where the insertion of fresh water is changes as well as the
outtake of the cleaning water.

3.3 Additional constraints

The water level in each tank (hi [m]) is not allowed to ever be below a certain
level (himin [m]), because the pumps in the system must not run empty:hi � himin ; i = 1; :::; 4: (22)

The flows going through the pumps are limited by the capacities of the pumps
(Cpump [kg/s]), which gives upper bounds on Wool and Wfresh:Wool � Cpumpool ; (23)
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Wfresh � Cpumpfresh : (24)

If Tank 4 does not have a low water level, extra water will not be added to
Tank C; therefore, to guarantee that Tank C is never emptied [see equation (11)],
the following constraint is introduced:Wool �WCout;
which in combination with equations (9) and (10) gives:Wdilute +Wool � Datin +Datetra : (25)

All flows need to be positive:Wj � 0; j 2 J;
where J is the set containing all flows in the system.

The water going out from Heat Exchanger AC must go to the different tanks
in order, i.e., the water from the cooling must go to Tank 1 first, then to Tank 2,
then to Tank 3 and finally to Tank 4; this givesTset1 � Tset2 � Tset3 : (26)

Finally, the cooling water must not have a temperature exceeding 293 K:Ta � 293; (27)

where Ta = WdiluteTfresh +WCoutTCWa
is calculated from equation (8).

For all values of the constants, see Table 7 in Appendix C.

3.4 A summary of the problem

The variables in the equations describing the problem are connected to each
other in rather intriguing ways, due to the complexity of the real system. Hence
the system of equations is probably impossible to solve explicitly.

Most of the flows are discontinuous; the discontinuities on the time depen-
dence are easy to see (consider for example the flows going into the tanks from
the autoclaves) but there are also discontinuities depending on other variables.
To realise this, one can look at what happens when a tank overflows; this is not
a direct function of time, but can still cause discontinuities in other flows. One
possible for the discontinuities are the flows: they are either on or off and they
will either overflow or not.

The properties of the objective function and the constraints will be discussed
further in Section 5.1.
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4 The simulation in Simulink

Since the system of equations is hard to solve, we build a simulation model with
the MATLAB toolbox Simulink. Simulink uses a graphical user interface for
building models and making simulations.

In Simulink, it is possible to build subsystems and connect them to each other
to create a larger system. The system containing all subsystems is the root level.
In the simulation only one tank at a time gets water from the autoclaves, and the
temperature of that water is time dependent. To model this, we use a signal with
four pulses, one for each tank, and a ramp signal. The pulse signal and the ramp
signal can bee seen in Figure 17 (the root level). The insertion of fresh water and
the regulation of the water from Heat Exchanger AC are calculated in the root
level.

4

diltest

3

Button

2

Stream out

1

demand: flow and temperature
The objective function

[W_pellets T_pellets]

pellets steam

flow ,temp 

[W_hotdilute T_dilute]
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[W_dilute T_dilute]

dilute

Terminator1

W_1in

W_pellets

W_2in

W_3in

W_4in

W_dilute

W_hotdilute

W_riverin
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Streamtest

Buttontest

Tanksystem

Repeating
Sequence
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Generator

MATLAB
FunctionMATLAB Fcn

[W_stream T_stream]

Figure 17: The root level of the Simulink model.

Each tank is represented as a subsystem, where the change in mass, temper-
atures and heights are calculated with equations (2), (3) and (4) respectively.
There is one subsystem for each tank, one for Heat Exchanger TS, and one for
the insertion of fresh water into Tank C when Tank 4 has a low water level, see
Figure 18.
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Figure 18: The tank system modelled in Simulink .

At the root level, the subsystem containing the tanks is called Tanksystem.
Figure 19 shows how Tank 4 is modelled; this is the subsystem called Tank4

in Figure 18.
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Figure 19: The subsystem modelling Tank 4.

The subsystem, Overflow 4, in Tank 4 calculates the water level; see Figure
20.

In Figure 20, the first property calculated is h, which is compared to hmin.
If h � hmin a signal to Tank C will be activated to add fresh water. This way,
we control the water level in the simulation and therefore we do not express it
explicitly in the optimisation problem. If h � hmin the water level is compared
to H and the tank will overflow if h � H .

The arrows in the Simulink models are signals that carry information. In our
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Figure 20: The calculation of the water level; the water can overflow to the river,

nothing happens, or it will activate a signal to add fresh water in Tank 5.

system, the signals are mostly scalars or vectors (containing the values of flow,
temperature and water levels) but can also be boolean.

The runtime of the simulation (which is � in equation (7)) is an important
parameter that has to be chosen with care. Interesting choices to consider are:
one day, one hour or one boiling (35 minutes). One obvious drawback with long
simulations is that the time to find an optimal value is going to be considerably
longer. A long simulation time will also give longer time steps which will de-
crease the accuracy of the calculations. On the other hand, a short simulation
time may lose important information about what happens when the system has
been running for some time. In the optimisation, we have chosen to run the
simulation corresponding to 10 boilings (21 000 s or 5 h 50 min) and compare
with the results from one simulation with a run time of 17 hours (62 000 s) to see
if the system is stabilised after 10 boilings. They are comparable and shown in
Section 6.1. One simulation with a runtime of 21 000 s takes between 15 s and 15
minutes, depending on the steplengths.

Before Simulink is started, all the necessary parameters are defined in MAT-
LAB. The outcome of the simulation is dependent on, and sensitive to, the vari-
ables and constants chosen. For a given set of parameters, the outcome of the
simulation is unique. For some values of the parameters, the simulation does not
work. The pulse signals, for example, must have positive width. For the values
of the constants, see Appendix C.

5 The optimisation

5.1 Description of the problem

The simulation in Simulink is used as a “black-box” in the optimisation. As
mentioned before, the objective function is to minimise the amount of inserted
water into the cooling process. The problem is to find a set of parameters that
gives optimal output values from Simulink. We will divide the variables into
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two different groups: the ones we can control and the ones obtained from the
simulation.

The variables that we are optimising over are the ones we can control:� Wool – the flow through Heat Exchanger TS;� Tset3 – the temperature limit deciding at what temperature the water from
Heat Exchanger AC is led into Tank 4; and� Wdilute – the flow of water added in the pipe to the autoclaves.

These variables are denoted by x. The dimension of x will either be two or three,
since we sometimes have a fixed flow of Wool. The variables, x, are constant
in time. Another possibility is to have Tset1 and Tset2 as variables, but we have
chosen not to, since this makes the problem too large. We have chosen to use
the same temperatures for Tset1 and Tset2 as Doggy uses today: 353 K and 328 K
respectively.

Some of the variables important to us are obtained through the simulation.
One of these variables is the flow of water that overflows to the river,W4river , and
the flow inserted to the tanks whenever the water level is too low, Wextrai (i =1; 2; C). The variables, which we cannot control, y, are defined by the set Sim(x).
The variables, x, are continuous, but the mapping x 7! Sim(x) is discontinuous.
Consider, for example, the case when Wdilute is small; then there will be a larger
insertion of fresh water into Tank C, due to low water levels in Tank 4. Since the
insertion of fresh water is either on or off, Wextra is discontinuous.

The optimisation problem can be written as that to

minimisef(x; y); (28a)

subject to (x; y) � 0; (28b)

q(x; y) = 0; (28c)

a � x � b; (28d)

The inequality constraint (28b) represents the temperature constraint (27).
The temperature of the water flow to the autoclaves, Ta, is given by the simula-
tion; hence this temperature depends on the simulation results (Ta 2 Sim(x)).
The temperature is not allowed to be over 20 ÆC on the entire simulation; the
constraint is expressed as:(x; y) := maxs2S Tas � 293 � 0: (27’)

If Ta exceeds 293 K, the cooling process will take longer time, but it will not
cause any major damage. Therefore, constraint (27’) is ”soft”.

The equality constraints (28c) represent the equations (11)–(21).
The lower and upper bounds on x are a and b (equation (28d)). These bounds

are important to fulfill, because the mapping x 7! Sim(x) is undefined outside
some of the bounds, and because some bounds are set by capacities that cannot
be changed. Hence, the lower and upper bounds are ”hard” constraints.

The system of equations (11)–(21) can be used to express y as a function
of x. Due to the complexity of the system of equations, y is obtained through
the simulation, which for every given x gives a unique y. Hence we can write
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y = Sim(x). Important is that the mapping y 7! Sim(x) is defined only when a �
x � b. In the optimisation, we do not handle equations (11)–(21) explicitly, since
they will be calculated and (approximately) fulfilled in the simulation. Thus, we
eliminate constraint (28c). When y is substituted with Sim(x), the optimisation
problem can be rewritten as that to

minimise f(x; Sim(x));
subject to (x; Sim(x)) � 0;

a � x � b: (29)

We rewrite the problem so that it becomes dependent of x only:

minimise f̂(x);
subject to ̂(x) � 0;

a � x � b; (30)

where f̂(x) := f(x; Sim(x)) and ̂(x) := (x; Sim(x)).
We have chosen to include the integral of W4river in our objective function

because the water which is lost from the system must sooner or later be replaced.
The modified expression for the objective function (6) becomes:f(x) = Z �t=�0(Wdilute +Wextra1+Wextra2+WextraC) dt+ Z �t=�0 W4riverdt: (6’)

The integrals in equation (6’) is substituted with the sum over all time steps
in the simulation: Z �t=�0 W4riverdt �Xs2SW4rivers ;
and mfresh = Z �t=�0(Wdilute +Wextra1 +Wextra2 +WextraC) dt �Xs2S(Wdilute +Wextra1 +Wextra2 +WextraC)
where S is the set of all time steps in the Simulink simulation.

In Simulink, we use a pulse generator that needs the pulses to have positive
widths. In the calculations, we therefore need to have strict inequalities on con-
straint (26). Tset1 and Tset2 are constant in the simulation. We modify constraint
(26) to: Tset2 � Tset3 + 4: (26’)

In some of the tanks, there are lower limits for the water levels. These con-
straints have been modelled so that water is added to the tanks when the water
level sinks below these limits in the simulation. It is possible to model these con-
straints so that the algorithm only allows solutions where the water levels never
sink too low. Unfortunately, to implement the level constraints in the optimisa-
tion has several drawbacks: the algorithm would be much slower, the emergency
adding of water is a better model of how the system works in reality, and most
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importantly: we might want to see solutions where the level constraints are vi-
olated for short periods of time, if the rest of the solution is good. If a level
constraint is violated, but the solution is good, it is easy to calculate how much
extra water would be needed, and add it to the optimal solution; and maybe still
have a good solution!

The simulation is used in the objective function; in each step of the iteration
the algorithm evaluates the objective value by running the Simulink model. It is
now obvious that the derivatives of the objective function and of the constraints
cannot be calculated analytically; some kind of numerical procedure is necessary
for the calculation of the gradients and Hessians.

The outcome of the simulation is very sensitive to the values of the constants
and the choice of parameters, as well as the initial values for all the variables,
both x and y. Hence, it is of great importance to use accurate initial values.

To test the convexity and the differentiability of the problem, we run the
simulation with different values of Tset3 and Wdilute. The result is shown to the
left in Figure 21, where the objective function is plotted againstWdilute and Tset3.
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Figure 21: The plot to the left, shows the non-convexity of the problem. The plot

to the right shows that the problem is infeasible for low values of Wdilute.

It becomes quite clear that the system is non-convex and non-differentiable.
From the figure, we can see that the region with low values of Wdilute looks
differentiable and maybe even convex. To see which solutions are feasible (that
is, where maxTas � 293) we add a large penalty for the infeasible solutions,
seen to the right in Figure 21. We can see that the region with low values of
the objective function have infeasible temperatures, since this part of the plot
changed when the penalty was added.

Infeasible solutions can still be interesting when the temperatures are moder-
ately over the allowed limit, if the problem is stable and the value of the objective
function is much better than in the feasible regions. Therefore, we will study this
smaller region closer, which is shown in Figure 22. To the left the objective func-
tion without penalty is plotted, and to the right the objective function with a high
penalty.

The function plotted in Figure 22 is convex everywhere except for at low
values of Tset3 andWdilute. This is the region where we expect to find the optimal
solution.
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Figure 22: A plot showing that the problem has a region where it is both convex

and differentiable.

For the optimisation, we use MATLAB together with different solvers. We
have used the built-in MATLAB function fminon and a software called TOM-
LAB with the solvers snopt, onSolve and nlpSolve. The solver fminon
and many of the solvers in TOMLAB are based on the general optimisation
method of sequential quadratic programming (SQP). SQP and the different solvers
are described below. If we do not state anything else, the optimisation runs the
system where the outtake of the water for the cleaning is moved from Tank 2 to
Tank 3.

5.2 The solvers EGO, rbfSolve and fminsearch

The TOMLAB solver EGO is designed specially for problems that are costly to
solve, for example those that involve simulations, and it does not use derivatives.
It would therefore be very well suited for our problem. Another interesting
solver is rbfSolve in TOMLAB. It is, as EGO, designed to find globally opti-
mal solutions also for nonconvex optimisation problems and does not require
derivatives. Unfortunately, we do not have licences for these two solvers so we
are forced to use some SQP-based solvers.

The solver fminsearh uses a search method, akin to the classic Nelder-
Mead algorithm, to find an optimal solution; new iteration points are tried through
a procedure that generates trial points conforming to certain geometrical pat-
terns. The objective value at a trial point is calculated to see if it is better than the
previously generated ones. In contrast to SQP, it only uses the objective value to
find the new iteration point. This method needs too many function evaluations
for our problem, so the running time becomes too long.

5.3 SQP

For solving nonlinearly constrained problems, SQP is a popular method. The
approach is to find a search direction by solving quadratic programs (problems
with a quadratic function and linear constraints). It is a generalisation of New-
ton’s method for unconstrained minimisation. Our problem (30) can be written
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as:
minimisex f̂(x);
subject to g(x) � 0; (31)

where

g(x) = 0� ̂(x)�x + a

x� b

1A : (32)

Remember that ̂(x) = maxs2S Tas � 293.
The Lagrangian to problem (31) isL(x;�) = f̂(x)� �T g(x); (33)

where � 2 R2n+1+ (due to the number of constraints: 2n + 1) is the vector of
Lagrange multipliers for the constraints (32).

The quadratic programming problem can be written as:

minimisep
12pTr2xxL(xk;�k)p +rxL(xk;�k)p;

subject to g(xk) +rg(xk)T p � 0; (34)

where the Lagrange multipliers to the constraints of (34) are denoted by vk.
This optimisation problem is a quadratic program, where the quadratic func-
tion is a Taylor series approximation of the Lagrangian (33) at (xk;�k) and the
constraints are a linear approximation to g(xk + p) � 0. At each iteration the
problem (34) is solved to obtain (pk; vk) (the search directions for xk and �k
respectively), which are used to update (xk;�k). SQP uses a first order Taylor
expansion to replace the nonlinear constraints and uses a second order Taylor se-
ries approximation augmented by second order information from the constraints
to replace the nonlinear objective. Our problem does not have analytical deriva-
tives and is not differentiable at every point, so the information required for
SQP is difficult to obtain. Because of this, SQP is not an ideal method for our
problem. The reason that we use SQP anyway is that most solvers available to
us are based on some SQP algorithm. In all our calculations, derivatives are cal-
culated numerically if possible. The calculation of the derivatives are calculated
automatically in TOMLAB.[AEP05][NS96]

The advantage with SQP is that it uses more information about the objective
function when it choses a new search direction. In contrast to fminsearh,
to induce convergence, SQP updates the iteration step with a line search in
a penalty function which is a linear combination of the objective function and
some measure of the constraint violation.[nlp05]

5.4 The built-in MATLAB function fmincon

One of the solvers we use is the built-in MATLAB function fminon. The
function fminon uses an SQP algorithm with a penalty function for the con-
straints. At every iteration a QP subproblem is solved; the Hessian of the La-
grangian is estimated and updated at every iteration similarly to quasi-Newton
methods.[MaW05b] The penalty function used in fminon is added to the objective
function to form: �(x) = f̂(x) + 2n+1Xi=1 'imaxf0; gi(x)g;

23



where 'i is a penalty parameter, initially set to'i = jjrf̂(x0)jjjjrgi(x0)jj ;
and which is updated in each step of the algorithm. The values in x0) are the
starting points. The objective function f̂(x) and the constraint functions gi(x)
are required to be continuous, which we cannot guarantee that our functions are.fminon guarantees to find only stationary points, that is, KKT points. [Mat99]

5.5 The TOMLAB solver snopt

The solver snopt solves nonlinearly constrained problems like our problem
(31). It uses an SQP algorithm that exploits the sparsity of the Jacobian of the
nonlinear constraints. In our problem (30), the variables y = Sim(x) are nonlin-
early dependent on x and cause many nonlinear constraints. We cannot say with
certainty that the Jacobian of (30) is sparse.

5.6 The TOMLAB solver conSolve

The TOMLAB solver onSolve also uses an SQP algorithm. The optimisa-
tion problem is written as problem (31) with the Lagrangian function (33). The
penalty function for the problem with inequalities is:f̂(x)� 2n+1Xi=1 �iui log(ui � gi(x));
where u is a vector of barrier parameters.[MaW05a]

We are interested in slightly infeasible solutions, and the barrier function
used in onSolve is very strict on the constraints, since it uses an interior point
penalty function.

5.7 The TOMLAB solver nlpSolve

Another solver in TOMLAB is nlpSolve, which also uses SQP, but with a dif-
ferent approach to fulfill the constraints: it uses a filter instead of a penalty func-
tion. Our optimisation problem (31) can be seen as two conflicting minimisation
problems: one is to minimise the objective function and one is to minimise some
function of the constraint violation. It is written as the multiobjective optimisa-
tion program:

minimisex f̂(x)
and
minimisex w(x); (35)

where w(x) = P2n+1i=1 maxf0; gi(x)g. The filter is a list of pairs of f̂(xk) andw(xk), defined by iterates xk, such that for no pairs, (xk; xl) the following is true:f̂(xk) � f̂(xl), w(xk) � w(xl): if this is the case, we say that no pair dominates
another pair.
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At each iteration step of nlpSolve, the new point, xk+1, is accepted if and
only if the corresponding pair (f̂(xk+1) and w(xk+1)) is not dominated by any
pair in the filter. If the point is accepted it is included in the filter, and all points
in the previous filter, that are dominated by the new point, will be rejected.
If the point is rejected, the region where the algorithm searches for points is
decreased.[nlp05]

The advantage of nlpSolve for our problem is that the filter can allow some
violation of the nonlinear constraint. An important drawback with nlpSolve
for our problem is that it evaluates the objective function many times, which is
extremely time consuming.

6 Results

In this section, the results for the various solvers are presented. The solvers are
compared for three different cases: a constant value on the flow through the
Heat Exchanger TS, Wool, with and without night cooling, and a variable Wool
with night cooling.

Tank 1 and Tank 3 have low initial values, since water is used during the
night for the cleaning and for the steamer. The low levels can be interpreted as
a deficit of water in the system, which causes low levels in Tank 4. Thus, low
starting levels in some tanks will inevitably cause water to be added into Tank
C. An interesting part of the analysis of the results is that of the total amount
of water missing in the system. The total mass of this ”missing water” in the
morning is: mmissing = msteam +mlean = 24 500 kg

where msteam = (Wsteam � 3 600 � 7);mlean = (Wlean � 3 600 � 7):
If the tanks are assumed to be full at the end of the day (which they should

be under normal circumstances), it is possible to calculate the initial water levels
of Tank 1 and Tank 3 (h1init and h3init):h1init = H1 � msteamA1� = H1 � 0:1;
and h3init = H3 � mleanA3� = H3 � 0:53:
These values of h1init and h3init are used as initial values of h1 and h3.

During the day, Wsteam and Wlean are taken out from the system. The total
loss of water during the 10 first boilings ismloss = (Wsteam +Wlean) � 21 000 = 19 525 kg:

Due to the water used in the cleaning and in the steamer, a total mass ofmmissing +mloss = 44 025 kg can be regarded as necessary to add to the system.
If some water is lost to the river (W4river 6= 0), more water has to be added.
Hence, to get a low value on W4river is important.
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If nothing else is stated, we have used the following starting values on the
variables: Wool = 17.5 kg/s (only used when Wool is a variable)Wdilute = 1.11 kg/sTset3 = 308 K

Simulink run time = 21 000 s

When Wool is a constant it is set to its upper bound, 20.3 kg/s. This value is
chosen because it is the value Doggy uses today.

The initial values on the tanks are as follows:

Tank i 1 2 3 4 C
with night without night

cooling coolingTi [K] 363 343 295 328 313 295hi [m] H1 � 1 = 1.7 H2 = 2.6 H3 � 0:53 = 1.97 H4 = 2.7 HC = 2.6

When we solve the problem with fminon, the built-in penalty function for
non linear constraints do not work very well; the algorithm terminates before
it had changed any values. We therefore implement a penalty function. To the
objective function, we add the termXs2S 500(maxf0; Tas � 293g)2: (36)

To be consistent, we try to implement the same penalty in the other solvers, but
this do not work; the algorithms terminate without changing any values. The
drawback with setting our own penalty is that the penalty parameter will not be
updated by the algorithm.

We have chosen to present the results from fminon together with the re-
sults from the other solvers. However, due to the differences in the penalty func-
tion between fminon and the other solvers, great care should be taken when
the results are analysed. Whether the built-in or our penalty is used is stated in
the tables.

The value of the objective function is shown in the tables below, together
with the values of the corresponding variables and the runtime of the algorithm.

6.1 Optimisation

The results from the optimisation of the system with fixed Wool and with night
cooling are shown in Table 1 for the solvers fminon, snopt, onSolve andnlpSolve. Figure 23 shows the strong connection between Ta [K], h4 [m] andmextra [kg] (plotted against time); when the water level in Tank 4 is low, extra
fresh water is added and therefore Ta is lowered. mextra is the flow Wextra
multiplied with the timestep. The results plotted in Figure 23 are obtained fromfminon.
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Figure 23: The result from the optimisation shown in Table 1. The left figure showsTa, the middle figure the h4 and the right figure mextra.

The solvers fminon, onSolve and nlpSolve give similar terminal val-
ues of Tset3 and Wdilute, but onSolve solves the problem much faster and also
runs less iterations. Both fminon and nlpSolve terminate before an optimal
solution is found, because too many function evaluations have been carried out.
The solver snopt differs from the other three in several ways: the values of the
variables are different and the terminal objective value is almost twice as high
compared to the other solvers.

The solver snopt gives a result where
PW4river is high, around 7.5 m3 dur-

ing the 10 boilings, while the other solvers give
PW4river = 0.

To see how infeasible a solution is, we introduce the ”Total infeasibility”,
which is the approximated area of the temperatures above 293 K. The unit of
the total infeasibility is Ks. Even here, the result from snopt differs from the
results from the other solvers: the total infeasibility is lower for snopt.
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Table 1: The results from the different solvers when a fixed value of Wool and

night cooling has been used.fminon
Our penalty

Variable ValueWool fixedWdilute 1.1 kg/sTset3 307.9 KmaxTa 294.4 KPWextra 15 000 kgPW4river 0 kgPWdilute 23 000 kgmin h4 0.69 mObj: value 38 000Tot: infeas: 6 300 Ks
Time elapsed 9h 41min
No. of iter. 32
Message maximum number

of function evalua-
tions exceeded.

snopt
Built-in penalty

Variable ValueWool fixedWdilute 2.0 kg/sTset3 301.0 KmaxTa 293.4 KPWextra 10 000 kgPW4river 7 500 kgPWdilute 43 000 kgmin h4 0.56 mObj: value 60 000 kgTot: infeas: 390 Ks
Time elapsed 16 h 39 min
No. of iter. 26
Message The current point

cannot be im-
proved.onSolve

Built-in penalty
Variable ValueWool fixedWdilute 1.0 kg/sTset3 309.3 KmaxTa 294.6 KPWextra 16 000 kgPW4river 0 kgPWdilute 21 000 kgmin h4 0.48 mObj: value 38 000 kgTot: infeas: 6 800 Ks
Time elapsed 6 h 32 min
No. of iter. 8
Message close iterations but

constraints not ful-
filled. Too large
penalty weights to
be able to con-
tinue.

nlpSolve
Built-in penalty

Variable ValueWool fixedWdilute 1.1 kg/sTset3 310.7 KmaxTa 294.4 KPWextra 16 000 kgPW4river 0 kgPWdilute 22 000 kgmin h4 0.41 mObj: value 38 000Tot: infeas: 5 800 Ks
Time elapsed 38 h 17 min
No. of iter. 500
Message Maximum num-

ber of iterations
reached

In Figure 24 we can see that the temperature of the outgoing water Ta are
nearly identical for the three solvers fminon, onSolve and nlpSolve. The
heights and temperatures in the different tanks are similar as well. The similar
results are interesting since the penalty functions for the solvers are different.
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Figure 24: The value of Ta given from the different solvers.

The results from the optimisation (with fminon, snopt, onSolve andnlpSolve) of the system with fixed Wool, but without night cooling, are shown
in Table 2 . Here, fminon’s results differ from the other three solvers. The so-
lution obtained with fminon is feasible (Ta is below 293 K) but the drawback
is that water is lost to the river. The other solvers give a solution where fresh
water is added, but no water is lost to the river.
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Table 2: The results for the three different solvers when no night cooling has been

used. fminon
Our penalty

Variable ValueWool fixedWdilute 2.8 kg/sTset3 322.9 KmaxTa 292.3 KPWextra 0 kgPW4river 14 000 kgPWdilute 59 000 kgminh4 2.0 mObj: value 72 000 kgTot: infeas: 0 Ks
Time elapsed 2h 38 min
No. of iter. 10
Message

snopt
Built-in penalty

Variable ValueWool fixedWdilute 1.4 kg/sTset3 322.9 KmaxTa 294.8 KPWextra 12 000 kgPW4river 0 kgPWdilute 29 000 kgmin h4 1.1 mObj: value 40 000Tot: infeas: 8 000 Ks
Time elapsed 8 h 7 min
No. of iter. 18
Message The current point

cannot be im-
provedonSolve

Built-in penalty
Variable ValueWool fixedWdilute 1.1 kg/sTset3 317.8 KmaxTa 295.5 KPWextra 15 000 kgPW4river 0 kgPWdilute 23 000 kgminh4 0.80 mObj: value 38 000 kgTot: infeas: 5 200 Ks
Time elapsed 6h 56min
No. of iter. 9
Message

nlpSolve
Built-in penalty

Variable ValueWool fixedWdilute 1.2 kg/sTset3 312.3 KmaxTa 295.7 KPWextra 15 000 kgPW4river 0 kgPWdilute 26 000 kgmin h4 0.49 mObj: value 40 000Tot: infeas: 3 500 Ks
Time elapsed 33 h 43 min
No. of iter. 500
Message Maximum num-

ber of iterations
reachedTa is plotted in Figure 25 for the different solvers; fminon gives a better

result, with respect to Ta, than the other two solvers.
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Figure 25: The value of Ta from the different solvers.

Because of the similarities between snopt, onSolve and nlpSolve we
will not make any more optimisations using snopt and nlpSolve since their
run times are significantly longer and nlpSolve terminates before an optimal
solution is found.

The results from the optimisation of the system with Wool as a variable and
with night cooling (using fminon and onSolve) are shown in Table 3. The
individual solvers’ results differ very much; fminon maximises the values ofTset3, Wdilute and Wool, while onSolve uses neither the maximum nor the
minimum allowed values. The advantage with fminon’s result is that the water
level in Tank 4 has a less fluctuation, as seen to the left in Figure 26. To the right
in Figure 26, Ta is plotted.
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Figure 26: The value of h4 to the left and Ta to the right, from the two solvers

fmincon and conSolve.

The fact that fminon uses only one iteration however gives us reason to be
critical to the results.
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Table 3: The results where night cooling has been used. Wool is a variable.fminon
Our penalty

Variable ValueWool 20.3Wdilute 3.1 kg/sTset3 322.9 KmaxTa 292.9 KPWextra 0 kgPW4river 22 000 kgPWdilute 64 000 kgminh4 2.0 mObj: value 84 000 kgTot: infeas: 3 500 Ks
Time elapsed 20 min
No. of iter. 1
Message Optimal solution

found.

onSolve
Built-in penalty

Variable ValueWool 16.2 kg/sWdilute 1.6 kg/sTset3 301.0 KmaxTa 293.1 KPWextra 12 000 kgPW4river 2 000 kgPWdilute 34 000 kgmin h4 0.46 mObj: value 48 000 kgTot: infeas: 4 000 Ks
Time elapsed 8 h 5 min
No. of iter. 6
Message Too high penalty

values.

Figure 27 shows Ta as obtained with onSolve; the line curve is one simu-
lation with 10 boilings (21 000 s) and the dotted curve is one simulation over a
day (62 000 s). It uses the optimal values presented in Table 3. The temperature
has not stabilised during the 10 boilings; it becomes about 1 K larger at the end
of the day.
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Figure 27: Ta using conSolve; the line curve is one simulation for 10 boilings (21

000 s) and the dotted curve is one simulation over a day (62 000 s).

The different kinds of penalty functions in the solvers cause the solvers to
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work differently. At the first sight, the solvers in TOMLAB seem to allow infea-
sible solutions while fminon prioritise feasibility. However, it is possible that
the TOMLAB solvers are so sensitive to infeasible solutions that they terminate
before they have found an optimal solution. fminon on the other hand, gives
a penalty on infeasible solutions, but does not terminate.

We do not get an obvious answer on which Tset3 should be used. The solvers
give varying results that seem to depend highly on the other variables. However,
there is one trend concerning Tset3: when the level of the water in Tank 4 is low,Tset3 tends to be low, which will result in a larger input of water into Tank 4 from
the autoclaves.

Most of our solutions are infeasible; the solvers could not find feasible so-
lutions. There exist feasible solutions though, since more water can be added,
i.e Wdilute can be increased. It is of great interest to see the solutions we have
obtained, since sometimes it can be acceptable to have a too large temperature
for a short period of time, when it is very expensive to lower it with fresh water.

Most solvers terminate before an optimal solution is found. Therefore the
there might be better solutions for the problem, than the ones stated above.

Because Tank 1 and Tank 3 have low initial levels, Tank 4 is emptied faster
than the extra water is added. Thus, if the limit where Tank 4 starts to be filled
with extra water is set too low, Tank 4 is emptied. An easy solution to this prob-
lem is to set this limit higher. Therefore, we have changed the original setting onh4min from 0.8 meters to 1.5 meters.

The results depend highly on the initial values of the water levels: if Tank
1 and Tank 2 have low levels, Tank 4 can be emptied, which will cause a large
flow on WextraC . Important to notice is that the extra water added, due to low
levels in Tank 4, is not always unnecessary. The levels of Tank 1 and Tank 3 are
low initially because water has been removed from the tanks during the night
for cleaning and for the steamer. Since this is a loss in the production, replaceing
lost water from the system is necessary. One could even think of a way to include
the low levels of the tanks in the objective function.

6.2 Improvements

To see if the changes made of the system have improved it, we run simulations
on the ”old” and the ”new” system and compare them. The old system is the
system as it is today; the insertion of water is to Tank 1 and water to the cleaning
is taken from Tank 2. The new system is the system we used in our calculations:
the cleaning water is taken from Tank 3 and the fresh water Wdilute is added in
the pipe.

The results from the simulations of the old and the new system, when night
cooling has been used, are shown in Table 4. The values for Tset3 and Wdilute
are taken from the results from fminon with night cooling (Table 1). The new
system has two important advantages: the loss to the river is small or zero andTa is lower (that is the total infeasibility is lower).
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Table 4: A comparison between the old and the new system. With night cooling.

Old system
Variable ValuePWextra 17 000 kgPW4river 0 kgTot: infeas: 32 000 Ks

New system
Variable ValuePWextra 16 000 kgPW4river 0 kgTot: infeas: 5 900 Ks

The values of Ta and h4 (with night cooling) are shown in Figure 28, where
the values for old system is plotted with the dashed line.
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Figure 28: Comparisons between the old and the new system. Night cooling has

been used.

The results from the simulations of the two systems, when no night cooling has
been used, are shown in Table 5. The values for Tset3 and Wdilute are taken
from the results from fminon without night cooling (Table 2). When the night
cooling has not been used, the differences between the systems are even more
obvious. Notice the value of W4river and the total infeasibility for the old system!

Table 5: A comparison between the old and the new system. Without night cooling.

Old system
Variable ValuePWextra 6 600 kgPW4river 35 000 kgTot: infeas: 85 000 Ks

New system
Variable ValuePWextra 0 kgPW4river 13 000 kgTot: infeas: 0 Ks

When no night cooling is used, the difference in Ta is remarkably large. The
values of Ta and h4 without night cooling are shown in Figure 29. The values
for the old system are plotted with the dashed line.
The value of Ta is up to 6.5 K lower in the new system compared to the old one.
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Figure 29: Comparisons between the old and the new system. No night cooling

has been used.

The results from the simulations of the two systems, when night cooling has
been used, are shown in Table 6. The values for Tset3 and Wdilute are taken from
the results from fminonwith night cooling (Table 3). WhenWool is a variable,
the differences between the systems are even more obvious.

Table 6: A comparison between the old and the new system. With night cooling

and variable Wool.
Old system

Variable ValuePWextra 5 800 kgPW4river 47 000 kgTot: infeas: 88 000 Ks

New system
Variable ValuePWextra 0 kgPW4river 21 000 kgTot: infeas: 0 Ks

The values of Ta and h4 without night cooling are shown in Figure 30. The
values for the old system are plotted with the dashed line.

The value of Ta is up to 8 K lower, and the water level in Tank 4 is clearly
more stable, in the new system compared to the old one.
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Figure 30: Comparisons between the old and the new system. Night cooling has

been used.
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The results from this section show that it is better to insert the fresh water in
the pipe instead of into Tank 1. To do so will lower the temperature 3–8 K. The
water level in Tank 4 is also more stable in the new system.

To show the effect of the night cooling, the optimal values obtained fromfminon with fixed Wool and night cooling (Table 1) are used to run two simu-
lations: one with and one without night cooling. The values of Ta from the two
simulations are plotted in Figure 31. Night cooling (plotted with the solid line)
lowers the temperature with up to 3.5 K.
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Figure 31: The value of Ta, with and without night cooling.

7 Discussion

Tank 1, 2 and 4 are not allowed to run empty since there are pumps there. If the
water level is too low, a signal will start a pump (or, in Tank 4, a tap) that adds
water to the tank. When the water reaches a certain level, another signal will
close the tap. In this project, a flow is going to fill the tank as long as the level
is on or below the minimum, but it will stop as soon as the water level goes over
this limit. If the water level is around this height, this is going to make the system
less robust than in reality.

When the water level in a tank reaches a certain level, it will overflow into
the next tank through a pipe in the tank wall. The height of the pipes are dif-
ferent for each tank and the water will therefore mostly go to the next tank in
line. However, if a tank is full, and the previous tank has a low level, the water
could flow backwards in the system, which would cause the temperature differ-
ences between the tanks to decrease. In the simulation this possibility has been
removed, simply because the calculations become too large and slow. With the
large amounts of water in the system during our simulations, this effect can be
neglected, but in future simulation it may have to be taken into account.

We have assumed that the tanks are perfectly mixed and therefore have the
same temperature throughout the tank. This is not an unreasonable approxima-
tion for Tank 1 and Tank 2 because the high temperatures in these tanks cause
turbulence. Tank 4 and Tank C can also be considered mixed, since there is a
large exchange of water in these tanks. The tank where the assumption, of per-
fectly mixed tanks, is not always correct is Tank 3 where layers of water with
different temperatures can occur.
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A difficulty in this project was that the system includes several plate heat
exchangers, both in the tank system and in connection with the autoclaves. The
principle of plate heat exchangers (run two streams of water on each side of
a plate) may be quite simple, but the calculations are far from trivial. In fact,
there is hardly any literature on the subject and many of the relations used in
calculations on plate heat exchangers are based on experiments. Since our model
for Heat Exchanger TS is derived using such relations and regression, it is only
an approximation, and even a rather crude one.

Another interesting problem is how to establish the demand of water needed
in the cooling process. A first thought was to calculate the demand from the
properties of the autoclaves and the tins. It soon showed that this problem was
very complex. For example, the properties of plate heat exchangers are not very
well known, and the calculation of the heat transfer from the tins to the water
in the autoclaves is difficult. An important thing to notice is that the demand
of cooling water is not a constant value. When the temperature of the cooling
water is low, a smaller flow is sufficient for the cooling, while a higher flow is
needed at higher temperatures. The heat exchangers in the autoclaves also have
an effect since they work better at certain flows. Altogether, the calculations
of the demand of cooling water is actually an optimisation problem of its own,
and would need more study than is possible in this thesis. Therefore we have
measured the present flows going to the cooling process and used them in our
calculations. The production of the Tetra Pak is limited to one boiling per hour
while there can be about 1.7 boiling of aluminium tins. These limits depend on
the time it takes to fill the autoclaves and boil the tins. In our calculations, we
have assumed the demand of cooling water to the autoclaves to be constant,
but this is only true for the Tetra Pak autoclaves. The cooling processes of the
original tins occasionally overlap, and then the mass flow of cooling water per
autoclave is decreased.

To change the outtake of the cleaning water is beneficial for the system in
several ways; the temperature of the cleaning water will have a more appropri-
ate temperature and will not run out. The change of the cleaning water will
affect the system mainly at night; when cleaning water is used even when the
production is not running. Hence, this change will not make a big difference in
our calculations, since we do not study the behaviour of the system at night.

8 Further possible developments

A future change to make a better cooling of the water can be to consider the size
of Tank 4. This tank is small and has very large flows which makes it sensitive.
One possible improvement is to run the heat exchanger through Tank 3 instead
of Tank 4 and to put the outlet of water to the narrow river in Tank 3. Another
possibility is to remove the wall between Tank 3 and Tank 4. This will make the
tank larger and more stable, but the temperatures in it would be more difficult to
control. Another option to solve the problem with the instability of Tank 4 is to
make one large tank out of Tank 4 and Tank 5. A drawback with making a large
tank out of the two, is that the water led to the autoclaves could have a higher
temperature.
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A Heat balance

To get an expression for the temperatures in the tanks, a heat balance needs
to be solved. We look over a small period of time to get the derivative of the
temperature. The change of temperature in a given tank can be calculated as�T = Tn � To; (37)

where Tn is the new temperature in the tank and To is the temperature in the
tank before the change. Tn is calculated with a heat balance asTn = Tomo +Pall inflows (Win�tTin)�Pall outflows (Wout�tTout)mo +Pall inflowsWin�t�Pall outflowsWout�t =

= To(mo �Pall outflowsWout�t) +Pall inflowsWin�tTinmo +Pall inflowsWin�t�Pall outflowsWout�t
which gives us an expression for �T :�T = To(mo �Pall outflowsWout�t) +Pall inflowsWin�tTinmo +Pall inflowsWin�t�Pall outflowsWout�t � To == To(mo �Pall outflowsWout�t) +Pall inflowsWin�tTinmo +Pall inflowsWin�t�Pall outflowsWout�t �To(mo +Pall inflowsWin�t�Pall outflowsWout�t)mo +Pall inflowsWin�t�Pall outflowsWout�t == Pall inflows(Win�tTin)� ToPall inflowsWin�tmo +Pall inflowsWin�t�Pall outflowsWout�t == Pall inflowsWin�t(Tin � To)mo +Pall inflowsWin�t�Pall outflowsWout�t :

The change in temperature on a small time step becomes:�T�t = Pall inflowsWin(Tin � To)mo +Pall inflowsWin�t�Pall outflowsWout�t :
When �t ! 0 we obtain an expression for the time derivative of the tempera-
ture:
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�T�t ������t!0 ) dTdt = Pall inflowsWin(Tin � To)mo (38)

The derivation is analogous for the mass balance of each tank.

B Overflow

The overflow from one tank to another, with the points 1 and 2 in Figure 32 is
calculated with Bernoulli’s equation [EG94]:p1� + w212 + gz1 = p2� + w222 + gz2; (39)

h H

2

 1

Figure 32: Bernoulli’s equation is calculated on the two points 1 and 2.

where p is the pressure, w is the velocity and z is the water level, which withp1 = p2, w1 = dhdt , z1 = h, w2 = w2, and z2 = H gives�dhdt �22 + gh = w222 + gH: (40)

If we rewrite this, we have:w22 = 2g(h�H) +�dhdt �2 ; (41)

which gives us an expression for the velocity going out of the hole:w2 =s2g(h�H) +�dhdt �2;
where w2 is the velocity of the water going through the hole and dhdt is the change

of the water level in Tank 1, see Figure 32. Since
�dhdt �2 << w2 we neglect it, and

the equation becomes: w2 =p2g(h�H)
II



To get the mass flow instead of the velocity we multiply with the area of the
hole, A, the density of water, � and a resistance factor, �.W2 = w2A��: (42)� is a dimensionless factor used to calculate the decrease in flow when the
edges of the pipe are not smooth[EG94].

C Constants

Table 7: Constants used in the simulation and the optimisation.

Constant Value DimensionCpumpriver 11.9 kg/sCpumpfresh 3.6 kg/sCpumpool 20.3 kg/sDatin 10.6 kg/sDatetra 5 kg/sh1min 0.80 mh2min 0.80 mh3min 0.80 mh4min 1.5 mhCmin 1.5 mH1 2.7 mH2 2.6 mH3 2.5 mH4 2.7 mHC 2.6 mWlean 0.74 kg/sWpellets 0.56 kg/sWriver 11.9 kg/sWsteam 0.83 kg/sWomputer 0.28 kg/sWa 15.6 kg/sTpellets 280 KTfresh 277 KTriver 288 KA1 7 m2A2 10.5 m2A3 35 m2A4 7.5 m2AC 7.5 m2Apipe 0.044 m2� 1000 kg/m3� 0.6ntin 1.7 boilings/hntetra 1 boilings/hTset1 353 KTset2 328 K
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D Term descriptionsm Mass [kg]W Mass flow [kg/s]C Capacity [kg/s]D Demand of water required in a process [kg/s]A Area [m2]h Water level [m]H Pipe height [m]T Temperature [K]
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