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Abstract

In this paper we give a unitary method for obtaining Lévy Khinchin
type formulas for negative definite functions.

We obtain integral representations, independent of a Lévy function,
for negative definite functions, with real part bounded below, defined on
a commutative involutive semigroup, and for continuous negative definite
functions defined on the group R".

We reobtain integral representations for continuous negative definite

functions defined on the semigroup R’ .
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1 Introduction

The negative definite functions occur in probability theory and in potential the-
ory. Their integral representation, known as Lévy-Khinchine formula, depends
on a Lévy function (see [2], p. 108, Theorem 3.19 and [7], p. 316, Theorem 8).

The existence of Lévy function is proved in [8] for locally compact commuta-
tive groups and in [4] for commutative involutive semigroups.

We give, in Section 3 of this paper, integral representations, for negative
definite functions with real part bounded below, defined on a commutative in-
volutive semigroup, which characterize these functions and are independent of a
Lévy function. These integral representations can also be obtained using [2], p.
108, Theorem 3.19, but the proof from this paper does not depend on a Lévy
function and gives a new method for treating Lévy Khinchin type formulas.

To obtain the integral representations we give in Section 2 a result inspired
of Choquet theory on adapted cones (see [5]).

We also use the result of Section 2 to reobtain, in Section 3, the quadratic
forms on the semigroup (N2, +) with the involution (m,n)* = (n,m) (see [2], p.
117, Lemma 4.13).

A function f : [0,00[— R defined by

0
f@)=C+azs [ (1= eduly

where C, a € [0,00[ and p is a positive Radon measure on | — oo, 0 such that the

function # — ;77 is p integrable, is called a Bernstein function (cf. [3], p. 64,

9.8). In Section 4 of this paper, we give a generalization for Bernstein functions

by completing a result of Berg ([1], p. 86, 3.2). Using the method of Section
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3 we also obtain in Section 4 a new proof for the integral representation of the
negative definite functions defined on the semigroup R? ([1], p. 81, 3.1). This
integral representation depends on a Lévy function.

In Section 5 we consider the continuous negative definite functions defined
on the group R" and we give integral representations for these functions which
are also independent of a Lévy function. (see [6] for the classical Lévy-Khinchin

formula on R").

2 A representation theorem

Let X be a locally compact Hausdorff space. We denote by C(X) the set {f :
X — R|f continuous and with compact support } and by C,(X) the set {f €

C(X)|f = 0}.

Theorem 1 Let V be a linear space of real continuous functions on X, such that
V O C(X), and L : V — R a linear functional, such that L(f) > 0 for every
f eV, where V., = {f € V|f > 0}. The restriction of L to C(X) is a positive

Radon measure p with the following properties:

(i) every function of V. is pu integrable and we have L(f) > [, f(x)du(x) for

f € V_|_,'

(ii) if we denote by M the set {(f,h) € V x V.| there is a compact K C X
such that |f(x)| < h(z) for z € X — K} we have [, f(z)du(z) = L(f) for
every [ € V which satisfies the following condition: for each € > 0 there is

a function h € V., with L(h) < €, such that (f,h) € M.



Proof. If feV,, g€ C,(X) and f > g, then

It results that f is p integrable and L(f) > u(f), which proves (i).
Take € > 0 and (f,h) € M such that L(h) < e. There exists a compact set

K C X such that
f(@)| < h(z),z€ X\ K.

There also exists a compact K’ C X such that fX\K, |fldu < e.

We choose a continuous function ¢ : X — [0,1] with compact support such

that ¢(z) =1 for x € K U K'. We have
—h<f-fo<h.
The positivity of L yields
L) - [ fodul <
We obtain

L) = [ s <120) = [ fodul+] [ fodn= [ faul <2

which finishes the proof. [ |

3 Integral representations for negative definite

functions

Let (S, +, *) be a commutative involutive semigroup with neutral element 0 (see

(2], p. 86). We say that a function ¢ : S — C is positive definite on S if for
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each natural number n > 1, each family ¢y, ... , ¢, of complex numbers and each
family x1, ... ,x, of elements of S, we have

n
Z cjékap(xj + .’L’;) > 0.
k=1

A function ¢ : § — C is hermitian if ¢(z*) = ¢(x) for each z € S.

We say that a hermitian function ¢ : S — C is negative definite on S if for
each natural number n > 2, each family ¢y, ... , ¢, of complex numbers, such that
c1+ ...+ ¢, =0, and each family z,... ,x, of elements of S, we have

n
Z Cjék(p($j + .Z‘Z) < 0.
k=1

We denote by A theset {p: S — C|p(0) =1; p(z*) = p(z), z € S; plx+y) =
p(@)p(y), z,y € S [p(z)| <1, x € S} and by  the set {p € Alp # 1}
With the product topology A is a compact space and (2 is a locally compact

space.
Theorem 2 For a function ¢ : S — C the following conditions are equivalent:

(i) ¢ is negative definite on S and has real part bounded below ;

(ii) there are a real number C, a function q: S — [0,00[, such that

(o) +a(0) = S (ala +9) + 4" +9), 2.y € S,

and a positive Radon measure p on €2, such that the functions

(p—= (1 — Re p(x)))zes are p integrable, which satisfy

Re o(z) = C + q(z) + / (1 - Re p(2))du(p), = € S



and

— Im o(z +vy) + Im o(z) + Im o(y) =

/Q (Im p(z +y) — Im p(z) — Im p(y))du(p).

C,q and p are uniquely determined by .

Proof. (i) = (ii). For every t €]0, 00[ the function ¢, : S — C defined by
V(7)) = e (@) is positive definite (cf. [2], p. 74, Theorem 2.2) and bounded.
It follows from [2], p. 93 Theorem 2.5 that for each ¢ €]0, oo[ there is a positive

Radon measure p; on A such that

e W = /A p(z)dp(p), x € S.
We denote by V' the set

{f: Q= R|f=PF|g, F:A— R, F continuous ,

1
F@) =0, lim= [ F(p)du(p) exists in R},
=07 o

where f = F'|q means that f is the restriction of F' to Q2 and # : S — C is defined
by 6(z) =1 for every z € S.
V' is a real vector space and the function L : V — R defined by L(f) =
limy o 1 [, F(p)du(p) is a linear functional on V such that L(f) > 0 for f € V.
Let F denote the set of all families (a;)zes of complex numbers such that
a; 7 0 only for finite number of x and which satisfy the relation

zes Qo = 0.

Let U denote the set

{f:Q—=RI[f(p) = Zawp(x)a (az)zes € F}.

€S



U is a real vector space. We shall prove that U is a subspace of V. If we take

(a4)zes € F such that the function defined on Q by

p— Z azp(z)

zeS

is in U we have

to(x

PN C— - /Zawp )dp(p

TES TES

Letting ¢ tend to 0 we obtain that the function (p — ) g a.p(x)) isin V and

that

Lipr= 3 aup(@) = = 3 awp()

€S €S

Next we prove that C(Q2) C V.

Let f € C(2), f Z 0. We suppose that the compact support of f is A.

We have A C Q = Uzes{p € Q||1 —p(z)| > 0} and consequently we can find a
natural number n > 1 and ay, ... , a, elements of S such that > 7_, [1—p(a;)| > 0
on A.

The function defined on S by

o 1 [ ola Zu— p(a;)2) dralp)

is positive definite and it results from the inclusion U C V that
1 - )
lim Ap(x)(; 11— plaj)|*)dp(p)
J:
exists in R. We denote by u(z) this limit.
The function u : S — C is positive definite and bounded. Using [2], p. 93,

Theorem 2.5, we obtain a positive Radon measure v on A such that

u(z) = / p(@)dv(p), z€S
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The Theorem 2.11 from [2], p. 97 implies that we have

n

tim [ F(o)duo) =1m [ G(o) (3211~ plag)P)dou()

t=0 1 Ju t=0 ¢ Ja o
- [ Glyivte)
A
(where G(p) = ==L for p € Q and G(#) = 0), which means that f € V.

ST 1—p(a;)

Let z,y be elements of S and € a real number such that 0 < e < 1. Let K,

(resp. K¢,) be the compact {p € Q|Re p(y) <1 — ¢} (resp. {p € Q|[Im p(y)| >

€}).

If 2,y € S we have
(1 —Re p(x))(1 = Re p(y)) < €(1 — Re p(2))
for p € Q — K., and
(1 = Re p(z))Im p(y)| < €(1 — Re p(z))

for pe Q- K[,
Theorem 1 yields a positive Radon measure p on €2 such that the elements of

V. are p integrable and we have

—6(0) + 5¢(a) + 5¢(a) = [ (1= Re pa))dutp). )
~0l0) + 50(a) + 50(r") + 50l) + 10 ()
— P+ ) + o )+ oo+ u7) + o 1)) ©)

— /9(1 — Re p())(1 — Re p(y))du(p).



— = (p(y) — v(y")) + ! plr+y)+e@" +y) —e@+y") —e@ +y))

21 4_2(

Q
= [ (1= Re @) p(w)du(o)
— 50(@) — ola") + (ele ) + ol +2) — oy +2) — oy +27)

Z Z (49

= [~ Re oty pla)d(y)
Q
If we denote by ¢ : S — R the function defined by

q(z) = —¢(0) + Re ¢(z) — [,(1 — Re p(z))du(p), then the relation (1) gives

q(z) > 0, z € S and the formula (2) gives

q(z) +q(y) = %(Q(ﬂﬁ +y) +q(@" +y)).

From (3) and (4) we obtain

1 . 1
- Z(@(y) —oy")) - %

5@vﬂwmmW@mwfgvﬂw@mewm

- /Q(Im p(z) +1Im p(y) — Im p(z + y))du(p)

(p(z) — p(a")) + (ol +1) — 0la® +7)

which gives the second integral formula from the theorem.
(ii) = (i). Let n be a natural number > 2, ¢, ... , ¢, complex numbers such
that ¢y + ... + ¢, = 0 and z,...,x, elements of S. If we have the integral

representations of (ii) it follows that



n
Z citrp(xj +xy) =

J;k:]-
Z cjckRe o(z; + x3) + Z cicelm ¢(z; + 23) =
J,k=1 J,k=1
D ciarglai +23) + D ¢te(Im o(z;) + Tm ()
jk=1 jk=1
4 / 13 )P+ 3 ejenim p(e;) + Im p(a}))du(p)
& =1 Gk=1
=Y cjonalz; +37) — / 'S eipla) Pdp(p) <0
k=1 Q

because ¢ is negative definite (cf. [2], p. 101, Theorem 3.9).

The unicity of u results from the equality:

— (@) + @l +y) (o y7) — (9l +20) + 20( Y +47) + ola +207) =
| @)1= Re p)du(p). 2.y € 5.

Unicity of ¢ is a consequence of the unicity of p because C = ¢(0). |

Remark 1 Choose a natural number n > 2,¢q,...,c, complex numbers and
T1,... Ty, elements of S. The function defined on Q by p = |37, ¢;p(x;)|* is
in V, and consequently if we have (i), we obtain

n
- Z citrp(zj + x5) > /

k=1 @

n
1> cip(a;)*du(p).
j=1
This proves that g is negative definite without using [2], p. 101, Theorem 3.9.

Remark 2 It results from the proof of the theorem that we have y = 0 if and
only if p(z) = C + q(z) + i4(z), x € S, where C' and ¢ are as in the Theorem
2 and £ : S — R is a function such that ¢(z + y) = ¢(z) + £(y), z,y € S, and

l(z*) = —(z), z € S. This is Lemma 3.14 from [2], p. 105.
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Remark 3 In the proof of Theorem 2 we have reobtained that lim;_, %,ut| o= U

vaguely (cf. [2], p. 103, Lemma 3.12).

Proposition. Consider the semigroup (N2, +) with the involution (m,n)* =

(n,m). For a function ¢ : N2 — C the following conditions are equivalent:

(i) ¢ is negative definite and has real part bounded below;

(ii) there are real numbers C, «, 3, such that «, 5 > 0, and a positive Radon
measure y on ) = {p € C||p| < 1,p # 1}, such that the function p —

1 — Re p is p integrable, which satisfy

Re o(m,n) = C + (m+n)a+ (m —n)*B+ /Q(l —Re p™p")du(p).

and

Im (—p(m +p,n+q) +p(m,n) + ¢ q) =
/Q Im (p™*Pp"* e — p™p" — pP p?)du(p).

C,a, f and p are uniquely determined by ¢ and we have

o = —¢(0,0) + 5(#(1,0) + p(0,1)) — £((2,0) ~ 26(1,1) + 9(0,2)

- /Q(l —Re p - %(Im p)?)dp(p)

and
1 2
8= 12.0) + (1,1 +¢(0.2) = [ (1m p)dutp).

Proof. We denote by D the set {t € C||z| < 1} and by A the set

{p: N? = C|p(0,0) = 1; p(m, n) = p(n, m);
p(m +p,n+q) = p(m,n) - p(p,q); |p(m,n)| <1,m,n,p,q € N}
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Let z € D. The function p, : N*> — C given by p,(m,n) = z™z" is in A
and the mapping z — p, is a topological isomorphism of D onto A. Using this
isomorphism, the Proposition is a particular case of Theorem 2 and we only have

to calculate ¢(m, n) where

ﬂmmzwmm+mmmm—ﬁu4mwwww.

As in the proof of the Theorem 2, we notice that the function defined on €2 by
p+— (1 —Re p)™(Im p)"
is u integrable for m > 1 or n > 2 and we have

Lip = (1= Re p)"(Im p)") = [ (1 =Re p)"(1m p)"d(p)

form>2orn>3o0r (m>1andn>1).
Using this and the binomial theorem, we obtain that
L(p= 1~ Re g7 — (m+n)(1 ~ Re p— o (Im p)?) ~ (m — n)’(Im p)")
= [[(1=Re g7 — (m-+ m)(1 = Re p = 5 (Im p)? = (m = )5 (Im p)")d(p)
This is equivalent to ¢(m,n) = (m + n)a + (m — n)B, where

a=L(p—1-Re p— 5(Im p)®) — [,(1 — Re p — 5(Im p)*)dp(p) and

5= L(p (m ") = [ (1 p)dutr).
We have 1 — Re p — 2(Im p)® = (1 — Re p)® + 3(1 — (Re p)® — (Im p)?) > 0,
which implies that o > 0. That 3 > 0 is evident. This finishes the proof of the

Proposition. |

Remark 4 The integral representation of the negative definite functions con-
sidered in the Proposition, which depends on a Lévy function, is in [2], p. 119,

Proposition 4.15.
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4 A generalization for Bernstein functions

In this section R} = ([0, co[)™ and (,) is the usual scalar product in R". We will
consider the semigroup (R7,+), and assume that this semigroup has identical

involution.
Theorem 3 For a function ¢ : R}, — R the following conditions are equivalent:
(i) ¢ is positive, continuous and negative definite on R ;
(ii) we have
(@) = C+ (a.a) + [ (1= (o), = € R}

where C € [0,00[;a = (a1,...,a,) € R}, a; > 0;Q = (—o0,0]"\ (0,...,0)

llell
1+[oll

and p is a positive Radon measure on Q such that the function p —

s 1 integrable.

C,a and p are uniquely determined by .

Proof. (i) = (ii) For every ¢ €]0,00[ the function 1, : R} — R defined by
Yi(r) = e~ is continuous positive definite (cf. [2], p. 74, Theorem 2.2) and
bounded. It follows from [2], p.115, Proposition 4.7, that for each ¢ €]0, oo| there

is a positive Radon measure p; on | — 0o, 0]” such that

oto(@) _ / e dus( ).
]—OO,O]T"
We denote by V' the set

{f: Q= R|f=Fl|g,F:]—00,0" = R, F continuous,
1
F(0,...,0) =0,lim - F(p)du(p) exists in R}.

=0 t ]—00,0]'"
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Let L' : V! — R be the function defined by L'(f) = limy0 § [, . g £ (0)dpie(p)-

Let F denote the set of all families (az)memi of real numbers such that a, # 0

only for a finite number of x and which satisfy the relation

+
Let U denote the set
{f Q—)]R‘f Zaep’ a'w:BEIRnEJ:}
a:e]R”

We obtain as in the proof of Theorem 2 that U is a subspace of V' and that
Lo 3 a,e) == 3 a,p(a),
z€RY z€RY
if the function p — ZzelRi aze?®) is an element of U.

If p=1(p1,---,pn), we have

_P
i e 300

= —np(0,...,0)+¢(1,0,...,0)+ ...+ ¢(0,...,0,1)

It results from [2], p. 52, Proposition 4.6 that there is a sequence (tx)ren CJ0,1]

with lim,_,, ; = 0, such that the sequence

(Lo D00 ) o

j=1

converges vaguely.

We define
V={f:Q5R|f=Flo,F]—o0,0" =R,
F continuous, F(0,...,0) = 0, limgye0 5~ fi_o g F'(p)dp, exists in R}.
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We also define L : V — R by

00,0]™
(where G(p) = % for p € Q and G(0,...,0) = 0) exists in R. This

proves that C(2) C V.

We have, using Taylor’s formula,

. 1— el =370 (1~ efi)a;
lim J =0,
p€EQ,p—(0,...,0) ZJ 1(1 — ePJ)

where z € R" and p = (p1,... , pn)-

If we take z,a € R}, oo = (v, ..., 0), a5 > 0, then it is easy to see that for
each € > 0 there exists a compact set K C €2 such that

n n

e (1 — o™ =N (1 —e)zj)[ < e (1—e¥) for peQ\K.

Theorem 1 yields a positive Radon measure on €) such that the functions

(p—(1- e<”’””>))$e]R1 are y integrable and we have
~¢0) +¢le) 2 [ (1= du(p), o € R
Q

—¢(a@) + pla + ) Z%

) + pa+ej))

(6)
_ / €02 (1 — o) _ ij(l — %)) du(p).
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(z,0 € R}, a = (a1,... ,m), & > 0,(ej)1<j<n the canonical base in R").

If in (6) we let « tend to (0,...,0), we obtain
Plo) = 90+ Yajas + [ (1= (o), 7
j=1

where a; = (—¢(0) + ¢(e;) — [(1 — €”)du(p)). Using (5), we obtain a; > 0.

If we show that the function, p — 1Ll’|’||,|)” is p integrable the formula (7) is the

integral representation from (ii).

To this end, it is enough to prove that for a compact neighbourhood O of the
origin in R™, we have p(Q2\ O) < 0.

Take p € 2. We have

1
(0:®) Jop = —(ef —1)
e z I I e
/[;),l]n Pj

pj#0 7

where dx is Lebesque measure in R".

Consider the function 1) : Q — R defined by

Y(p)=1- / P dy = / (1 —eP®)dz
(0,1]" (0,1]"

Using Fubini’s theorem and relation (5), we obtain

[ 0@z [ ([ o= [ s
We have
ul{p € oy > 2,1 <5 <n}) < u({p € (o) > 5))
< 2/ (—p(0) + ¢ (x))dz < oo.
(0,1]"

This finishes the proof of the implication (i) = (ii).
The implication (ii) = (i) is trivial.

Next we prove the assertion concerned with unicity.
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We note that it is enough to prove the unicity of u. We have the relation

/ e(p,z+a>(1 _ e<”’y>)2d,u(p)
Q

= —p(z+a)+2p(x+a+y)—p@+at+2y)
where z,y,a € R, o = (ou,...,), o > 0. Letting o tend to (0,...,0), we

obtain

[ €070 = e Pdutp) = (o) + 2p(a -+ 9) = p(2),

Now the unicity of u is a consequence of the unicity of the mesure in [2], p. 115,

Proposition 4.7. This completes the proof. |
Theorem 4 For a function ¢ : R, — R the following conditions are equivalent
(i) ¢ is continuous and negative definite on R’ ;
(ii) we have

o) =c+<a,x>—q<x>+/

Q

(1— e — ij(l — e1))dp(p),

where C € R, a € R", q(x) = szzlpjkxjxk is a positive quadratic form
on R", Q@ =R"\ (0,...,0) and p is a positive Radon measure on Q such

that the functions (p — (1 — e(f”m>)2)w€]Ri are | integrable.
C,a,q and p are uniquely determined by .
Proof. For each t €]0, 00| the function ¢, : R" — R defined by 1(z) = e~

is continuous positive definite. It follows from [2], p. 214, Theorem 5.8 that for

each t €]0, oo[ there is a positive Radon measure p; on R™ such that
e @ = / e dpy(z), = € R™.
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We define V', F,U, L' as in the proof of Theorem 3.
We have

1 & .
i [ >0 e)dulp) =

j=1
—n(0,...,0)+2(¢(1,0,...,0)+ ...+ ¢(0,...,0,1))
— (¢(2,0,...,0) + ...+ ¢(0,...,0,2))

There is a sequence (tx)ken CJ0, 1], with limg_,o tx = 0, such that the sequence
1 = 2
(a(p = Z(l —€ J) )lutk)ke]N
7j=1
converges vaguely.
Now we define V' and L, as in the proof of Theorem 3 and obtain U C V and
C(Y cV.
We denote by: T': R x {2 — R the function defined by
(pyz) - Pj - xj(xj —1) P32 - Pj Pk
T(z,p)=1—¢ —ij(l—e )—i-'z#(l—e )2 + ijxk(l—e )(1 — ef*).
j=1 j=1 J:k=1
7k
Using Taylor’s formula, we have for each x € R"}
T'(z,p)

I _ =0
pEQ,pl)I}(l),...,O) ijl(l — ePi)?

If we take z,c, 8 € R’,a; > 0 and 3; = 1, it is easy to see that for each € > 0

there is a compact K C () such that

‘e(p,a)T(x,pN < 6(2(1 —efi) 4 (1— e(ﬂw-}-a-&-ﬁ))?), peN\K.

i=1

Theorem 1 yields a positive Radon measure p on €2 such that

3 (@) > /Q D agedp(p), (8)

:BEIRZ;‘_ a:e]R’_;_
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where
(U,m)g;e]Ri € F, with Z aze“”m) >0, for peq.
zERY
We also have L(p — e»9T(z, p)) = [,(e?*T(z, p))du(y), z,a € R, a; > 0.

Letting « tend to (0,...,0), we obtain

L(T(@.p) = [ Tlo.pdulp), = € R

which can be written
p(z) = p(0,...,0) + > zja; —qlx) + /(1 — e =N i (1~ e”))dp(p)
j=1 @ j=1

where g(2) = H(L(p > (S0, 25(1 — e9))?) — [o(Sy 5(1 — e))2du(p)), and
a;j = —(0) + ¢(e;) + 5(L(p — (1 —e”)?) — [,(1 — e?)*dp(p)). The function
g9 :Q — R defined by g(p) = (3_7_, z;(1 — €%))? is in Uand consequently the
inequality (8) implies g(z) > 0, € R". This completes the proof of implication
(i) = (ii). The implication (ii) = (i) is immediate.

The unicity of p results from the relation

L(p— e(p,m)(l — e(p,y))4) - / e(p,w)(l — e<”’y>)4d,u(p), z,y € R
Q

If g(z) = D7, _1 PjrT;Tk, We have

Pjk = %(—90(0) + p(e;) + ¢(er) — olej +ex) — /Q(l — ") (1 — e )du(p)).

This proves the unicity of ¢ and finishes the proof because C' = ¢(0) and the

unicity of a is also a consequence of the unicity of u. |
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5 Integral representations for continuous nega-
tive definite function on the groupe R”
Theorem 5 For a function ¢ : R™ — C the following conditions are equivalent:

(i) ¢ is continuous and negative definite on R";

(ii) there is a real number C, a positive quadratic form q : R® — R, such that
q(z) = szzl ajkT;Tr with a;, € R and ajy = agj, and a positive Radon
measure p on R™\ (0,...,0) = Q, such that the function g : Q@ — R defined

by g(p) = 1L|r’|’||/|:”2 s | integrable, which satisfy

Re o(z) = C + q(z) + / (1 — cos(p, 2))dp(p)

Q

and

— Im ¢(z +y) + Im ¢(z) + Im o(y) =

/Q (sin{p, +) — sin{p, z) — sin{p, y))dy(p)

C,q and p are uniquely determined by ¢ and we have

51 = =pl0) + 5(0(e5) + (=) = [ (1= cosp)d(p)

and

ajk = %(90(69' +ex) +o(—ej —ex) — plej —ex) — plex — ;)

1
— §/sinpj sin ppdp(p), for j # k.
Q

Proof. Using Bochner’s theorem in R", we define the measures (14¢):c10,00[ as in

Section 3. In this section F will be the set of all families (a;)zern of complex
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numbers such that a, # 0 only for a finite number of x, which satisfy the relation

Y zern @z = 0. If we denote by V' the set

{f:Q—=R|f=Flq, F:R"— R, F continuous,
1
F(0,...,0)=0,lim- F(p)du(p) exists in R},
150 t R»

we obtain, as in Section 3, that the set:

U={f: Q> RIf(p) =) a:e""™, (a5)sern € F}
zeR

is included in V. Using the classical Lévy’s theorem, we also obtain that C(£2) C
V. We will show that for each 3 > 0 the function hg : Q — [0, 00] defined by
hs(p) = ﬂin 0 ﬂ}"(l — cos{p, x))dz. (dx Lebsegue measure in R") is in V.

First it is clear that

li h = 0.
pEQapi)I{ér“:O) ﬁ(p)

If we take hg(0,...,0) =0, we have

%/nhﬂ( Vdp(p Bnt/n /Oﬂ (1 — cos(p, z))dz)dp(p)
B"t/oﬁ /n (1 — cos(p, z))dp(p ))d

ﬂ"t/ ( —tp(0 ; —tp(z) _ ;6&9( ))dx

Consequently,

i [ halo)duelo) = 5 /[ | (Be o)~ c(0))ds

t=0 ¢ JRrn
and therefore hg € V.
We define L as in Section 3. It results, from the continuity of ¢ in 0, that for
e > 0 there is a 3. > 0 such that L(hg.) < e. An elementary calculus shows that

there is a real number M > 0, such that hg, (p) > 3 for ||p|| > M.
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Choose z and y in R". If we take v > 0 such that ||p|]| < 7 implies 1 —

cos(p,y) < & we have

(1 = cos{p, 2))(1 = cos(p, y)) < &(1 = cos(p, x)) + 4hg.(p)

for [|pl| <~ or [lpl| = M.

If we take § > 0 such that ||p|| < ¢ implies |sin{p, y)| < ¢ we have

(1 = cos{p, x}) sinp, y)| < (1 — cos(p, z)) + 2hg. (p)

for [|p]| < 5 or lp]) > M.
Using the preceding inequalities and Theorem 1 we can obtain as in the proof
of Theorem 2, the measure p on €2 and the integral representations of Theorem
5.
We denote by T : R™ x 2 — R the function defined by
n n
T(z,p) =1—cos(p,x) — Zx?(l — oS pj) — Z x ;T sin pj sin pg,
j=1 jk=1
i#k
and by @) : R™ x €2 the function defined by
n n
Q(z,p) = Zx?(l —cos p;) + Z ;T sin p; sin py.
Jj=1 Jik=1
J#k
The Taylor’s formula implies that

T(z, p)
p€Q,p—(0,... ,0) Z?Zl(l — €0S pj)

=0, ze€R"

The function p — T'(z, p) is bounded and therefore using the preceding limit

and a hg function we obtain, as before, that

L(p = T(z,p)) = /QT(%/))du(p)
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The function p — sin p;sin p; is p integrable, because the functions 1 — cos2p;
and 1 — cos2p; are p integrable, and consequently the function p — Q(z, p) is p
integrable for every x € R". We have

0(e) = =pl0) + 30(e) + 5ol=2) = [ (1= cos(p.0))d(p)

=L(p— T(z,p)) - QT(x,p)du(p) + L(p = Q(z,p)) — /QQ(% p)dp(p)

n
= E QLT

7,k=1

where a;; = L(p — (1 —cos p;)) — [, (1 — cos p;)dpu(p) and
1 : . . : :
Qjk = Qgj = E(L(p — sin p; sin pg) — / sin p; sin ppdp(p)) for j # k.
Q

Next we prove that the function p — 1J||r‘|’||l|)2”2 is p integrable.

We have

1

/[Ol]n(—SO(O) + %w(x) + 5%0(—33))dx

> [ ([0 costpmiautp)as
- /¢ (1 costp )ty

= /Q hi(p)dp(p)-

Choosing a real number M, such that hi(p) > 3 for ||p|| > M, the preceding
inequality gives
1 1
p{p e Qlioll = M}) <2 o (=¢(0) + 5 0(2) + Sp(-2))dz.
0,1]

1—cos p;

The limits lim,, o P
J

=1,7=1,...,n prove that the function p — ||p||* is
i integrable on a set of the form O\ (0,...,0), where O is a neighbourhood of

the origin.
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We also have proved that the function p — lllﬂ"'j'Q

is 4 integrable. If we notice
that the unicity of C, ¢ and p and the implication (ii) = (i) can be proved as in

Section 3 we finish the proof. [ |

Remark 5 The inclusion C(2) C V results also from [3], p. 172, Proposition

18.2.
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6 Negative definite functions on N*

For a function ¢ : N* — R the following conditions are equivalent

1. ¢ is negative definite on IN*

2. there is a positive Radon measure p on R\ {0, 1}, such that every polynom
divisible by z2(1 — x)? is u integrable, and real number a, b, c such that

¢ < 0, which satisfy
©(2) >t(2) and ¢(n)= E(n), for n > 3,

where E(n) =a+bn+cn® + [p 1}(.T4 — 2"+ (n—4)a*(z — 1))dz.

Proof. It is clear that (ii) = (i). We will prove (i) = (ii).
The set
V ={P:R\{0,1} = R|P polynomial function,
P(0) = P'(0) = P(1) = P'(1) =0}
is an adapted space.

The function L : V — R defined by
Ly(aor® + ... + apz™) = —ay0(2) — ... — anp(n)

is positive on V. because every element of V, can be expressed as a sum of the
form P? + P? where P, and P are polynomial functions (cf. [3]).

Let P be polynomial function of degree m. We notice that for every € there
is a compact K C R\ {0,1} such that if ¢ : R\ {0,1} — R is a continuous

function with compact support which is 1 on K the following inequality holds

|2%(1 = 2)*P(z)(1 = ¢(2))| < e(a”(1 — 2)” +2°™7)
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forr €e R\ {0,1} \ K.

Theorem 1 and Proposition 1 yield a positive Radon measure on R \ {0, 1}

such that

L(z > 22(1 — 2)2Q(z)) > / 22(1 — 2)2Q(x)d(x),

R\{0,1}

for every positive polynomial function (), and
L(z = 2*(1 — 2)°P(x)) = / (1 = 2 P(@)dp(a),

R\{0,1}

for every polynomial function P.

The relation (10) gives for n > 3

—¢(4) +¢(n) — (n —4)((5) — v(4)) -

= 4)2(n -9 (p(6) — 2¢(5) + p(4)) =
/R\{O 1}(954 — 2"+ (n—4)(z — 1)z* + (n = 4)2(n ) (@ — 1)’z dp(z)

Consequently, we have for n > 3

o(n) =a+bn+cn’+ / (z — 1)%z*du(z)).
R\{0.1}

Using (9) we obtain ¢ < 0.
For n = 2 the polynom

(n—4)(n—5)
2

ot — 2"+ (n—4)(z — )a* + (z —1)%*

becomes
(1 — 2)*(—1 — 2z + 32?).
The relation (10) implies that

/R o 7 = 6) +30(6) ~30(4) + 609
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Using (11) and the identity
2*(1 — 2)*(=1 — 22 + 32%) + 42°(1 — 2)® = —2*(1 — 2)*,
we obtain as a consequence of (9) the following relation

¢(2) = B(2) = ~La = a*(1=a)") + [ (@1~ 2)")du(z) <0

which completes the proof.
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