Negative definite functions. Integral representations independent of a Lévy function and related problems

Dragu Atanasiu

Chalmers University of Technology and
University of Göteborg
S-412 96 Göteborg, Sweden

Abstract

In this paper we give a unitary method for obtaining Lévy Khinchin type formulas for negative definite functions.

We obtain integral representations, independent of a Lévy function, for negative definite functions, with real part bounded below, defined on a commutative involutive semigroup, and for continuous negative definite functions defined on the group \mathbb{R}^n .

We reobtain integral representations for continuous negative definite functions defined on the semigroup \mathbb{R}^n_+ .

Key words: positive definite function, negative definite function, Radon measure, commutative involutive semigroup, quadratic form.

1 Introduction

The negative definite functions occur in probability theory and in potential theory. Their integral representation, known as Lévy-Khinchine formula, depends on a Lévy function (see [2], p. 108, Theorem 3.19 and [7], p. 316, Theorem 8).

The existence of Lévy function is proved in [8] for locally compact commutative groups and in [4] for commutative involutive semigroups.

We give, in Section 3 of this paper, integral representations, for negative definite functions with real part bounded below, defined on a commutative involutive semigroup, which characterize these functions and are independent of a Lévy function. These integral representations can also be obtained using [2], p. 108, Theorem 3.19, but the proof from this paper does not depend on a Lévy function and gives a new method for treating Lévy Khinchin type formulas.

To obtain the integral representations we give in Section 2 a result inspired of Choquet theory on adapted cones (see [5]).

We also use the result of Section 2 to reobtain, in Section 3, the quadratic forms on the semigroup $(\mathbb{N}^2, +)$ with the involution $(m, n)^* = (n, m)$ (see [2], p. 117, Lemma 4.13).

A function $f:[0,\infty[\to\mathbb{R}]$ defined by

$$f(x) = C + ax + \int_{-\infty}^{0} (1 - e^{yx}) d\mu(y)$$

where $C, a \in [0, \infty[$ and μ is a positive Radon measure on $]-\infty, 0[$ such that the function $x \to \frac{x}{1+x}$ is μ integrable, is called a Bernstein function (cf. [3], p. 64, 9.8). In Section 4 of this paper, we give a generalization for Bernstein functions by completing a result of Berg ([1], p. 86, 3.2). Using the method of Section

3 we also obtain in Section 4 a new proof for the integral representation of the negative definite functions defined on the semigroup \mathbb{R}^n_+ ([1], p. 81, 3.1). This integral representation depends on a Lévy function.

In Section 5 we consider the continuous negative definite functions defined on the group \mathbb{R}^n and we give integral representations for these functions which are also independent of a Lévy function. (see [6] for the classical Lévy-Khinchin formula on \mathbb{R}^n).

2 A representation theorem

Let X be a locally compact Hausdorff space. We denote by $\mathcal{C}(X)$ the set $\{f: X \to \mathbb{R} | f \text{ continuous and with compact support } \}$ and by $\mathcal{C}_+(X)$ the set $\{f \in \mathcal{C}(X) | f \geq 0\}$.

Theorem 1 Let V be a linear space of real continuous functions on X, such that $V \supset \mathcal{C}(X)$, and $L: V \to \mathbb{R}$ a linear functional, such that $L(f) \geq 0$ for every $f \in V_+$, where $V_+ = \{f \in V | f \geq 0\}$. The restriction of L to $\mathcal{C}(X)$ is a positive Radon measure μ with the following properties:

- (i) every function of V_+ is μ integrable and we have $L(f) \ge \int_X f(x) d\mu(x)$ for $f \in V_+$;
- (ii) if we denote by M the set {(f,h) ∈ V × V₊| there is a compact K ⊂ X such that |f(x)| ≤ h(x) for x ∈ X − K} we have ∫_X f(x)dµ(x) = L(f) for every f ∈ V which satisfies the following condition: for each ε > 0 there is a function h ∈ V₊, with L(h) < ε, such that (f, h) ∈ M.</p>

Proof. If $f \in V_+$, $g \in \mathcal{C}_+(X)$ and $f \geq g$, then

$$L(f) \ge L(g) = \mu(g).$$

It results that f is μ integrable and $L(f) \ge \mu(f)$, which proves (i).

Take $\epsilon > 0$ and $(f, h) \in M$ such that $L(h) < \epsilon$. There exists a compact set $K \subset X$ such that

$$|f(x)| \le h(x), x \in X \setminus K.$$

There also exists a compact $K' \subset X$ such that $\int_{X \setminus K'} |f| d\mu \leq \epsilon$.

We choose a continuous function $\varphi: X \to [0,1]$ with compact support such that $\varphi(x) = 1$ for $x \in K \cup K'$. We have

$$-h \le f - f\varphi \le h.$$

The positivity of L yields

$$|L(f) - \int f\varphi d\mu| \le \epsilon.$$

We obtain

$$|L(f)-\int fd\mu|\leq |L(f)-\int farphi d\mu|+|\int farphi d\mu-\int fd\mu|\leq 2\epsilon,$$

which finishes the proof.

3 Integral representations for negative definite functions

Let (S, +, *) be a commutative involutive semigroup with neutral element 0 (see [2], p. 86). We say that a function $\varphi : S \to \mathbb{C}$ is positive definite on S if for

each natural number $n \geq 1$, each family c_1, \ldots, c_n of complex numbers and each family x_1, \ldots, x_n of elements of S, we have

$$\sum_{j,k=1}^{n} c_j \bar{c}_k \varphi(x_j + x_k^*) \ge 0.$$

A function $\varphi: S \to \mathbb{C}$ is hermitian if $\varphi(x^*) = \overline{\varphi(x)}$ for each $x \in S$.

We say that a hermitian function $\varphi: S \to \mathbb{C}$ is negative definite on S if for each natural number $n \geq 2$, each family c_1, \ldots, c_n of complex numbers, such that $c_1 + \ldots + c_n = 0$, and each family x_1, \ldots, x_n of elements of S, we have

$$\sum_{j,k=1}^{n} c_j \bar{c}_k \varphi(x_j + x_k^*) \le 0.$$

We denote by Λ the set $\{\rho: S \to \mathbb{C} | \rho(0) = 1; \ \rho(x^*) = \overline{\rho(x)}, \ x \in S; \ \rho(x+y) = \rho(x)\rho(y), \ x,y \in S; \ |\rho(x)| \le 1, \ x \in S\}$ and by Ω the set $\{\rho \in \Lambda | \rho \not\equiv 1\}$.

With the product topology Λ is a compact space and Ω is a locally compact space.

Theorem 2 For a function $\varphi: S \to \mathbb{C}$ the following conditions are equivalent:

- (i) φ is negative definite on S and has real part bounded below;
- (ii) there are a real number C, a function $q: S \to [0, \infty[$, such that

$$q(x) + q(y) = \frac{1}{2}(q(x+y) + q(x^* + y)), \ x, y \in S,$$

and a positive Radon measure μ on Ω , such that the functions $(\rho \mapsto (1 - Re \ \rho(x)))_{x \in S}$ are μ integrable, which satisfy

$$Re \ \varphi(x) = C + q(x) + \int_{\Omega} (1 - Re \ \rho(x)) d\mu(\rho), \ x \in S$$

and

$$-\operatorname{Im} \varphi(x+y) + \operatorname{Im} \varphi(x) + \operatorname{Im} \varphi(y) = \int_{\Omega} (\operatorname{Im} \rho(x+y) - \operatorname{Im} \rho(x) - \operatorname{Im} \rho(y)) d\mu(\rho).$$

C, q and μ are uniquely determined by φ .

Proof. (i) \Rightarrow (ii). For every $t \in]0, \infty[$ the function $\psi_t : S \to \mathbb{C}$ defined by $\psi_t(x) = e^{-t\varphi(x)}$ is positive definite (cf. [2], p. 74, Theorem 2.2) and bounded.

It follows from [2], p. 93 Theorem 2.5 that for each $t \in]0, \infty[$ there is a positive Radon measure μ_t on Λ such that

$$e^{-t\varphi(x)} = \int_{\Lambda} \rho(x) d\mu_t(\rho), \ x \in S.$$

We denote by V the set

$$\{f:\Omega\to\mathbb{R}|f=F|_{\Omega},\,F:\Lambda\to\mathbb{R},\,F \text{ continuous },$$

$$F(\theta)=0,\,\lim_{t\to0}\frac{1}{t}\int_{\Lambda}F(\rho)d\mu_t(\rho)\text{ exists in }\mathbb{R}\},$$

where $f = F|_{\Omega}$ means that f is the restriction of F to Ω and $\theta : S \to \mathbb{C}$ is defined by $\theta(x) = 1$ for every $x \in S$.

V is a real vector space and the function $L:V\to\mathbb{R}$ defined by $L(f)=\lim_{t\to 0}\frac{1}{t}\int_{\Lambda}F(\rho)d\mu_t(\rho)$ is a linear functional on V such that $L(f)\geq 0$ for $f\in V_+$.

Let \mathcal{F} denote the set of all families $(a_x)_{x\in S}$ of complex numbers such that $a_x \neq 0$ only for finite number of x and which satisfy the relation $\sum_{x\in S} a_x = 0$.

Let U denote the set

$$\{f: \Omega \to \mathbb{R} | f(\rho) = \sum_{x \in S} a_x \rho(x), \ (a_x)_{x \in S} \in \mathcal{F}\}.$$

U is a real vector space. We shall prove that U is a subspace of V. If we take $(a_x)_{x\in S}\in \mathcal{F}$ such that the function defined on Ω by

$$\rho \mapsto \sum_{x \in S} a_x \rho(x)$$

is in U we have

$$\sum_{x \in S} a_x \left(\frac{e^{-t\varphi(x)} - 1}{t} \right) = \frac{1}{t} \int_{\Lambda} \left(\sum_{x \in S} a_x \rho(x) \right) d\mu_t(\rho).$$

Letting t tend to 0 we obtain that the function $(\rho \mapsto \sum_{x \in S} a_x \rho(x))$ is in V and that

$$L(\rho \mapsto \sum_{x \in S} a_x \rho(x)) = -\sum_{x \in S} a_x \varphi(x).$$

Next we prove that $\mathcal{C}(\Omega) \subset V$.

Let $f \in \mathcal{C}(\Omega)$, $f \not\equiv 0$. We suppose that the compact support of f is A.

We have $A \subset \Omega = \bigcup_{x \in S} \{ \rho \in \Omega | |1 - \rho(x)| > 0 \}$ and consequently we can find a natural number $n \geq 1$ and a_1, \ldots, a_n elements of S such that $\sum_{j=1}^n |1 - \rho(a_j)| > 0$ on A.

The function defined on S by

$$x \mapsto \frac{1}{t} \int_{\Lambda} \rho(x) \Big(\sum_{j=1}^{n} |1 - \rho(a_j)|^2 \Big) d\mu_t(\rho)$$

is positive definite and it results from the inclusion $U \subset V$ that

$$\lim_{t \to 0} \frac{1}{t} \int_{\Lambda} \rho(x) \left(\sum_{j=1}^{n} |1 - \rho(a_j)|^2 \right) d\mu_t(\rho)$$

exists in \mathbb{R} . We denote by u(x) this limit.

The function $u: S \to \mathbb{C}$ is positive definite and bounded. Using [2], p. 93, Theorem 2.5, we obtain a positive Radon measure ν on Λ such that

$$u(x) = \int_{\Lambda} \rho(x) d\nu(\rho), \quad x \in S$$

The Theorem 2.11 from [2], p. 97 implies that we have

$$\lim_{t \to 0} \frac{1}{t} \int_{\Lambda} F(\rho) d\mu_t(\rho) = \lim_{t \to 0} \frac{1}{t} \int_{\Lambda} G(\rho) \left(\sum_{j=1}^n |1 - \rho(a_j)|^2 \right) d\mu_t(\rho)$$
$$= \int_{\Lambda} G(\rho) d\nu(\rho)$$

(where $G(\rho) = \frac{F(\rho)}{\sum_{j=1}^{n} |1-\rho(a_j)|^2}$ for $\rho \in \Omega$ and $G(\theta) = 0$), which means that $f \in V$.

Let x, y be elements of S and ϵ a real number such that $0 < \epsilon < 1$. Let $K_{\epsilon, y}$ (resp. $K'_{\epsilon, y}$) be the compact $\{\rho \in \Omega | \text{Re } \rho(y) \leq 1 - \epsilon\}$ (resp. $\{\rho \in \Omega | \text{Im } \rho(y) | \geq \epsilon\}$).

If $x, y \in S$ we have

$$(1 - \operatorname{Re} \rho(x))(1 - \operatorname{Re} \rho(y)) \le \epsilon(1 - \operatorname{Re} \rho(x))$$

for $\rho \in \Omega - K_{\epsilon,y}$ and

$$|(1 - \operatorname{Re} \rho(x))\operatorname{Im} \rho(y)| \le \epsilon(1 - \operatorname{Re} \rho(x))$$

for $\rho \in \Omega - K'_{\epsilon,y}$.

Theorem 1 yields a positive Radon measure μ on Ω such that the elements of V_+ are μ integrable and we have

$$-\varphi(0) + \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(x^*) \ge \int_{\Omega} (1 - \operatorname{Re}\,\rho(x)) d\mu(\rho). \tag{1}$$

$$-\varphi(0) + \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(x^*) + \frac{1}{2}\varphi(y) + \frac{1}{2}\varphi(y^*)$$

$$-\frac{1}{4}(\varphi(x+y) + \varphi(x^*+y) + \varphi(x+y^*) + \varphi(x^*+y^*))$$

$$= \int_{\Omega} (1 - \operatorname{Re} \rho(x))(1 - \operatorname{Re} \rho(y))d\mu(\rho).$$
(2)

$$-\frac{1}{2i}(\varphi(y) - \varphi(y^*)) + \frac{1}{4i}(\varphi(x+y) + \varphi(x^*+y) - \varphi(x+y^*) - \varphi(x^*+y^*))$$

$$= \int_{\Omega} (1 - \operatorname{Re} \, \rho(x)) \operatorname{Im} \, \rho(y) d\mu(\rho).$$
(3)

$$-\frac{1}{2i}(\varphi(x) - \varphi(x^*)) + \frac{1}{4i}(\varphi(x+y) + \varphi(y^*+x) - \varphi(y+x^*) - \varphi(y^*+x^*))$$

$$= \int_{\Omega} (1 - \operatorname{Re} \, \rho(y)) \operatorname{Im} \, \rho(x) d\mu(\rho).$$
(4)

If we denote by $q:S\to\mathbb{R}$ the function defined by

 $q(x)=-\varphi(0)+{\rm Re}\ \varphi(x)-\int_\Omega(1-{\rm Re}\ \rho(x))d\mu(\rho),$ then the relation (1) gives $q(x)\geq 0,\,x\in S$ and the formula (2) gives

$$q(x) + q(y) = \frac{1}{2}(q(x+y) + q(x^* + y)).$$

From (3) and (4) we obtain

$$-\frac{1}{2i}(\varphi(y) - \varphi(y^*)) - \frac{1}{2i}(\varphi(x) - \varphi(x^*)) + \frac{1}{2i}(\varphi(x+y) - \varphi(x^* + y^*))$$

$$= \int_{\Omega} (1 - \operatorname{Re} \, \rho(x)) \operatorname{Im} \, \rho(y) d\mu(\rho) + \int_{\Omega} (1 - \operatorname{Re} \, \rho(y)) \operatorname{Im} \, \rho(x) d\mu(\rho)$$

$$= \int_{\Omega} (\operatorname{Im} \, \rho(x) + \operatorname{Im} \, \rho(y) - \operatorname{Im} \, \rho(x+y)) d\mu(\rho)$$

which gives the second integral formula from the theorem.

(ii) \Rightarrow (i). Let n be a natural number $\geq 2, c_1, \ldots, c_n$ complex numbers such that $c_1 + \ldots + c_n = 0$ and x_1, \ldots, x_n elements of S. If we have the integral representations of (ii) it follows that

$$\sum_{j,k=1}^{n} c_{j}\bar{c}_{k}\varphi(x_{j} + x_{k}^{*}) = \sum_{j,k=1}^{n} c_{j}\bar{c}_{k}\operatorname{Re}\ \varphi(x_{j} + x_{k}^{*}) + \sum_{j,k=1}^{n} c_{j}\bar{c}_{k}\operatorname{Im}\ \varphi(x_{j} + x_{k}^{*}) = \sum_{j,k=1}^{n} c_{j}\bar{c}_{k}q(x_{j} + x_{k}^{*}) + \sum_{j,k=1}^{n} c_{j}\bar{c}_{k}(\operatorname{Im}\ \varphi(x_{j}) + \operatorname{Im}\ \varphi(x_{k}^{*})) + \int_{\Omega} (-|\sum_{j=1}^{n} c_{j}\rho(x_{j})|^{2} + \sum_{j,k=1}^{n} c_{j}\bar{c}_{k}(\operatorname{Im}\ \rho(x_{j}) + \operatorname{Im}\ \rho(x_{k}^{*}))d\mu(\rho) = \sum_{j,k=1}^{n} c_{j}\bar{c}_{k}q(x_{j} + x_{k}^{*}) - \int_{\Omega} |\sum_{j=1}^{n} c_{j}\rho(x_{j})|^{2}d\mu(\rho) \leq 0$$

because q is negative definite (cf. [2], p. 101, Theorem 3.9).

The unicity of μ results from the equality:

$$-\varphi(x) + \varphi(x+y) + \varphi(x+y^*) - \frac{1}{4}(\varphi(x+2y) + 2\varphi(x+y+y^*) + \varphi(x+2y^*) = \int_{\Omega} \rho(x) (1 - \operatorname{Re} \rho(y))^2 d\mu(\rho), \ x, y \in S.$$

Unicity of q is a consequence of the unicity of μ because $C = \varphi(0)$.

Remark 1 Choose a natural number $n \geq 2, c_1, \ldots, c_n$ complex numbers and x_1, \ldots, x_n elements of S. The function defined on Ω by $\rho \mapsto |\sum_{j=1}^n c_j \rho(x_j)|^2$ is in V_+ and consequently if we have (i), we obtain

$$-\sum_{j,k=1}^n c_j \bar{c}_k \varphi(x_j + x_k^*) \ge \int_{\Omega} |\sum_{j=1}^n c_j \rho(x_j)|^2 d\mu(\rho).$$

This proves that q is negative definite without using [2], p. 101, Theorem 3.9.

Remark 2 It results from the proof of the theorem that we have $\mu = 0$ if and only if $\varphi(x) = C + q(x) + i\ell(x)$, $x \in S$, where C and q are as in the Theorem 2 and $\ell: S \to \mathbb{R}$ is a function such that $\ell(x+y) = \ell(x) + \ell(y)$, $x, y \in S$, and $\ell(x^*) = -\ell(x)$, $x \in S$. This is Lemma 3.14 from [2], p. 105.

Remark 3 In the proof of Theorem 2 we have reobtained that $\lim_{t\to 0} \frac{1}{t} \mu_t|_{\Omega} = \mu$ vaguely (cf. [2], p. 103, Lemma 3.12).

Proposition. Consider the semigroup $(\mathbb{N}^2, +)$ with the involution $(m, n)^* = (n, m)$. For a function $\varphi : \mathbb{N}^2 \to \mathbb{C}$ the following conditions are equivalent:

- (i) φ is negative definite and has real part bounded below;
- (ii) there are real numbers C, α, β , such that $\alpha, \beta \geq 0$, and a positive Radon measure μ on $\Omega = \{\rho \in \mathbb{C} | |\rho| \leq 1, \rho \not\equiv 1\}$, such that the function $\rho \mapsto 1 \operatorname{Re} \rho$ is μ integrable, which satisfy

Re
$$\varphi(m,n) = C + (m+n)\alpha + (m-n)^2\beta + \int_{\Omega} (1 - \operatorname{Re} \rho^m \bar{\rho}^n) d\mu(\rho).$$

and

$$\operatorname{Im} \left(-\varphi(m+p,n+q) + \varphi(m,n) + \varphi(p,q) \right) = \int_{\Omega} \operatorname{Im} \left(\rho^{m+p} \bar{\rho}^{n+q} - \rho^m \bar{\rho}^n - \rho^p \bar{\rho}^q \right) d\mu(\rho).$$

 C, α, β and μ are uniquely determined by φ and we have

$$\alpha = -\varphi(0,0) + \frac{1}{2}(\varphi(1,0) + \varphi(0,1)) - \frac{1}{8}(\varphi(2,0) - 2\varphi(1,1) + \varphi(0,2))$$
$$-\int_{\Omega} (1 - \operatorname{Re} \rho - \frac{1}{2}(\operatorname{Im} \rho)^{2}) d\mu(\rho)$$

and

$$\beta = \frac{1}{4}(\varphi(2,0) + \varphi(1,1) + \varphi(0,2)) - \int_{\Omega} (\operatorname{Im} \, \rho)^2 d\mu(\rho).$$

Proof. We denote by D the set $\{t \in \mathbb{C} | |z| \leq 1\}$ and by Λ the set

$$\{ \rho : \mathbb{N}^2 \to \mathbb{C} | \rho(0,0) = 1; \rho(m,n) = \overline{\rho(n,m)};$$

 $\rho(m+p,n+q) = \rho(m,n) \cdot \rho(p,q); |\rho(m,n)| \le 1, m, n, p, q \in \mathbb{N} \}$

Let $z \in D$. The function $\rho_z : \mathbb{N}^2 \to \mathbb{C}$ given by $\rho_z(m,n) = z^m \overline{z}^n$ is in Λ and the mapping $z \mapsto \rho_z$ is a topological isomorphism of D onto Λ . Using this isomorphism, the Proposition is a particular case of Theorem 2 and we only have to calculate q(m,n) where

$$q(m,n) = -\varphi(0,0) + \operatorname{Re} \, \varphi(m,n) - \int_{\Omega} (1 - \operatorname{Re} \, \rho^m \bar{\rho}^n) d\mu(\rho).$$

As in the proof of the Theorem 2, we notice that the function defined on Ω by

$$\rho \mapsto (1 - \operatorname{Re} \rho)^m (\operatorname{Im} \rho)^n$$

is μ integrable for $m \geq 1$ or $n \geq 2$ and we have

$$L(\rho \mapsto (1 - \operatorname{Re} \rho)^m (\operatorname{Im} \rho)^n) = \int_{\Omega} (1 - \operatorname{Re} \rho)^m (\operatorname{Im} \rho)^n d\mu(\rho)$$

for $m \ge 2$ or $n \ge 3$ or $(m \ge 1 \text{ and } n \ge 1)$.

Using this and the binomial theorem, we obtain that

$$L(\rho \mapsto 1 - \text{Re } \rho^m \bar{\rho}^n - (m+n)(1 - \text{Re } \rho - \frac{1}{2}(\text{Im } \rho)^2) - (m-n)^2(\text{Im } \rho)^2)$$

$$= \int_{\Omega} (1 - \text{Re } \rho^m \bar{\rho}^n - (m+n)(1 - \text{Re } \rho - \frac{1}{2}(\text{Im } \rho)^2 - (m-n)^2 \frac{1}{2}(\text{Im } \rho)^2) d\mu(\rho)$$

This is equivalent to $q(m, n) = (m + n)\alpha + (m - n)\beta$, where

$$\alpha=L(\rho\mapsto 1-{\rm Re}~\rho-\frac{1}{2}({\rm Im}~\rho)^2)-\int_\Omega(1-{\rm Re}~\rho-\frac{1}{2}({\rm Im}~\rho)^2)d\mu(\rho)$$
 and

$$\beta = L(\rho \mapsto (\operatorname{Im} \rho)^2) - \int_{\Omega} (\operatorname{Im} \rho)^2 d\mu(\rho).$$

We have $1 - \operatorname{Re} \rho - \frac{1}{2}(\operatorname{Im} \rho)^2 = \frac{1}{2}(1 - \operatorname{Re} \rho)^2 + \frac{1}{2}(1 - (\operatorname{Re} \rho)^2 - (\operatorname{Im} \rho)^2) \ge 0$, which implies that $\alpha \ge 0$. That $\beta \ge 0$ is evident. This finishes the proof of the Proposition.

Remark 4 The integral representation of the negative definite functions considered in the Proposition, which depends on a Lévy function, is in [2], p. 119, Proposition 4.15.

4 A generalization for Bernstein functions

In this section $\mathbb{R}^n_+ = ([0, \infty[)^n \text{ and } \langle, \rangle \text{ is the usual scalar product in } \mathbb{R}^n$. We will consider the semigroup $(\mathbb{R}^n_+, +)$, and assume that this semigroup has identical involution.

Theorem 3 For a function $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$ the following conditions are equivalent:

- (i) φ is positive, continuous and negative definite on \mathbb{R}^n_+ ;
- (ii) we have

$$\varphi(x) = C + \langle a, x \rangle + \int_{\Omega} (1 - e^{\langle \rho, x \rangle}) d\mu(\rho), \ x \in \mathbb{R}_{+}^{n}$$
where $C \in [0, \infty[; a = (a_1, \dots, a_n) \in \mathbb{R}_{+}^{n}, \ a_j \ge 0; \Omega = (-\infty, 0]^n \setminus (0, \dots, 0)$

and μ is a positive Radon measure on Ω such that the function $\rho \mapsto \frac{||\rho||}{1+||\rho||}$ is μ integrable.

C, a and μ are uniquely determined by φ .

Proof. (i) \Rightarrow (ii) For every $t \in]0, \infty[$ the function $\psi_t : \mathbb{R}^n_+ \to \mathbb{R}$ defined by $\psi_t(x) = e^{-t\varphi(x)}$ is continuous positive definite (cf. [2], p. 74, Theorem 2.2) and bounded. It follows from [2], p.115, Proposition 4.7, that for each $t \in]0, \infty[$ there is a positive Radon measure μ_t on $]-\infty, 0]^n$ such that

$$e^{-t\varphi(x)} = \int_{]-\infty,0]^n} e^{\langle \rho,x\rangle} d\mu_t(\rho).$$

We denote by V' the set

$$\{f: \Omega \to \mathbb{R} | f = F|_{\Omega}, F:]-\infty, 0]^n \to \mathbb{R}, F \text{ continuous},$$

$$F(0, \dots, 0) = 0, \lim_{t \to 0} \frac{1}{t} \int_{]-\infty, 0]^n} F(\rho) d\mu_t(\rho) \text{ exists in } \mathbb{R}\}.$$

Let $L': V' \to \mathbb{R}$ be the function defined by $L'(f) = \lim_{t \to 0} \frac{1}{t} \int_{]-\infty,0]^n} F(\rho) d\mu_t(\rho)$.

Let \mathcal{F} denote the set of all families $(a_x)_{x \in \mathbb{R}^n_+}$ of real numbers such that $a_x \neq 0$ only for a finite number of x and which satisfy the relation

$$\sum_{x \in \mathbb{R}^n_+} a_x = 0.$$

Let U denote the set

$$\{f: \Omega \to \mathbb{R} | f(\rho) = \sum_{x \in \mathbb{R}^n} a_x e^{\langle \rho, x \rangle}, (a_x)_{x \in \mathbb{R}^n_+} \in \mathcal{F} \}.$$

We obtain as in the proof of Theorem 2 that U is a subspace of V and that

$$L'(\rho \mapsto \sum_{x \in \mathbb{R}^n_+} a_x e^{\langle \rho, x \rangle}) = -\sum_{x \in \mathbb{R}^n_+} a_x \varphi(x),$$

if the function $\rho \mapsto \sum_{x \in \mathbb{R}^n_+} a_x e^{\langle \rho, x \rangle}$ is an element of U.

If $\rho = (\rho_1, \ldots, \rho_n)$, we have

$$\lim_{t \to 0} \frac{1}{t} \int_{]-\infty,0]^n} \sum_{j=1}^n (1 - e^{\rho_j}) d\mu_t(\rho)$$

$$= -n\varphi(0,\ldots,0) + \varphi(1,0,\ldots,0) + \ldots + \varphi(0,\ldots,0,1)$$

It results from [2], p. 52, Proposition 4.6 that there is a sequence $(t_k)_{k\in\mathbb{N}}\subset]0,1]$, with $\lim_{k\to\infty}t_k=0$, such that the sequence

$$\left(\frac{1}{t_k}(\rho \mapsto \sum_{j=1}^n (1 - e^{\rho_j}))\mu_{t_k}\right)_{k \in \mathbb{N}}$$

converges vaguely.

We define

$$V = \{f : \Omega \to \mathbb{R} | f = F|_{\Omega}, F :] - \infty, 0]^n \to \mathbb{R},$$

F continuous, $F(0,\ldots,0)=0$, $\lim_{k\to\infty}\frac{1}{t_k}\int_{]-\infty,0]^n}F(\rho)d\mu_{t_k}$ exists in \mathbb{R} .

We also define $L:V\to\mathbb{R}$ by

$$L(f) = \lim_{k \to \infty} \frac{1}{t_k} \int_{]-\infty,0]^n} F(\rho) d\mu_{t_k}(\rho).$$

We have $V' \subset V$ and $L|_{V'} = L'$. If we take $f \in \mathcal{C}(\Omega)$, we obtain that

$$\lim_{k \to \infty} \frac{1}{t_k} \int_{]-\infty,0]^n} F(\rho) d\mu_{t_k}(\rho)$$

$$= \lim_{k \to \infty} \frac{1}{t_k} \int_{]-\infty,0]^n} G(\rho) \sum_{j=1}^n (1 - e^{\rho_j}) d\mu_{t_k}(\rho)$$

(where $G(\rho) = \frac{F(\rho)}{\sum_{j=1}^{n} (1-e^{\rho_j})}$ for $\rho \in \Omega$ and $G(0,\ldots,0) = 0$) exists in \mathbb{R} . This proves that $\mathcal{C}(\Omega) \subset V$.

We have, using Taylor's formula,

$$\lim_{\rho \in \Omega, \rho \to (0, \dots, 0)} \frac{1 - e^{\langle \rho, x \rangle} - \sum_{j=1}^{n} (1 - e^{\rho_j}) x_j}{\sum_{j=1}^{n} (1 - e^{\rho_j})} = 0,$$

where $x \in \mathbb{R}^n_+$ and $\rho = (\rho_1, \dots, \rho_n)$.

If we take $x, \alpha \in \mathbb{R}^n_+$, $\alpha = (\alpha_1, \dots, \alpha_n)$, $\alpha_j > 0$, then it is easy to see that for each $\epsilon > 0$ there exists a compact set $K \subset \Omega$ such that

$$|e^{\langle \rho, \alpha \rangle} (1 - e^{\langle \rho, x \rangle} - \sum_{j=1}^{n} (1 - e^{\rho_j}) x_j)| \le \epsilon \sum_{j=1}^{n} (1 - e^{\rho_j}) \text{ for } \rho \in \Omega \setminus K.$$

Theorem 1 yields a positive Radon measure on Ω such that the functions $(\rho \mapsto (1 - e^{\langle \rho, x \rangle}))_{x \in \mathbb{R}^n_+}$ are μ integrable and we have

$$-\varphi(0) + \varphi(x) \ge \int_{\Omega} (1 - e^{\langle \rho, x \rangle}) d\mu(\rho), \ x \in \mathbb{R}^n_+.$$
 (5)

$$-\varphi(\alpha) + \varphi(\alpha + x) - \sum_{j=1}^{n} x_j (-\varphi(\alpha) + \varphi\alpha + e_j))$$

$$= \int_{\Omega} e^{\langle \rho, \alpha \rangle} (1 - e^{\langle \rho, x \rangle} - \sum_{j=1}^{n} x_j (1 - e^{\rho_j})) d\mu(\rho).$$
(6)

 $(x, \alpha \in \mathbb{R}^n_+, \alpha = (\alpha_1, \dots, \alpha_n), \alpha_j > 0, (e_j)_{1 \le j \le n}$ the canonical base in \mathbb{R}^n).

If in (6) we let α tend to $(0, \ldots, 0)$, we obtain

$$\varphi(x) = \varphi(0) + \sum_{j=1}^{n} x_j a_j + \int_{\Omega} (1 - e^{\langle \rho, x \rangle}) d\mu(\rho), \tag{7}$$

where $a_j = (-\varphi(0) + \varphi(e_j) - \int_{\Omega} (1 - e^{\rho_j}) d\mu(\rho))$. Using (5), we obtain $a_j \ge 0$.

If we show that the function, $\rho \mapsto \frac{\|\rho\|}{1+\|\rho\|}$ is μ integrable the formula (7) is the integral representation from (ii).

To this end, it is enough to prove that for a compact neighbourhood O of the origin in \mathbb{R}^n , we have $\mu(\Omega \setminus O) < 0$.

Take $\rho \in \Omega$. We have

$$\int_{[0,1]^n} e^{\langle \rho, x \rangle} dx = \prod_{\rho_j \neq 0} \frac{1}{\rho_j} (e^{\rho_j} - 1)$$

where dx is Lebesque measure in \mathbb{R}^n .

Consider the function $\psi:\Omega\to\mathbb{R}$ defined by

$$\psi(\rho) = 1 - \int_{[0,1]^n} e^{\langle \rho, x \rangle} dx = \int_{[0,1]^n} (1 - e^{\langle \rho, x \rangle}) dx$$

Using Fubini's theorem and relation (5), we obtain

$$\int_{[0,1]^n} (-\varphi(0) + \varphi(x)) dx \ge \int_{[0,1]^n} \left(\int_{\Omega} (1 - e^{\langle \rho, x \rangle}) d\mu(\rho) \right) dx = \int_{\Omega} \psi(\rho) d\rho$$

We have

$$\mu(\{\rho \in \Omega | \rho_j \ge -2, 1 \le j \le n\}) \le \mu(\{\rho \in \Omega | \psi(\rho) \ge \frac{1}{2}\})$$

$$\le 2 \int_{[0,1]^n} (-\varphi(0) + \varphi(x)) dx < \infty.$$

This finishes the proof of the implication (i) \Rightarrow (ii).

The implication (ii) \Rightarrow (i) is trivial.

Next we prove the assertion concerned with unicity.

We note that it is enough to prove the unicity of μ . We have the relation

$$\int_{\Omega} e^{\langle \rho, x + \alpha \rangle} (1 - e^{\langle \rho, y \rangle})^2 d\mu(\rho)$$
$$= -\varphi(x + \alpha) + 2\varphi(x + \alpha + y) - \varphi(x + \alpha + 2y)$$

where $x, y, \alpha \in \mathbb{R}^n_+$, $\alpha = (\alpha_1, \dots, \alpha)$, $\alpha_j > 0$. Letting α tend to $(0, \dots, 0)$, we obtain

$$\int_{\Omega} e^{\langle \rho, x \rangle} (1 - e^{\langle \rho, y \rangle})^2 d\mu(\rho) = -\varphi(x) + 2\varphi(x + y) - \varphi(2y).$$

Now the unicity of μ is a consequence of the unicity of the mesure in [2], p. 115, Proposition 4.7. This completes the proof.

Theorem 4 For a function $\varphi : \mathbb{R}^n_+ \to \mathbb{R}$ the following conditions are equivalent

- (i) φ is continuous and negative definite on \mathbb{R}^n_+ ;
- (ii) we have

$$\varphi(x) = C + \langle a, x \rangle - q(x) + \int_{\Omega} (1 - e^{\langle \rho, x \rangle} - \sum_{j=1}^{n} x_j (1 - e^{\rho_j})) d\mu(\rho),$$

where $C \in \mathbb{R}$, $a \in \mathbb{R}^n$, $q(x) = \sum_{j,k=1}^n p_{jk} x_j x_k$ is a positive quadratic form on \mathbb{R}^n , $\Omega = \mathbb{R}^n \setminus (0, \dots, 0)$ and μ is a positive Radon measure on Ω such that the functions $(\rho \mapsto (1 - e^{\langle \rho, x \rangle})^2)_{x \in \mathbb{R}^n}$ are μ integrable.

C, a, q and μ are uniquely determined by φ .

Proof. For each $t \in]0, \infty[$ the function $\psi_t : \mathbb{R}^n_+ \to \mathbb{R}$ defined by $\psi_t(x) = e^{-t\varphi(x)}$ is continuous positive definite. It follows from [2], p. 214, Theorem 5.8 that for each $t \in]0, \infty[$ there is a positive Radon measure μ_t on \mathbb{R}^n such that

$$e^{-t\varphi(x)} = \int_{\mathbb{R}^n} e^{\langle \rho, x \rangle} d\mu_t(x), \ x \in \mathbb{R}^n.$$

We define V', \mathcal{F} , U, L' as in the proof of Theorem 3.

We have

$$\lim_{t \to 0} \frac{1}{t} \int_{\mathbb{R}^n} \sum_{j=1}^n (1 - e^{\rho_j})^2 d\mu_t(\rho) =$$

$$- n\varphi(0, \dots, 0) + 2(\varphi(1, 0, \dots, 0) + \dots + \varphi(0, \dots, 0, 1))$$

$$- (\varphi(2, 0, \dots, 0) + \dots + \varphi(0, \dots, 0, 2))$$

There is a sequence $(t_k)_{k\in\mathbb{N}}\subset]0,1]$, with $\lim_{k\to\infty}t_k=0$, such that the sequence

$$\left(\frac{1}{t_k}(\rho \mapsto \sum_{j=1}^n (1 - e^{\rho_j})^2) \mu_{t_k}\right)_{k \in \mathbb{N}}$$

converges vaguely.

Now we define V and L, as in the proof of Theorem 3 and obtain $U \subset V$ and $\mathcal{C}(\Omega) \subset V$.

We denote by: $T: \mathbb{R}^n_+ \times \Omega \to \mathbb{R}$ the function defined by

$$T(x,\rho) = 1 - e^{\langle \rho, x \rangle} - \sum_{j=1}^{n} x_j (1 - e^{\rho_j}) + \sum_{j=1}^{n} \frac{x_j (x_j - 1)}{2} (1 - e^{\rho_j})^2 + \sum_{\substack{j,k=1\\j \neq k}}^{n} x_j x_k (1 - e^{\rho_j}) (1 - e^{\rho_k}).$$

Using Taylor's formula, we have for each $x \in \mathbb{R}^n_+$

$$\lim_{\rho \in \Omega, \rho \to (0, \dots, 0)} \frac{T(x, \rho)}{\sum_{j=1}^{n} (1 - e^{\rho_j})^2} = 0.$$

If we take $x, \alpha, \beta \in \mathbb{R}^n_+$, $\alpha_j > 0$ and $\beta_j = 1$, it is easy to see that for each $\epsilon > 0$ there is a compact $K \subset \Omega$ such that

$$|e^{\langle \rho, \alpha \rangle} T(x, \rho)| \le \epsilon (\sum_{j=1}^{n} (1 - e^{\rho_j})^2 + (1 - e^{\langle \rho, x + \alpha + \beta \rangle})^2), \ \rho \in \Omega \setminus K.$$

Theorem 1 yields a positive Radon measure μ on Ω such that

$$-\sum_{x \in \mathbb{R}^n_+} a_x \varphi(x) \ge \int_{\Omega} \sum_{x \in \mathbb{R}^n_+} a_x e^{\langle \rho, x \rangle} d\mu(\rho), \tag{8}$$

where

$$(a_x)_{x \in \mathbb{R}^n_+} \in \mathcal{F}$$
, with $\sum_{x \in \mathbb{R}^n_+} a_x e^{\langle \rho, x \rangle} \ge 0$, for $\rho \in \Omega$.

We also have $L(\rho \mapsto e^{\langle \rho, \alpha \rangle} T(x, \rho)) = \int_{\Omega} (e^{\langle \rho, \alpha \rangle} T(x, \rho)) d\mu(y), \ x, \alpha \in \mathbb{R}^n_+, \ \alpha_j > 0.$

Letting α tend to $(0, \ldots, 0)$, we obtain

$$L(T(x,\rho)) = \int_{\Omega} T(x,\rho) d\mu(\rho), \ x \in \mathbb{R}^{n}_{+}$$

which can be written

$$\varphi(x) = \varphi(0, \dots, 0) + \sum_{j=1}^{n} x_j a_j - q(x) + \int_{\Omega} (1 - e^{\langle \rho, x \rangle} - \sum_{j=1}^{n} x_j (1 - e^{\rho_j})) d\mu(\rho)$$

where $q(x) = \frac{1}{2}(L(\rho \mapsto (\sum_{j=1}^n x_j(1-e^{\rho_j}))^2) - \int_{\Omega}(\sum_{j=1}^n x_j(1-e^{\rho_j}))^2 d\mu(\rho))$, and $a_j = -\varphi(0) + \varphi(e_j) + \frac{1}{2}(L(\rho \mapsto (1-e^{\rho_j})^2) - \int_{\Omega}(1-e^{\rho_j})^2 d\mu(\rho))$. The function $g: \Omega \to \mathbb{R}$ defined by $g(\rho) = (\sum_{j=1}^n x_j(1-e^{\rho_j}))^2$ is in U and consequently the inequality (8) implies $q(x) \geq 0$, $x \in \mathbb{R}^n_+$. This completes the proof of implication (i) \Rightarrow (ii). The implication (ii) \Rightarrow (i) is immediate.

The unicity of μ results from the relation

$$L(\rho \mapsto e^{\langle \rho, x \rangle} (1 - e^{\langle \rho, y \rangle})^4) = \int_{\Omega} e^{\langle \rho, x \rangle} (1 - e^{\langle \rho, y \rangle})^4 d\mu(\rho), \ x, y \in \mathbb{R}^n_+.$$

If $q(x) = \sum_{j,k=1}^{n} p_{jk} x_j x_k$, we have

$$p_{jk} = \frac{1}{2}(-\varphi(0) + \varphi(e_j) + \varphi(e_k) - \varphi(e_j + e_k) - \int_{\Omega} (1 - e^{\rho_j})(1 - e^{\rho_k})d\mu(\rho)).$$

This proves the unicity of q and finishes the proof because $C = \varphi(0)$ and the unicity of a is also a consequence of the unicity of μ .

5 Integral representations for continuous negative definite function on the groupe \mathbb{R}^n

Theorem 5 For a function $\varphi : \mathbb{R}^n \to \mathbb{C}$ the following conditions are equivalent:

- (i) φ is continuous and negative definite on \mathbb{R}^n ;
- (ii) there is a real number C, a positive quadratic form $q: \mathbb{R}^n \to \mathbb{R}$, such that $q(x) = \sum_{j,k=1}^n a_{jk} x_j x_k$ with $a_{jk} \in \mathbb{R}$ and $a_{jk} = a_{kj}$, and a positive Radon measure μ on $\mathbb{R}^n \setminus (0, \dots, 0) = \Omega$, such that the function $g: \Omega \to \mathbb{R}$ defined by $g(\rho) = \frac{\||\rho\|^2}{1+\||\rho\|^2}$ is μ integrable, which satisfy

Re
$$\varphi(x) = C + q(x) + \int_{\Omega} (1 - \cos\langle \rho, x \rangle) d\mu(\rho)$$

and

$$-\operatorname{Im} \varphi(x+y) + \operatorname{Im} \varphi(x) + \operatorname{Im} \varphi(y) =$$

$$\int_{\Omega} (\sin\langle \rho, x+y\rangle - \sin\langle \rho, x\rangle - \sin\langle \rho, y\rangle) d\mu(\rho)$$

C, q and μ are uniquely determined by φ and we have

$$a_{jj} = -\varphi(0) + \frac{1}{2}(\varphi(e_j) + \varphi(-e_j)) - \int_{\Omega} (1 - \cos \rho_j) d\mu(\rho)$$

and

$$a_{jk} = \frac{1}{8} (\varphi(e_j + e_k) + \varphi(-e_j - e_k) - \varphi(e_j - e_k) - \varphi(e_k - e_j))$$
$$-\frac{1}{2} \int_{\Omega} \sin \rho_j \sin \rho_k d\mu(\rho), \quad \text{for } j \neq k.$$

Proof. Using Bochner's theorem in \mathbb{R}^n , we define the measures $(\mu_t)_{t\in]0,\infty[}$ as in Section 3. In this section \mathcal{F} will be the set of all families $(a_x)_{x\in\mathbb{R}^n}$ of complex

numbers such that $a_x \neq 0$ only for a finite number of x, which satisfy the relation $\sum_{x \in \mathbb{R}^n} a_x = 0$. If we denote by V the set

$$\{f: \Omega \to \mathbb{R} | f = F|_{\Omega}, F: \mathbb{R}^n \to \mathbb{R}, F \text{ continuous},$$

$$F(0, \dots, 0) = 0, \lim_{t \to 0} \frac{1}{t} \int_{\mathbb{R}^n} F(\rho) d\mu_t(\rho) \text{ exists in } \mathbb{R}\},$$

we obtain, as in Section 3, that the set:

$$U = \{ f : \Omega \to \mathbb{R} | f(\rho) = \sum_{x \in \mathbb{R}} a_x e^{i\langle \rho, x \rangle}, (a_x)_{x \in \mathbb{R}^n} \in \mathcal{F} \}$$

is included in V. Using the classical Lévy's theorem, we also obtain that $\mathcal{C}(\Omega) \subset V$. We will show that for each $\beta > 0$ the function $h_{\beta} : \Omega \to [0, \infty[$ defined by $h_{\beta}(\rho) = \frac{1}{\beta^n} \int_{[0,\beta]^n} (1 - \cos\langle \rho, x \rangle) dx$. (dx Lebsegue measure in \mathbb{R}^n) is in V.

First it is clear that

$$\lim_{\rho \in \Omega, \rho \to (0, \dots, 0)} h_{\beta}(\rho) = 0.$$

If we take $h_{\beta}(0,\ldots,0)=0$, we have

$$\frac{1}{t} \int_{\mathbb{R}^n} h_{\beta}(\rho) d\mu_t(\rho) = \frac{1}{\beta^n t} \int_{\mathbb{R}^n} \left(\int_{[0,\beta]^n} (1 - \cos\langle \rho, x \rangle) dx \right) d\mu_t(\rho)
= \frac{1}{\beta^n t} \int_{[0,\beta]^n} \left(\int_{\mathbb{R}^n} (1 - \cos\langle \rho, x \rangle) d\mu_t(\rho) \right) dx
= \frac{1}{\beta^n t} \int_{[0,\beta]^n} \left(e^{-t\varphi(0)} - \frac{1}{2} e^{-t\varphi(x)} - \frac{1}{2} e^{-t\varphi(-x)} \right) dx$$

Consequently,

$$\lim_{t \to 0} \frac{1}{t} \int_{\mathbb{R}^n} h_{\beta}(\rho) d\mu_t(\rho) = \frac{1}{\beta^n} \int_{[0,\beta]^n} (\operatorname{Re} \varphi(x) - \varphi(0)) dx$$

and therefore $h_{\beta} \in V$.

We define L as in Section 3. It results, from the continuity of φ in 0, that for $\varepsilon > 0$ there is a $\beta_{\varepsilon} > 0$ such that $L(h_{\beta_{\varepsilon}}) \leq \varepsilon$. An elementary calculus shows that there is a real number M > 0, such that $h_{\beta_{\varepsilon}}(\rho) \geq \frac{1}{2}$ for $\|\rho\| \geq M$.

Choose x and y in \mathbb{R}^n . If we take $\gamma > 0$ such that $\|\rho\| \leq \gamma$ implies $1 - \cos(\rho, y) \leq \varepsilon$ we have

$$(1 - \cos\langle \rho, x \rangle)(1 - \cos\langle \rho, y \rangle) \le \varepsilon(1 - \cos\langle \rho, x \rangle) + 4h_{\beta_{\varepsilon}}(\rho)$$

for $\|\rho\| \le \gamma$ or $\|\rho\| \ge M$.

If we take $\delta > 0$ such that $\|\rho\| \le \delta$ implies $|\sin(\rho, y)| \le \varepsilon$ we have

$$|(1 - \cos\langle \rho, x \rangle) \sin\langle \rho, y \rangle| \le \varepsilon (1 - \cos\langle \rho, x \rangle) + 2h_{\beta_{\varepsilon}}(\rho)$$

for $\|\rho\| \le \delta$ or $\|\rho\| \ge M$.

Using the preceding inequalities and Theorem 1 we can obtain as in the proof of Theorem 2, the measure μ on Ω and the integral representations of Theorem 5.

We denote by $T: \mathbb{R}^n \times \Omega \to \mathbb{R}$ the function defined by

$$T(x,\rho) = 1 - \cos\langle \rho, x \rangle - \sum_{j=1}^{n} x_j^2 (1 - \cos \rho_j) - \sum_{\substack{j,k=1\\j \neq k}}^{n} x_j x_k \sin \rho_j \sin \rho_k,$$

and by $Q: \mathbb{R}^n \times \Omega$ the function defined by

$$Q(x,\rho) = \sum_{j=1}^{n} x_j^2 (1 - \cos \rho_j) + \sum_{\substack{j,k=1\\j \neq k}}^{n} x_j x_k \sin \rho_j \sin \rho_k.$$

The Taylor's formula implies that

$$\lim_{\rho \in \Omega, \rho \to (0, \dots, 0)} \frac{T(x, \rho)}{\sum_{j=1}^{n} (1 - \cos \rho_j)} = 0, \quad x \in \mathbb{R}^n.$$

The function $\rho \mapsto T(x, \rho)$ is bounded and therefore using the preceding limit and a h_{β} function we obtain, as before, that

$$L(\rho \mapsto T(x,\rho)) = \int_{\Omega} T(x,\rho) d\mu(\rho)$$

The function $\rho \mapsto \sin \rho_j \sin \rho_k$ is μ integrable, because the functions $1 - \cos 2\rho_j$ and $1 - \cos 2\rho_k$ are μ integrable, and consequently the function $\rho \mapsto Q(x, \rho)$ is μ integrable for every $x \in \mathbb{R}^n$. We have

$$q(x) = -\varphi(0) + \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(-x) - \int_{\Omega} (1 - \cos\langle \rho, x \rangle) d\mu(\rho)$$

$$= L(\rho \mapsto T(x, \rho)) - \int_{\Omega} T(x, \rho) d\mu(\rho) + L(\rho \mapsto Q(x, \rho)) - \int_{\Omega} Q(x, \rho) d\mu(\rho)$$

$$= \sum_{j,k=1}^{n} a_{jk} x_{j} x_{k}$$

where $a_{jj} = L(\rho \mapsto (1 - \cos \rho_j)) - \int_{\Omega} (1 - \cos \rho_j) d\mu(\rho)$ and

$$a_{jk} = a_{kj} = \frac{1}{2} (L(\rho \mapsto \sin \rho_j \sin \rho_k) - \int_{\Omega} \sin \rho_j \sin \rho_k d\mu(\rho)) \text{ for } j \neq k.$$

Next we prove that the function $\rho \mapsto \frac{\|\rho\|^2}{1+\|\rho\|^2}$ is μ integrable.

We have

$$\int_{[0,1]^n} (-\varphi(0) + \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(-x))dx$$

$$\geq \int_{[0,1]^n} \left(\int_{\Omega} (1 - \cos\langle \rho, x \rangle d\mu(\rho)) dx \right)$$

$$= \int_{\Omega} \left(\int_{[0,1]^n} (1 - \cos\langle \rho, x \rangle) dx \right) d\mu(\rho)$$

$$= \int_{\Omega} h_1(\rho) d\mu(\rho).$$

Choosing a real number M, such that $h_1(\rho) \geq \frac{1}{2}$ for $\|\rho\| \geq M$, the preceding inequality gives

$$\mu(\{\rho \in \Omega | \|\rho\| \ge M\}) \le 2 \int_{[0,1]^n} (-\varphi(0) + \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(-x)) dx.$$

The limits $\lim_{\rho_j\to 0} \frac{1-\cos\rho_j}{\rho_j^2} = 1$, $j=1,\ldots,n$ prove that the function $\rho\mapsto \|\rho\|^2$ is μ integrable on a set of the form $O\setminus (0,\ldots,0)$, where O is a neighbourhood of the origin.

We also have proved that the function $\rho \mapsto \frac{\|\rho\|^2}{1+\|\rho\|^2}$ is μ integrable. If we notice that the unicity of C, q and μ and the implication (ii) \Rightarrow (i) can be proved as in Section 3 we finish the proof.

Remark 5 The inclusion $C(\Omega) \subset V$ results also from [3], p. 172, Proposition 18.2.

References

- Berg, C. (1984). Fonctions définies negatives et majoration de Schur. In Colloque de Théorie de Potential Jaques Deny. Lecture Notes in Mathematics 1096, Springer-Verlag, Berlin-Heidelberg-New York, 69-89.
- 2. Berg, C., Christensen, J. P. R., and Ressel, P. (1984). *Harmonic analysis on semigroups*. Springer-Verlag, Berlin-Heidelberg-New York.
- 3. Berg, C., and Forst, G. (1975). Potential Theory on Locally Compact

 Abelian Groups. Springer-Verlag, Berlin-Heidelberg-New York.
- 4. Buchawalter, H. (1986). Les functions de Lévy existent!. Math. Ann. 274, 31-34.
- 5. Choquet, G. (1962). Le problème des moments, In Séminaire d'initiation a l'analyse 1^{ère} année. Inst. Henri Poincaré, Paris.
- Courrège, P. (1964). Générateur infinitesimal d'un semi-groupe de convolution sur Rⁿ et formule de Lévy-Khinchine. Bull. Sci. Math. 88 (2), 3-30.
- 7. Forst, G. (1976). The Lévy-Hinčin Representation of Negative Definite Functions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 313-318.
- 8. Parthasarathy, K. R., Ranga Rao, R., and Varadhan, S. R. S. (1963). *Probability distributions on locally compact abelian groups*. Illinois J. Math. 7, 337-369.

6 Negative definite functions on \mathbb{N}^*

For a function $\varphi: \mathbb{N}^* \to \mathbb{R}$ the following conditions are equivalent

- 1. φ is negative definite on \mathbb{N}^*
- 2. there is a positive Radon measure μ on $\mathbb{R} \setminus \{0, 1\}$, such that every polynom divisible by $x^2(1-x)^2$ is μ integrable, and real number a, b, c such that $c \leq 0$, which satisfy

$$\varphi(2) \ge t(2)$$
 and $\varphi(n) = E(n)$, for $n \ge 3$,

where
$$E(n) = a + bn + cn^2 + \int_{\mathbb{R}\setminus\{0,1\}} (x^4 - x^n + (n-4)x^4(x-1)) dx$$
.

Proof. It is clear that (ii) \Rightarrow (i). We will prove (i) \Rightarrow (ii).

The set

$$V = \{P : \mathbb{R} \setminus \{0,1\} \to \mathbb{R} | P \text{ polynomial function},$$

$$P(0) = P'(0) = P(1) = P'(1) = 0$$

is an adapted space.

The function $L: V \to \mathbb{R}$ defined by

$$L_{\varphi}(a_2x^2 + \ldots + a_nx^n) = -a_2\varphi(2) - \ldots - a_n\varphi(n)$$

is positive on V_+ because every element of V_+ can be expressed as a sum of the form $P_1^2 + P_2^2$ where P_1 and P_2 are polynomial functions (cf. [3]).

Let P be polynomial function of degree m. We notice that for every ε there is a compact $K \subset \mathbb{R} \setminus \{0,1\}$ such that if $\varphi : \mathbb{R} \setminus \{0,1\} \to \mathbb{R}$ is a continuous function with compact support which is 1 on K the following inequality holds

$$|x^3(1-x)^3P(x)(1-\varphi(x))| \le \varepsilon(x^2(1-x)^2+x^{2m+2})$$

for $x \in \mathbb{R} \setminus \{0, 1\} \setminus K$.

Theorem 1 and Proposition 1 yield a positive Radon measure on $\mathbb{R} \setminus \{0,1\}$ such that

$$L(x \mapsto x^2(1-x)^2 Q(x)) \ge \int_{\mathbb{R} \setminus \{0,1\}} x^2(1-x)^2 Q(x) d(x), \tag{9}$$

for every positive polynomial function Q, and

$$L(x \mapsto x^{3}(1-x)^{3}P(x)) = \int_{\mathbb{R}\backslash\{0,1\}} x^{3}(1-x)^{3}P(x)d\mu(x), \tag{10}$$

for every polynomial function P.

The relation (10) gives for $n \geq 3$

$$-\varphi(4) + \varphi(n) - (n-4)(\varphi(5) - \varphi(4)) - \frac{(n-4)(n-5)}{2}(\varphi(6) - 2\varphi(5) + \varphi(4)) = \int_{\mathbb{R}\setminus\{0,1\}} (x^4 - x^n + (n-4)(x-1)x^4 + \frac{(n-4)(n-5)}{2}(x-1)^2 x^4) d\mu(x)$$

Consequently, we have for $n \geq 3$

$$\varphi(n) = a + bn + cn^{2} + \int_{\mathbb{R}\setminus\{0.1\}} (x - 1)^{2} x^{4} d\mu(x).$$

Using (9) we obtain $c \leq 0$.

For n=2 the polynom

$$x^{4} - x^{n} + (n-4)(x-1)x^{4} + \frac{(n-4)(n-5)}{2}(x-1)^{2}x^{4}$$

becomes

$$x^2(1-x)^2(-1-2x+3x^2)$$

The relation (10) implies that

$$\int_{\mathbb{R}\setminus\{0,1\}} (x^2 - x)^3 = -\varphi(6) + 3\varphi(5) - 3\varphi(4) + \varphi(3)$$
(11)

Using (11) and the identity

$$x^{2}(1-x)^{2}(-1-2x+3x^{2}) + 4x^{3}(1-x)^{3} = -x^{2}(1-x)^{4},$$

we obtain as a consequence of (9) the following relation

$$\varphi(2) - E(2) = -L(x \mapsto x^2(1-x)^4) + \int_{\mathbb{R}} (x^2(1-x)^4) d\mu(x) \le 0$$

which completes the proof.