A SHADOWING RESULT WITH APPLICATIONS TO FINITE
ELEMENT APPROXIMATION OF REACTION-DIFFUSION
EQUATIONS

STIG LARSSON AND J.-M. SANZ-SERNA

ABSTRACT. A shadowing result is formulated in such a way that it applies
in the context of numerical approximations of semilinear parabolic problems.
The qualitative behavior of temporally and spatially discrete finite element
solutions of a reaction-diffusion system near a hyperbolic equilibrium is then
studied. It is shown that any continuous trajectory is approximated by an
appropriate discrete trajectory, and vice versa, as long as they remain in a suf-
ficiently small neighborhood of the equilibrium. Error bounds of optimal order
in the Ly and H! norms hold uniformly over arbitrarily long time intervals.

1. INTRODUCTION

The purpose of this article is to compare the dynamical system arising from a
semilinear parabolic evolution problem with the dynamical systems that arise from
its temporal and spatial discretizations. The long-time behavior of a dynamical
system is governed by its invariant sets such as fixed points, periodic orbits, attrac-
tors, etc. It is therefore important to investigate whether the discretized dynamical
systems have the same kinds of invariant sets and whether their orbits have the
same qualitative behavior near these sets. Our aim here is to do so for the special
case of a hyperbolic fixed point.

The inspiration for this work came from an article of Beyn, [3], on multi-step
approximations of systems of nonlinear ordinary differential equations, v’ = f(u).
Beyn showed that if the continuous problem has a hyperbolic fixed point %, then
there is a neighborhood O of % such that the following conclusion holds: for each
initial value ug € O there is Uy € O such that the approximate orbit U starting
from Uy is close to the exact orbit u starting from wg as long as the latter orbit
stays in O. The error u — U satisfies an estimate, which is uniform with respect
to ug € O and of optimal order of convergence. Note, in particular, that the error
bound is thus uniform over arbitrarily long time intervals. The converse statement
is also true: for each Uy € O there is ug € O such that the corresponding orbits U
and u are optimally close as long as they remain in 0. We emphasize that Uy # ug
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in general, because the initial value problem is typically unstable near a hyperbolic
fixed point.

Beyn’s result was extended to infinite dimensional spaces by Alouges and Debuss-
che [1], who were thus able to cover pure time-discretization of semilinear parabolic
equations. Another extension to semilinear parabolic problems was made by the
present authors in [12], where we considered spatial semi-discretization by a stan-
dard finite element method. We proved a result analogous to that of Beyn including
optimal order error bounds in both the Ly and H'! norms.

Noting that the analysis in [12] is rather ad hoc, and that the more general
framework in [1] does not readily apply to spatial discretizations, we decided to
reconsider this problem. In §2 below we provide an abstract framework for the
long-time aspects of the analysis, which is based on carefully chosen assumptions
to be checked in each application by proving rather standard finite-time error and
perturbation estimates. More precisely, in §2.1 we prove a shadowing result for
discrete dynamical systems of the form up41 = S(up), where S is a nonlinear
operator in a Banach space X. We assume that S = L + N, where the bounded
linear operator L is hyperbolic, and the nonlinear remainder IV has a small Lipschitz
constant on a subset D C X. This is an adaptation of the classical shadowing lemma
of Anosov [2] and Bowen [4].

In §2.2 the mapping S is studied together with a family of approximations S, =
Ly + Ny, where Ly, is linear, and it is assumed that we have access to bounds for
Ly — L and S, — S, as well as estimates of the Lipschitz constant of N,. The main
result of §2.2 is a theorem analogous to that of Beyn concerning the behavior of
the orbits of S and S}, near a hyperbolic fixed point of S.

If S(t,-) is a continuous dynamical system (nonlinear semigroup) with orbits
u(t) = S(t,u0), t > 0, u(0) = ug, then, for fixed T, the mapping S = S(T,-) defines
a discrete dynamical system with orbits u, = u(nT), n =0,1,2,..., satisfying the
assumptions of §2.1 in a neighborhood D of a hyperbolic fixed point.

In §3 we apply the abstract framework in the context of a system of reaction-
diffusion equations discretized in the spatial variables by a standard finite element
method, and in the time variable by means of the backward Euler method. The
assumptions on Ly — L and Sy — S are verified by application of rather standard
error estimates over the finite time interval [0,7], which we quote from Larsson
[11].

Our framework is similar to that of [1] but more flexible. First of all it admits
applications with both time and space discretization. In the applications discussed
in §3 it also allows us to obtain error bounds of optimal order in both the L, and
H! norms. Moreover, it avoids the assumption that S, — S is small in C*(D, X)
that was used in [1], but which we found inconvenient. Note, in this connection,
that we do not assume that L is a derivative of S. This is important, because even
in a situation where L is formally a linearization of S, it may not be a Fréchet
derivative with respect to the norms that we use, see Remark 3 below.

If X,Y are Banach spaces, then £(X,Y) denotes the space of bounded linear
operators from X into Y, £(X) = L(X, X), and Bx(z, p) denotes the closed ball
in X with center x and radius p.
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2. A GENERAL FRAMEWORK

2.1. A basic shadowing result. We consider a mapping S : D C X — X, where
X is a Banach space and D a nonempty subset of X. It is assumed that S can be
decomposed in the form

(2.1) S=L+N

in a such a way that, for some constants g > 1 and k € (0,1), the following
hypotheses (HL) and (HN) are fulfilled.

Hypothesis (HL). L € £(X), i.e., L is a bounded linear operator in X. Further-
more, X can be decomposed as a direct sum X = X; & X5 of closed subspaces X7,
X that are invariant by L, i.e., LX; C X;, i1 =1,2. If L; € £L(X;), i = 1,2, denotes
the restriction of L to X;, then L; is invertible and

(2.2) 1L ey €6, 2llex) < b

Moreover, the projections P;, ¢ = 1,2, associated with the decomposition X =
X1 X, (ie., Pz =x;,1=1,2, for x = z1 + z2, x; € X;) satisfy

(2.3) 1P cex)y < e

Hypothesis (HN). The mapping N : D — X is Lipschitz continuous with a
Lipschitz constant that satisfies

(2.4) Lip(N) <

Note that the boundedness of the projections P;, P, is a consequence of the
closedness of subspaces X, X5; this is a well-known consequence of the closed
graph theorem, see [10, p. 167].

We now state the main result of this section.

Theorem 2.1. (i) Assume that for the mapping S in (2.1) the hypotheses (HL),
(HN) are satisfied and set

(2.5) o= Au .

Let i and f be integers, i < f, and let {.%n}i:l C D be a sequence. If {xn}fL:l cD
is an orbit of S, i.e., Tpt1 = S(zyn), n =14,...,f — 1, which satisfies the boundary
conditions

(2.6) Prx; = Pgii'i, Pl.’L'f = Pl.’ff,

then

(2.7) sup ||lzn —Zall <o sup  ||Fni1 — S(Za)I-
i<n< i<n<f-1

(ii) Assume, in addition to (HL), (HN), that the domain D of S contains a
closed ball Bx(z,p) and that

(2.8) Iz = S(2)Il < p/o.

Then, for any sequence {;T:n}szZ C Bx(z,p/(po)), there exists an orbit {mn}szi C
Bx(z,p) of S for which (2.6) and hence (2.7) hold.
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Remark 1. With the terminology used in shadowing theory (see, e.g., [6]) we say
that {:En}ﬁ:i is a d-pseudo-orbit of S if sup;<,<;_1 |En+1 — S(&n)|| < 4. If this
is the case, then the estimate (2.7) means that {5:”}5:1 is e-shadowed by the true
orbit {z,}/ _; with shadowing distance € < 06. Part (ii) ensures the existence of a

shadow orbit.

Remark 2. Analogous results hold also for infinite sequences {:ﬁn}sz_oo, {Zn}22,,

or {#,}°2 ___ with obvious modifications. For instance, for a sequence {Z,}/____.
the first condition in (2.6) is absent and the ranges in (2.7) become n < f and
n < f—1. The proof is essentially the same as that given below for finite sequences.
Note in this connection that the stability constant ¢ in (2.7) does not depend on

the initial and final indices ¢ and f.
The theorem is proved by using the following lemmas.

Lemma 2.2. Assume that L satisfies hypothesis (HL), and that i, f are integers
withi < f. Setv=f—i, X =X"1, Y = Xy x X¥ x X1, and define a linear
operator L : X =Y by L: (z4,...,2¢) = (Yi,-..,Yf41), where

(2.9) Yi = Poxi, yr41 = Pizy; Ypt1 = Tpgr — Lzy, n=i,...,f -1

Then L is invertible and, with respect to the supremum norm of the product spaces
X,Y,

2.1 Lt < }
(2.10) L ey < 7

Proof. Given an element y = (y;,...,ys+1) € Y, we define x = (z;,...,25) € X,
by the relations z,, = Pix, + P>x,, where

f
Pz, = (L)Y "y - Y (L) TPy,
j=n+1
. n .
Poxyp = (L2)" 'y + Z (L2)"™ Pay;.
j=i+1

It is a simple matter to check that (2.9) holds. This proves that L is onto. To
see that L is one-to-one, assume that y,, n =4,...,f + 1, in (2.9) vanish. Then,
by (2.9), Pox; = 0 and Pizy = 0. Recursion in (2.9) reveals that Pz, = 0 for
n=14+1,...,f. Similarly, a descending recursion in (2.9) shows that Pz, = 0 for

n=f—1,...,1, so that the kernel of L is trivial.
To derive (2.10), use (2.2)—(2.3) in the definition of z,, n =1,..., f,

/ n
loall < &/ "llyl+ 30w ullyll+ & iyl + D2 & ulyl
j=n+1 j=i+1
f n
<1+ Y W aRie S Ryl
j=n+1 j=i+1
n

o
, . 2p
Jj—n n—j =_r .
(X w4 3 & )ulyl = 7yl

1=n j:—OO

IA
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Lemma 2.3. Let X and Y be Banach spaces and let L : X — Y be a linear
bijection with bounded inverse L. Assume that the mapping N : D C X = Y,
defined in a nonempty subset D of X, is Lipschitz continuous with

a = ||IL7H|gev x) Lip(N) < 1.
Define S =L+ N and set 0 := ||[L™| sy, x)/(1 — @). Then
(2.11) [[x1 — x2||x < o||S(x1) — S(x2)||y, for all x1,%2 € D.
Proof. The bound (2.11) follows readily from the identity
x1 — %o = L7 (S(x1) — S(x2)) — L7 (N(x1) — N(x2)).
O

Lemma 2.4. In addition to the hypotheses of Lemma 2.3, assume that the domain
D of N contains a closed ball Bx(z,p). Then, for eachy € Y with

(2.12) ly —S(@)lly < p/o,
the equation S(x) =y has a unique solution x € Bx(z, p).

Proof. This is a simple consequence of the contraction mapping theorem. In fact,
if we define T(x) = L~!(y — N(x)), then Lip(T) = a < 1. Moreover, the identity

T(x)—z=L"(y—S(z)) — L ' (N(x) — N(z))

and (2.12) imply that T maps Bx(z, p) into itself. O

Proof of Theorem 2.1. Given ¢ and f, we construct the spaces X and Y and the
linear operator L as in Lemma 2.2. We further consider the mapping N : D =
DYt € X — Y defined by N(x) = y, where

(2.13) Yi=Yf41=0; Ypy1 =—-N(z,), n=4,...,f—1

The assumption (HN) implies that Lip(N) < (1 — «)/(4p) and (2.10) leads to
[IL=1]| Lip(N) < 1/2. We can therefore apply Lemma 2.3 with a = 1/2; this yields
a value of ¢ = ||[L7!|/(1 — a) that coincides with ¢ in (2.5). Note also that S is
defined by S(x) =y, where (see (2.1), (2.9), and (2.13))

Yi = Paxy, ypp1 = Pl Yngr = Tngr — S(Tn), n=4,...,f -1

The estimate (2.7) is then a straightforward consequence of (2.11).

To prove part (ii) of the theorem, we apply Lemma 2.4 in the ball B(z,p) =
B(z,p)**, where z = (z,...,2). Given {#,}, C B(z,p/(uo)), we put y =
(P2%;,0,...,0,Pizs). The condition (2.12) is satisfied. In fact, the first component
of y—S(z) is the vector P>%; — P2z, whose norm can be estimated by || P|| ||Z;—z|| <
p/o. Similarly, the last component of y — S(z) has norm < p/o. The remaining
components of y — S(z) equal 0 — (z — S(z)) and, in view of (2.8), are also bounded
in norm by p/o. Since (2.12) is satisfied, the equation S(x) = y has a solution
x = (%;,...,2f). The choice of y ensures that {wn}f;:z is the sequence required. O
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2.2. Shadowing and approximation. We now consider, along with the mapping
S in (2.1), a family of approximations {Sp}.

Let H be a set of positive numbers with inf H = 0. For each h € H, let X} be a
subspace of the Banach space X, in such a way that there exist bounded projections
Qn: X = X} and a number v > 1 with

(2.14) 1Qnllcxy < -
We assume that the spaces Xj approximate X in the sense that
(2.15) lim Qpu = wu, for allu € X.

h—0

For h € H, we consider mappings Sy, : D, C X — X}, with domains D, = DN X},
that approximate S in the sense that a continuous positive function e(h) exists such
that

(2.16) lim €(h) =0

and

(2.17) [|Sh(Qru) — S(u)|| < e(h), for all u € D such that Qpu € Dy,
Finally, we assume that S} can be decomposed as

(2.18) Sh =Ly + Ny,

and that (HL) and (HN) hold for this decomposition. More precisely, this means
that Ly, € £(X}); X, can be decomposed as a direct sum X = Xy, ® Xop, of closed
subspaces invariant by Ly; the restrictions L;p, i = 1,2, of Ly to X, satisfy
(2.19) L ecxo) <6, 1 L2nlleixan) < 5

the associated projections satisfy

(2.20) 1Pirllexy < py i=1,2

and Ny, : Dy — X}, with Lipschitz constant

1—k

Lip(Np) <

Note that, X;; is in general different from X; N Xj; the latter may well be the
trivial subspace {0}.

Theorem 2.5. (i) Assume that the subspaces Xy of the Banach space X possess
the approzimation properties (2.14)—(2.15), the mappings S in (2.1) and Sy in
(2.18) satisfy (HL) and (HN), and the Sy, approzimate S as in (2.17). Let i and f
be integers with i < f. Then the following results hold.
(i.a) Let {uh,"}szi C Dy, be an orbit of Sy. If {un}’_,

k3

is an orbit of S with

(2.21) PQUi = P2'U/h,i; P1Uf = Pluh,f,

then

(2.22) sup ||un — upnll < oe(h),
i<n<f

where o is the constant in (2.5).
(i.b) Let {un}fi:, C D be an orbit of S with

(223) Qru, € Dy, n=1,...,f.
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If {Uh,n},]i:i C Dy, is an orbit of Sy with

(2.24) Pyrup; = PonQrus,  Pipuny = PiaQruy,

then

(2.25) sup ||Qnun — un nl| < yoe(h).
i<n<f

(i) Assume that the hypotheses in (i) hold and that S has a fixed point @ such
that Bx (u,p) C D for some p > 0. Then the following conclusions hold.

(ii.a) For any orbit {Uh,n}f;:,- C Bx (@, po), po = p/(no) < p, of Sy there is an
orbit {un}i:z of S for which (2.21) and (2.22) are true.
(i3.b) Let h be small enough for the inequalities

(2.26) |z — @nall < p/2, 2yoe(h) <p
to hold (cf. (2.15)-(2.16)). Then, for any orbit {un}szi C Bx(@,po), po =

p/(2vuo), of S, the relation (2.23) is satisfied and there is an orbit {“h,n}izi
of Sy for which (2.24) and (2.25) hold.

(#.c) For h chosen as in (ii.b), the mapping Sy, has a fized point that is unique
in the ball Bx, (Qna, p/2). Furthermore,

(2.27) |Qra — upl| < yoe(h).

Proof. To prove (i.a) we apply part (i) of Theorem 2.1 with &, = up,, € Dy, C D,
and z,, = u,. Then (2.7) yields
sup [|up — unpll <o sup|[upnir = S(un,n)ll-
i<n<f i<n<f-1

Since up,nt1 — S (Uh,n) = Sh(Qrunn) — S(up,n), the bound (2.22) is a consequence
of (2.17).

For part (i.b) we again resort to part (i) of Theorem 2.1, but this time with Sj,
playing the role of S, and &, = Qrun € Dp, 2, = Up,n, € Dp. The estimate (2.7)
reads

sup |[upn — Qrunl| <o sup  [|Qrunt1 — Sh(Qrun)ll,
i<n<f i<n<f-1

and (2.25) is a consequence of (2.14), (2.17), in view of the identity

Qnunt+1 — Sh(Qrun) = Qr[S(un) — Sn(Qnrun)]-
Part (ii.a) is a direct consequence of part (ii) of Theorem 2.1 with z = @.
For (ii.b) we use part (ii) of Theorem (2.1) with S;, playing the role of S and
z = Qnpu. If v € Bx, (Qna, p/2), then the assumption (2.26) implies

llv—all < |lv - Qnall + [|Qnz — all < p;

this shows that Bx, (Qr4, p/2) is contained in Bx (4, p), which in turn is assumed
to be contained in D. Hence Bx, (Qnt,p/2) C Dy. Furthermore, by (2.14), (2.17)
and (2.26),

2
(2.28) 1Qn — Sh(Qnu)l| = [|Qr[S(@) — Sh(Qru)]l| < ve(h) < i,

o
so that (2.8) holds with the role of Bx(z, p) played by Bx, (Qna, p/2). If {un}fl:i C

Bx(ﬂ,po), thena by (2'14)7 {Qhu"}izz - BXh (Qhﬂ7p/(2,u0)) - BXh(Qhﬁap/Q)
and (2.23) holds. The existence of an orbit {uh,n}szi of Sy, satisfying (2.24) now
follows from Theorem 2.1.
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For (ii.c) we apply Lemma 2.4 with X =Y = X3, L = Ly — I, N = Ny,
y = 0 and the role of Bx(z,p) played by Bx, (Qr@, p/2), which we know to be
contained in Dj. By Lemma 2.8, ||[(L, — I)7!|| < 2u/(1 — &) leading in Lemma
2.3 to a = 1/2 and a value of o that agrees with the value in (2.5). The condition
(2.12) is fulfilled in view of (2.28), because y — S(z) = —Sp(Qr@) + Qna-. It only
remains to prove the bound (2.27). We apply again Lemma 2.4, but this time in
the smaller ball Bx, (Qnr4,ocve(h)) C Bx, (Qnt, p/2); the condition (2.12) is still
fulfilled in view (2.28), so that the unique fixed point @y of Sy, in Bx, (Q)r@, p/2)
also lies in Bx, (Qn@, ove(h)). O

Our next theorem gives a condition under which the “hyperbolicity” (HL) of the
operator L carries over to Ly,.

Theorem 2.6. Assume that the operator L € L(X), X a Banach space, satisfies
hypothesis (HL) and choose & € (k,1), i > u. Assume that the subspaces Xp,
with corresponding projections Q are such that (2.14) holds and that the operators
Ly € L(X}) approzimate L in the sense that

(2.29) [IL = La@Qnllc(x) < €(h)

with €(h) as in (2.16). Then there exists ho > 0 (depending only on vy, k, u, K, i,
and the function €) such that, uniformly for h < hg, the operators Ly, satisfy (HL)
with constants K, [i.

For the proof of the theorem we need two simple lemmas.

Lemma 2.7. Let A,B € £(X), X a Banach space, with A~ € L(X) and ||B|| <
L|A-Y|". Then (A+ B) ™' € £(X) and

=
[(A+B)7" = A7 lex) < 20A7HIZx)|Bllex)-

Proof. We have [[(A+ B) lzx) = [A X0 L0(=A ' B)"|lx) < 214 )
and (A+B)"'—A"'=—(A+B)"'BA™. O

Lemma 2.8. Assume that the operator L € L(X), X a Banach space, satisfies
hypothesis (HL) and let w be a complex number with |w| = 1. Then (wI — L)~ ! €
L(X) with

2p
I-n)t <
Nl = 1) M) < o
Proof. Let |w| = 1. Assumption (2.2) implies that
o o
WI—L)™ ==L Y (L"), (Wl—Ly) ' =w™' > (w'Ly)",
n=0 n=0
and hence
- K _ 1
l(wI = L1) "l £, < T lwI=L) o) < e
Using also (2.3) and (wI — L)™' = (wI — L;)7' P, + (wI — L3)~ 1 P», we obtain
_ 1+& 2u
1
Il =L) ey S T S T
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Proof of Theorem 2.6. Define Ly = LyQp € £(X) and let |w| = 1. We begin by
showing that (wl — L)~ ! € L(X). In order to do so we shall apply Lemma 2.7
with A = wI— L and B = L — Lj,. From Lemma 2.8 we know that ||(wI — L)~} <
2u/(1 — k). Hence, for h sufficiently small, we have
- K 1

< .
dp = 2wl = L)~

Now Lemma 2.7 applies and gives (wI — Ly)~' € £(X) and

~ 1
IL = Lullz(x) < e(h) <

- _ 2” 2 ~
(2.30) [[(wI = L)™' = (I = L) Hlgx) < 2(m) IL = Lnllzx)y < Ke(h),

where K = 2(2u/(1 — K))2.

We next show that (wI — L;)~! € £(X}) and that
(2.31) (wI - Lh)ilQh = (wI — fzh)ilQh.
In fact, if f € X, then v = (wl — ih)_lth € X satisfies

Qnf =Wl — Lp)(Qru+ (I — Qn)u) = (wl — Lp)Qnru + w(I — Qn)u.
We conclude that (I — Qp)u = 0, and (wI — Lp)Qru = Qnf, so that u = Qpu =
(wI — L) 1Qpf, which implies (2.31).

We have now proved that, for each sufficiently small h, Lj has no spectrum on
the unit circle. By a standard theorem, see, e.g., [10, Theorem III-6.17, p. 178],
this implies the existence of a splitting X = X5, @ Xo, as required in assumption
(HL). It only remains to prove that the corresponding inequalities (2.19) and (2.20)
with constants &, fi hold uniformly with respect to h.

In order to obtain a bound for || Pap||z(x,) we first estimate ||(Py — Pon)Qnllz(x)-
Using the representations

1 1

P2 = — (wI— L)_l dw, P2h = — /((AJI— Lh)_l dw,
270 Jp 2mi Jr

where I' denotes the unit circle with positive orientation, together with (2.31),

(2.30), and (2.14) we obtain

1P = P @ulleco = 5 | / (@I =1)7 — (@I = L)) de Qu| < 7Ke(h).
This implies that, for z € X,
|Perz| < [|Poz|| + (P2 — Pan)wl| < (1 +vKe(h))||=,
so that
|1 Penllzx,y < p+vKe(h) < fi,
provided that h is sufficiently small. Since (P; — Pip)Qp = (Pop, — P2)Qp, we also

have [|Pin|lz(x,) < &
We now turn to the bound for || Lol £(x,,)- Since

1 1
LoPy = 2—7” w(w[— L)_l dw, LopPop = 2_m / w(wl_ Lh)—l dw,
r r

we have
1 _ ~
I(LaPs = LonPon) Qullecx) = 5| /F w((WI = L)™ = @I = Ln)™") dw Qu
< yKe(h).

£(X)
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Hence, for x € Xy,
IL2ne|| = (|L2nPonz|| < |[(L2nPon — LaPo)Qnal| + || L2 Pox|]
<yKe(h)llzll + || Pyzl|-
Here, since Qrr = Popx = =,
1P2zll < [|(P2 = Pon)Qnll + | Ponz]] < vKe(h)|lz]| + |z,

so that
ILonz|| < (k + 2vKe(h)) ||z,

and we conclude that, for small h,
| Lonll£(x00) < &+ 27K e(h) < .

The required bound for ||L1_h1 ”L(th) is obtained in the same way, using the
representations
_ 1 _ B 1 1 ~ ~
LA = 5 [l =D o, TgtPi= =5 [ o7l = L) o
O

3. APPLICATION TO A SYSTEM OF REACTION-DIFFUSION EQUATIONS

The purpose of this section is to illustrate how the theory of the previous section
can be applied in the context of a standard finite element approximation of a system
of reaction-diffusion equations.

3.1. The continuous problem. We consider the model problem

ug — DAu= f(u), z€Q, t>0,
(3.1) u =0, z €N, t>0,
U(,O) = Uo, z €},

where  is a bounded domain in R?, d = 1,2, 3, u = u(x,t) € R®, uy = u/0t, Au =
>, 0%u/0x?, D = diag(dy,... ,ds) is a diagonal matrix of constant coefficients
d; >0, and f : R® — R? is continuously differentiable. We assume that (2 is either
a convex polygon or has a smooth boundary. If d = 2,3 we assume, in addition,
that the Jacobian of f satisfies the growth condition

If'€) <C+¢°), E£eR?,

where | - | denotes the Euclidean norm on R? and the induced matrix norm, and
where § =2ifd =3, € [0,00) if d = 2.

In the sequel we use the Hilbert space H = (L2(2))®, with its standard norm
|| - || and inner product (-,-). The norms in the Sobolev spaces (H™(Q))*, m > 0
are denoted by || - ||m- The space V = (Hg())*, with norm || - ||;, consists of
the functions in (H'(2))® that vanish on 8Q). We define the operator A = —DA
with domain D(A4) = (H%(Q) N HE(N))*. Then A is a closed, densely defined
and selfadjoint operator in H with compact inverse. Moreover, our assumptions
guarantee that the mapping f induces an operator f : V — H through f(v)(z) =
f(v(z)), see Lemma 3.1 below. The initial-boundary value problem (3.1) may then
be formulated as an initial value problem in V:

(3.2) o' + Au= f(u), t>0; u(0) = ug.
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We assume further that (3.2) has a stationary solution @ with @ € D(A), Au = f(u);
by standard embedding results @ is continuous in the closure of Q. The formula
(Bv)(z) = f'(a(z))v(z) clearly defines an operator B € £(H). The operator A =
A — B is the linearization of A — f at @ and, being a bounded perturbation of A4,
it is a sectorial operator in H (see [9, Theorem 1.3.2]). Hence —A is the generator
of an analytic semigroup e *A. We assume that @ is “hyperbolic”, i.e., that the
spectrum of A does not intersect the imaginary axis. Let P; and P, the projections
respectively associated with the sets 01 = o(A) N {Rez < 0} and o3 = o(A) N
{Rez > 0} that partition the spectrum o(A) of A and let H; and H> be the ranges
of P, and P,. It follows that H is a direct sum H = H; & Has; the subspaces H;
are invariant under A and, if A;, ¢ = 1,2, denotes the restriction of A to H;, then
Ay € L(Hy), D(As2) = D(A) N Hy. Furthermore, there are M > 1 and a > 0, such
that,

lle™ 0l < Me®*|Ju]], t<0, veH, m=12,
(3.3) lle 42| < Mt—™/2e ![v]|, t>0, veE Hy, m=1,2,
||e*tA2v||1 < Me % ||v]|1, t>0,ve HyNV.

We refer to [9, §1.5] for these facts.

Since Hy C D(A), we see that we also have a direct sum V = V; @ V4, where
Vi = Hy and V2 = H, NV, with associated projections P;|y and P|y. By the
closed graph theorem, we may select a constant x> 1 such that
(3.4) WPillzcry < s WPilleevy < g, i=1,2.

By combination of these with (3.3) we have

lle=t ||y < Ct=2e||v]|, t>0, ve H,

(35) e[l < Ce®t||v]|1, t>0,veV.
With F(v) = f(v) — Bv, we may rewrite (3.2) as

(3.6) u' + Au = F(u), t>0; u(0) = ug,

and clearly we also have

(3.7 Au = F(a).

As shown by the following lemma, whose proof is similar to that of Lemma 2.2 in
[12], the nonlinear operator F : V — H is Lipschitz continuous with a Lipschitz
constant that may be rendered arbitrarily small by restricting the attention to a
sufficiently small neighborhood of .

Lemma 3.1. Ifv,w € By (4, p), then
(3.8) IF(v) = F(w)|| < k(p)llv —wllx,
where k(p) = O(p) as p — 0.

The initial value problem (3.6) (or (3.2)) has a unique local solution for any initial
datum ug € V, see [9, Theorem 3.3.3]. We denote by S(t,-) the corresponding
(local) solution operator, so that u(t) = S(t,ug) is the solution of (3.6). The
following lemma shows that the local solutions can be extended in time, if they
start sufficiently near a.

Lemma 3.2. For each p1 > 0 and T > 0 there is p > 0 such that, if ug € By (u, p),
then S(t,uo) is defined and belongs to By (a,p1) fort € [0,T].
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Proof. Let p1,T > 0 be given. For p > 0let 7 € [0,T] be the largest time such that
up € By (u,p) implies that u(t) = S(t,ug) exists and belongs to By (4, p; + 1) for
t € [0,7]. We must choose p such that 7 =T.

Let z(t) = u(t) — a. Forming the difference between (3.6) and (3.7) and using
the variation of constants formula, we obtain

¢
2(t) = e t42(0) + / e_(t_s)A(F(u(s)) — F(u)) ds.
0

Invoking (3.5) and (3.8), we therefore have, for ¢ € [0, 7],

t
lz@)ls < Ce*[|2(0)[lL + C/O (t — )72 || F (u(s)) — F(a)|| ds

< CceoT (p +k(p1 +1) /Ot(t —8)"Y2||2(s)|Ix ds).
Gronwall’s lemma (see [13, Lemma 5.6.7] or [9, Exercise 4 of §6.1]) now yields
2@l < Clp1,T)p, t€0,7],
so that if we choose p = p1/C(p1,T), then
2@l < p1,  t€0,7].

If 7 < T, then by local existence we obtain a contradiction with the maximality of
7. Hence, S(t,uo) is defined and belongs to By (g, p1) for t € [0,T]. O

The following lemma provides a bound for the H? norm of the solution found in
Lemma 3.2.

Lemma 3.3. Let py > 0, T > 0 and assume that u(t) = S(t,ug) exists and belongs
to By (@, p1) for t € [0,T]. Then there exists C(p1,T) such that

lu@®)|l2 < C(p1, T) ™12, t € (0,T].

Proof. In view of (3.8) we have ||F'(u(¢))|| < C(p1) for t € [0,T]. The proof is now
obtained by tracing the constants in [9, Theorem 3.5.2]. O

In order to set the present problem in the framework of §2, we choose T such
that
(3.9) k:=Me T < 1,
where M and « are the constants in (3.3). We then define S = S(T,-), L=e T4,
N =S — L. Tt is clear from the above that assumption (HL) is satisfied, both with

X = H and X = V. In order to choose the domain D so that (HN) holds we need
the following result.

Lemma 3.4. For each € > 0 there is p > 0 such that vi,v2 € By (u,p) implies
IN(v1) = N(v2)llm < €llor — v2[lm, m=0,1.

Proof. Let T be as in (3.9) and let p; > 0. We first carry out an a priori estimation
under the assumption that u; = S(t,v;), i = 1,2, exist and belong to By (u, p1) for
t € [0,T]. From the variation of constants formula

¢
ui(t) = e Moy +/ e~ =) AF(u;(s)) ds, te[0,T],
0
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so that N(v;) = w;(T'), where
t
wi(t) = / e (AR (uy(s)) ds.
0

Using (3.5) and (3.8), we obtain
t
llwi(t) — w2 ()]l < Ceat/o (t =) 2||F (ua(s)) — F(uz(s))| ds

< C(T)k(pl)/0 (t = )72 llus(s) — uz(s)ll1 ds.

Here u;(s) — ua(s) = e *A(
(3.5) yields, for t € [0,T],

llwi (t) — wa(t)|l1 < C(T)k(p1)|lvr — v2|

+CT, ) / (t — )" /2|[wy (s) — wa(s)]|s ds.

v1 —vg) + w1 (s) — wa(s), so that another application of

Gronwall’s lemma now shows that
(3.10) lwi(t) —wa2(t)[[1 < C(T, p1)k(p1)|lvr —v2ll, ¢ €[0,T].

This is the required a priori bound and we may now complete the proof. Let
€ > 0. Since k(p1) = O(p1) and C(T, p1) = O(1) as p1 — 0, we may choose p; so
that C(T, p1)k(p1) < €. Lemma 3.2 provides p such that vi,vs € By (@, p) implies
uy(t),u2(t) € By(a,p1) for t € [0,T], and (3.10) then yields

lwi(T) — wa(T) |1 < €lfvr — v2|,

which implies both the required estimates. |

Lemma 3.4 shows that there is p such that, if we set D = By (4, p), then N
satisfies (HN) with both X = H and X = V. Moreover, we have found a larger
radius p; > p such that

(3.11) uo € D = By (u,p) = S(t,u9) € By(u,p1), te€][0,T].

In summary, we have chosen the parameters so as to make sure that S = L+ N
satisfies (HL) and (HN) in both X = H and X = V.

Remark 3. Note that L is the linearization of S at u. In fact, the mapping S : D C
V — V is Fréchet differentiable with L = S'(a) € £(V). However, the mapping
S:D C H — H is not differentiable, because D = By (4, p) is not a neighborhood
of @ with respect to the topology of H.

3.2. The discrete problem. In this section we first discretize the initial-boundary
value problem (3.1) with respect to the spatial variables by means of a standard
piecewise linear finite element method and apply the shadowing results of §2.2. At
the end of the section we then briefly discuss completely discrete approximations
obtained by means of the backward Euler time-stepping.

Let {Vh}o<n<1 be a family of finite dimensional subspaces of V, where each
V5, consists of continuous piecewise polynomials of degree < 1 with respect to a
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triangulation of  with maximal mesh size h, see [5]. The approximate solution
up(t) € V3, of (3.1) is defined by

(U;L,X)‘F(DVU}-L,VX) = (f(uh)JX)J VXGVha t>07

(3.12) un(0) = uon

where = wugp € V}, is an approximation of ug.

We want to set this problem in the framework of §2.2 with X, = V},, and both
X =H and X =V. Let Qn : H — V;, be the orthogonal projection. Then @,
satisfies (2.14) (with § = 1) if X = H. In order to satisfy (2.14) with X =V we
assume that @y, is bounded (uniformly in h) with respect to the H! norm. Tt is
easy to see that this is true if the spaces V}, satisfy an inverse assumption. For a
more general discussion of the H' boundedness of @}, we refer to [7].

It is well known that (in view of standard interpolation error bounds and the Lo
and H! boundedness of Q)

(3.13) 1Qrv — V||l < CH*~™||v|]2, v € D(A), m =0,1.

Since D(A) is dense in H it follows that (2.15) holds with X = H and X = V.
Introducing the linear operator Ay : Vi, — V3, defined by

(Ah,(an) = (DV¢;VX)7 V¢7X € Vh7
and with f : V — H defined as before, we may write (3.12) as
(3.14) u;l + Apup = Qpf(up), t>0; ur(0) = uop,

which is the discrete analogue of (3.2). In the same way as for the continuous
problem we can show that there is a local solution operator Sy(t,-), such that
up(t) = Sp(t, uop) is the unique local solution of (3.14). Just as in the continuous
case the proof is based on the variation of constants formula, the analyticity of the
semigroup exp(—tAp), and the local Lipschitz condition for the mapping f : V —
H, see [11].
With Ay, = Ay, — QB and F(v) = f(v) — Bv as before, we rewrite (3.14) as
uy, + Apup = QnF(up), t>0; up(0) = uon,
which is the discrete version (3.6). Since Ay is selfadjoint, positive definite (uni-
formly in h), and QB is bounded, we deduce that 4}, is sectorial (uniformly in h),
so that for some ¢ > 0
lle~*An||, < Cet|v||1, t>0, veV,

3.15
(3:19) le=rolly < Ct %Mol >0, v € Vh,

which are discrete versions of (3.5). Here we have employed the equivalence of
norms ||v||; ~ ||A}l/2v|| for v € V3. The inequalities (3.15) can also be proved by
noting that uy(t) = e~ “Arugy satisfies (3.14) with f(up) replaced by Bup, and by
making estimations based on the variation of constants formula.

From [11] we quote the following a priori error estimates.

Lemma 3.5. Let 0 < 7 < T and assume that S(t,uo), Sh(t,uor) € By (a,p) for
t € [0,7]. Then, fort € [0,7], we have

|[Sk(t, won) — S(t,uo)|l < C(p,T) (||U0h — Qruol| + th_l/Z),

1S (£, uon) — S(t, uo)lls < C(o, T)t /2 (|luo — wol| +h).
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The following is a discrete analogue of Lemma 3.2.

Lemma 3.6. For each p1 > 0, T > 0 there are p > 0, hg > 0 such that, if
uop € By (4, p)NVy and h < hg, then Sy (t,uon) exists and belongs to By (@, p1)NVh
fort € 0,T].

Proof. Let p1,T > 0 be given. For p > 0 let 7 € [0,T] be the largest time such that
uor, € By (4, p)NV}, implies that Sy, (¢, uor ) exists and belongs to By (u, p1+1)NV}, for
t € [0,7]. By local existence there are to > 0 and p > 0 such that ugp, € By (u, p)N\Vh
implies that Sp(t, uor) exists and belongs to By (@, p1) NV}, for ¢ € [0, t9]. Moreover,
the second error estimate of Lemma, 3.5 gives the a priori estimate

1S (t, o) = alls < C(pr, T2 (|luon — all + h)
< Clp1, Dty *(p+ho) < p1, 1€ [to, 7],

provided that p and hg are sufficiently small. If 7 < T, then by local existence we
obtain a contradiction with the maximality of 7. Hence, Sy (t,uo) is defined and
belongs to By (4, p1) NV, for t € [0,T]. O

We will also use the error bounds
lle™ 4 Qnv — e™of| < CR*t1e|u]l,  t>0, ve H,

3.16
(8.16) lle "t Qv — e~ tu||y < Cht~Y2e?|v||y, t>0, ve,

which can be proved by the using the techniques of [11].
With T as in (3.9) we define L, = e~T4* and (3.16) shows

ILhQn — Ll ceary + B LnQn — Ll cvy < C(T)R>.

The assumption (2.29) is thus satisfied with both X = H and X = V. We conclude
that Theorem 2.6 applies, showing that, for small h, Lj satisfies (HL) with slightly
larger constants & > &, i > p. Adjusting x, u, we may conclude that (2.19), (2.20)
hold.

Finally, we define S, = Sp(T,-), N, = Si — L, and note that, after these
preparations, the analogue of Lemma 3.4 holds with the same proof. As for the
continuous problem we may select p, hg such that, for h < hg, N} satisfies (HN)
with D, = DNV, D = By(4,p). The argument also selects p; such that, in
analogy with (3.11),

(3.17) uop, € Dp, = Sh(t,uor) € By (u,p1), t€][0,T].

Moreover, using Lemma 3.5 together with (3.11) and (3.17), we see that, if v € D,
Qnv € Dy, then

[1S1(@nv) = S@)II < Clpr, TIK?,  [ISh(Qnv) = S()ll1 < C(p1, T)h,

since ||Qrv —v|| < Chl|v|l1 < Chp. We conclude that (2.17) holds with X = H and
e(h) = Ch2, and with X = V and €(h) = Ch.

We have now checked all the assumptions of Theorem 2.5 and we are ready to
apply it.

Theorem 3.7. There are positive numbers pg, ho, and C such that, for any h < hg,
the following hold:
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(1) If up is a solution of (3.12) with up(t) € By (G, po) for t € [0,T], then there
is a solution u of (3.1) such that

(3.18) lun(t) — u()|lm < C(1+t/2)R>™, te€ (0,7T], m=0,1.

(2) Conversely, if u is a solution of (3.1) with u(t) € By (4, po) for t € [0,T],
then there is a solution up of (8.12) such that (3.18) holds.
(3) Equation (3.12) has a stationary solution ay, such that

[lay, — |l < Ch.

Proof. Let p, p1, ho, T be as above. Choose py and adjust hg in such a way that
the requirements of parts (ii.a) and (ii.b) of Theorem 2.5 are satisfied with X = V.

(1) Let up(t) € By (a,po) for t € [0,T] and apply part (ii.a) with X =V to the
sequence up(nT'), nT € [0, 7], which is an orbit of Sj. This gives the existence of
an orbit u(nT), nT € [0,7], of S, satisfying (2.21) of part (i.a), and hence (2.22)
gives the special case m = 1 of the inequality

(3.19) lup (nT) — u(nT)||m < CR*™™, nT €[0,7T], m=0,1.

Another application of part (i.a), now with X = H, proves the case m = 0 of (3.19).

From the sequence u(nT') we define u(t) = S(t—nT,u(nT)) for ¢t € [nT, (n+1)T].
By uniqueness of solutions this is a solution of (3.1). Error bounds at intermediate
times are obtained by combining (3.19) with Lemma 3.5 as follows. For ¢ € [0,7]
we have

lun(®) = u(®)lly < C o1, T2 (Jlun(0) = u(O)| + k) < Clpy, T)E/2h.
For t € [(n + 1)T, (n + 2)T], n > 0, we have
lun(®) ~ u(®)ls < Clor, 270> (Jun(nT) — u(nT)|| + 1) < C(pr, T)h.
This proves the special case m = 1 of (3.18). The case m = 0 is obtained similarly.
(2) Let u(t) € By (a,po) for t € [0, 7] and apply part (ii.b) with X =V to the
sequence u(nT), nT € [0, T], which is an orbit of S. This gives the existence of an

orbit up(nT), nT € [0,T], of Sy, satisfying (2.24) of part (i.b), and hence (2.25)
gives the special case m =1 of the inequality

(320) ”Qhu(nT) - uh(nT)“m < Ch'27m7 nT € [077_]7 m = 07 1.

Another application of part (i.b), now with X = H, proves the case m = 0 of (3.20).
The required error bound (3.18) now follows as in part (1) above, noting that, by
(3.13) and Lemma 3.3,

1Qnu(t) = u(t)llm < CR* ™ [lu(®)]l> < C(pr, T)R>~ ™7/,
(3) Part (ii.c) of Theorem 2.5 gives 4y and the error bound is an immediate

consequence of (2.27) and (3.13). O

We conclude this section by briefly indicating how time discretization by the
backward Euler method can be incorporated into the above argument.
After discretization with constant time steps k (3.14) becomes

(Uj—Ujfl)/k—}—AhUj Zth(Uj), t; =jk > 0; Uy = ugp,-
The local solution operator Sy, ;(t;, uop) is readily obtained by using the smoothing

property of the corresponding linear evolution operator Ej j(t;) = (I — kAp) ™,
and the local Lipschitz condition for f : V' — H, see [11]. This smoothing property
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carries over to the linearized operator & x(t;) = (I —k.Ap) ™7 in the same way as in
the semidiscrete case, see (3.15). Error bounds analogous to those of Lemma 3.5 can
also be found in [11]. With these ingredients we may prove an analog of Lemma 3.6.
Error bounds for &, x(t;) analogous to those in (3.16) may be found in [11], and
with a discrete time T suitably chosen we find that Ly = &, (T) satisfies (HL).
Setting Sy = Shk(T, "), Npk = Sk, —Lp,kx we then prove an analog of Lemma 3.4.
Further arguments, parallel to those above, lead to an analog of Theorem 3.7 with
an error bound of the form

NU; = u(t;)|lm < C((l +t; )R 4 (1 t;(m“w)k), tj €(0,7], m=0,1.

Remark 4. The framework of §2 applies also in the context of a finite element
method for the Cahn-Hilliard equation, for which the finite time analysis was carried
out in [8]. We skip the details.
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