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Abstract

The performance of linear block codes over a finite field is investigated
when they are used for pure error detection. The maximal probability of
undetected error is investigated. Sufficient condition for a code to be good
or proper for error detection are derived.

1 INTRODUCTION

Two basic strategies are used to control transmission errors in data communi-
cation systems. In Forward-Error-Correction (FEC) an error-correcting code is
used for correcting errors. With Automatic-Repeat-Request (ARQ) protocols us-
ing error detection together with request for retransmission almost error-free data
transmission can be achieved. The second approach, because of its simple inter-
pretation and high reliability, is widely used in packet-switching data networks,
computer communication net-works, satelite communications.

In this paper we investigate the performance of linear block codes when they
are used for pure error detection. A linear [n,k,d;q] code with symbols from a
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finite field of ¢ elements GF'(q), is a k-dimensional subspace of the n-dimensional
vector space over GF(q), with minimum Hamming distance d.

Let C be an [n,k,d;q] code which is used for error detection. Let z € C
be the transmitted codeword and y € GF(q)" be the received vector. Then the
vector

e=y—cx

is the error vector caused by the channel noise. If e € C', then y = x+¢e € C' and
the decoder assumes that y is error free, i.e., the decoder fails to detect the error
and y will be accepted as a code vector. Such an error is called undetectable. If
e ¢ C, then y ¢ C and the decoder will discover the presence of an error. Such
an error is called detectable.

We shall consider the following probabilistic model. The [n, k, d; q] code C
is used for error detection on a discrete memoryless channel with ¢ inputs and
g outputs. Any transmitted codeword has a probability 1 — € of being received
correctly and a probability q%l of being transformed into each of the ¢ — 1 other

symbols. We assume that 0 < e < %.

Define P,4(C,¢€) to be the probability that the decoder fails to detect the
existence of an transmission error. This probability is called the probability of
undetected error for C. The probability P,4(C, €) can be expressed in terms of the
weight distribution of either C or its dual code C*. Denote by {A; : 0 < i < n},
resp. {B;: 0 <i < n} the weight distribution of C, resp. C*. Then

- € i n—i
Pu(Cie) = ZAZ(q——l) (I—e" ™, (1.1)
i=1
or equivalently,

n

—(n—k qge i n
Pu(C,e) = ¢ >;Bi(1—q_1) —(1—%¢) (1.2)

(see, for example, Lin-Castello, p. ...).

To compute the exact value of P,y(C,€) by use of (1.1) or (1.2) is equivalent
to find the weight distribution of C, resp. C*. This is done only for few classes
of codes and for large code parameters it is known to be a hard computational
problem [MacWilliams & Sloane, p. ...]. An easier problem is to find good bound
on P,y(C,¢e). Note that even when P,4(C,€) is known a criterion is needed to
decide if the code is suitable for error detection. One such reasonable criterion is
to compare P,4(C, €) with the average probability P,4(€) of undetected error for



the ensemble of all linear g-nary [n, k| codes [Lin-Castello, p. 78]. It is known
that

Pu(e) = ¢ " M1~ (1 - ¢)f]
[Wolf, Michelson, Levesgue (1982); for ¢ = 1: Korznik (1965), Massey (1978)].

The following natural criteria were introduced by Leung, Barnes and Friedman
(1979), Kasami-Lin (1984), and Klgve (1995).

If

—1
Pud(cae) S Pud(q q )

for all € € [0, %], then C'is good for error detection. If P,4(C,€) is an increasing

function on € in the interval [0, %], the code is proper for error detection. Thus
the proper codes are good in a somewhat regular way: the bigger € is, the worse
they perform in detecting errors.

The paper is organized as follows. In Section 2 we derive a unified representa-
tion of the function P4(C¢€), 0 < € < % in (1.1) as a function of 2,0 < z < 1,
and discuss some properties of the functions involved in this representation. In
Section 3 we give a sufficient condition for a linear [n, k, d; ¢] code to be good for
error detection. As corrollaries we derive some known results (see [K-L], [D-D],
[Klgve]). In Section 4 we obtain a sufficient condition for a linear code to be
proper. As an application we show that all ¢g-nary [n, k| codes with minimum
distance d > @ are proper. In particular, MacDonalds codes [see...| are
proper.

For all notions and results from Coding theory which are not defined here we
refer to [, , |. A nice reference to the theory of error detecting codes is the recent
monograph [Klgve-Korzhik].

2 UNIFIED REPRESENTATION OF P,,(C, )

For z € [0, 1] introduce the function

and



We will express now the probability of undetected error in (1.1) in terms of the
functions (2.1) and (2.2).

For brevity, denote

%
A=Y, 0=d,... n (2.3)

where ;3 =0({ —1)...(e—i+1)and nypy =n(n—1)...(n —i+1).

Lemma 1. The following representation of P,y(C,€) takes place:

Pu(C,€)P(C,2), 7= “ . (2.4)
with
P(c,z) = iq_eAZRe(z) (2.5)
=d
= q_dAZLd(z)
£3 a4 — a4 Lu(2) (2.6
l=d+1

Proof. The representation (2.4) with P(C, z) as in (2.5) or (2.6) is obtained from
(1.1) as follows:

P(C,e) = Z Ai(q_%)i(l —
=AD" ) G-t

= Z q*iAiZi Z q*j (n _ 7’) Zj(l _ z)nfi*j
i=d =0 J

B S L O
i=d  j=0 J
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where z = qfl. Further, we set £ =i+ j to get

k=d (=i B
= Z Az —t (ZEZ) Re(Z)
i=d =i (5)
RS "L _,(n—i)lel(n —£)!
_;A’; (€= 0)!(n —e)n! (%)
=343 ¢ UR(2)
T
= qfﬁ(z - A;)Re(z)
t=d i=d )

=Y ¢ AIR(2),
{=d

which is the form (2.4)-(2.5). Using this and also that
Re(2) = Le(2) — Les1(2), £ =d,... ,n—1

which is easily seen from (2.1) and (2.2). We get

PutlC) = 34 CALL(2) = Lo (2)]
{=d

g A Ry (2)

n—1
= Zq_éA:Le(z)
{=d
=) g VAL L(2)

l=d+1
+ qidAZLd

+ ) q (AL - qAL ) Le(2),
{=d+1

which proves (2.4) with P(C, z) as in (2.6).

O

Next we will show that the functions L.(z) are strictly increasing in z € [0, 1].

Lemma 2. For{=1,2,...,n,

L(2) = n(’;: 11) (1 — )t

2.7)



Proof. We will use induction on o. If j =1, then
Li(z) =1-[1=2)"],=n(l-2)""

and the statement holds in this case. Assume (2.7) for some ¢, 1 < ¢ < n. We
have

! 71!
Lé—f—l - LZ

—~

z) — R(2)
~1

B 1>231(1 _ Z)nfé
14

)z‘—1(1 _ayptr L

Il
3
S~ 3

—n

®

n

1) A1 [

I
3

I
3
/\/—;/‘\/\

S s |

=

which proves (2.7) for £+ 1. Then it is true for all ¢, 1 < ¢ < n. O

3 GOOD ERROR DETECTING COES

Let C be an [n, k, d; ¢] code with weight distribution {A; : 0 < i < n}. A sufficient
condition for C' to be good for error detection is given by the following theorem

THEOREM 1. Iffor =d,d+1,... ,n,

Y4
Y Y

i=d

e
W A (3.1)
(¥

ng

then C' is good for error detection.

Proof. We sue (3.1) in (2.4) with P(C, z) in it as given in (2.5) and also (2.7) to
get

P,(Cie) = P(C,2)

which shows that C is good. 0



The theorem implies some known results
Corollary 1 ([Kasami-Lin]). All MDS codes are good for error detection.

Corollary 2 ([Dod-Dod, Th 2], [Klgve]). If C is in an NMDS g-nary code
for which

Anfk < (1 - qik) (n)
k
then C' is good for error detection.

Proof of Corollary 1. Let C be an MDS g¢-nary (n,k) code. In this case d =
n —k +1 and [see [Dod-Dod)).

P,(Cie) = P(C,2)

with
P(C,z) = Z (q’("’k) — q’z) R.(2), (3.2)
l=n—k+1
that is,
A* = —(n—k) _ - « ,—(n=1) _ —n

e — 4 q =4 q -, (3‘3)

n—k+1,...n.
Theorem 1 holds and C' is proper. O

Proof of Corollary 2. Let C be an NMDS g-nary (n, k) code. In this case d =
n — k and (see [Dod-Dod])

Pu(C,¢) = P*(C, 2)

where

A,
P*(C,z) = P(C,2) + ¢ "N —==E - Ry 4(2)
(%)
and P(C, z) is the function in (3.2).

The condition of corollary gives

—(n— A'fl— —(n— — —(n— —n
(%)
and this together with (3.3) gives (3.1). Theorem 1 holds and the code is good
for error detection. O



4 PROPER ERROR DETECTING COES

Again, let C be an [n, k, d; g] code with weight distribution {4;,0 < i < n}.
THEOREM 2. Iffor {=d,d+1,...,n

L -1
Yyl g >3 o, (4.1)
(i) — )

i—d i

then C' is proper for error detection.

Proof of Theorem 2. We use (2.4) with P(C, z) as given in (2.6). The condition
(4.1) of the theorem is, in terms of notation (2.3)

A —qA, 1 >0,0=d+1,...,n
which implies that the function
S g AL - Az L(2)
£=d+1

in the respresentation (2.6) is either identically zero (if all inequalities (4.1) are

actually equalities) or strictly increasing on [0, 1], by Lemma 2. As for the first

term in (2.6), it obviously increases strictly on [0, 1], by Lemma 2, again. Then

P(C.z) increases strictly on z € [0,1] and hence so does P,4(C,¢), where € =

@ € [0, %] Thus the code C is proper. O
The theorem implies known results.

Corollary 3. All MDS codes are proper.

Corollary 4 (Corollary 3 in [Dod-Dod]). If C is an NMDS g¢-nary [n, k],
code for which

Ay < (1—q7) (Z)

then C' is proper.

Corollary 5. If C is an [n, k, d; q], code with

then C' is proper.



Proof of Corollary 3. For a MDS code C, we have in the respresentation (2.4) of
P,i(C,e) with P(C, z) as in (2.6) that (see [D-D])

P(C: U) = (q - 1) Z q_eLe(Z)'
=d
This (and the notations (2.3)) show that (4.1) holds true and then C'is proper. O

Proof of Corollary 4. For an NMDS g¢-nary code C, the representation (2.4) with
P(C,z) in it as in (2.6) is (see [Dod-Dod])

A,
* A
+q B - g - L

) ®
+ Y ¢ Le(2).

l=n—k+2

This (and notations (2.3) show that (4.1) holds true and then C is proper. [

Proof of Corollary 5. It is easily seen that (4.2) implies (4.1). Really,

- 0—1)
Ai_qzwAi

i=d ) ima )

and
e—(e—i)g=1ig—e(g—1)>dg—n(g—1)>0

by (4.2). O
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