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We give upper and lower bounds for the probability for a local extrema of a totally
skewed a-stable stochastic process. Often these bounds are sharp and coincide. The
Gaussian case a=2 is not excluded, and there our results slightly improve existing
general bounds. Applications focus on moving averages and fractional stable motions.

0. Introduction. Let {£{()}:>0 be a-stable Lévy motion, a€(1,2), with skew-
ness f€[—1,1]. The well-known computation by Doob (1953, p. 106) implies that

(0.1) P{&(1)>u} < P{sup03t51§(t)>u} <P{Q)>u}/P{£(1)>0} for u>0.

Berman (1986) showed that for a symmetric Lévy process 7(t) whose Lévy mea-
sure has regularly varying tails, and in particular for n(t)=¢&(¢) when B=0,
(0.2) P{SUP0§t§1 nt)>u} ~P{n(l)>u} as u—roo.
Willekens (1987) extended (0.2) to sub-exponentially distributed Lévy processes.
de Acosta (1977) proved that for an a.s. bounded a-stable process {X (¢)}ier
(0.3) limy oo u*P{sup,cr | X (¢)| >u} = L1 exists, and L€ (0, 00).

Samorodnitsky (1988) calculated L; using the spectral representation for X (t).
Rosinski and Samorodnitsky (1993) proved a version of (0.3) for sub-exponential

infinitely divisible processes. They also studied other functionals than sup,cp|X (¢)]

and developed the argument of de Acosta (1977, 1980) to allow computation of L.
Also for the one-sided tail of an a-stable X the limit

(0.4) lim, o uaP{supteT X(t)> u} = L, exists.

Further, by Rosinski and Samorodnitsky (1993), L2 >0 when X (t) has skewness
Bx (t)>—1 for some teT. But Ly=0 when X (t) is totally skewed to the left, i.e.,

when [x(t)=-—1 for each t€T, and then the actual tail is ‘super-exponential’.
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Doob’s result (0.1) is valid for a-stable Lévy motion with f=—1, and gives

P t B )
(0.5) 1< Lz= lim {supo<i<i €(t) > u} < Tim {supgcsci E(t)>u}
uooo  P{E(1)>u} u—oo  P{E(1)>u}
Albin (1993) showed that Ls=L4>1 and also studied stable Ornstein-Uhlenbeck

=L, < oc.

processes with f=—1. These are the only results on totally skewed stable extremes.

But Braverman and Samorodnitsky (1995) extended the result of Rosinski and
Samorodnitsky (1993) to ‘exponential tails’. These lie between the sub-exponential
setting of Rosinski and Samorodnitsky, and the super-exponential one we study.

Now consider a totally skewed a-stable process {X (t)}+cx defined on a compact
space K. In Section 3 we derive a lower bound for the tail P{supte x X(t)> u}
using a certain entropy function measuring the size of K ‘as felt’ by X(¢).

In Section 5 we give a sharper lower bound applicable when the entropy has
bounded increase and is not ‘too inhomogeneously distributed’” over K, and in
Section 4 we provide a useful criterion for verifying that homogenity property.

Using a second entropy we derive an upper bound for P{supte x X(t >u} in
Section 8. That bound often coincide with the lower bound of Section 5.

Sections 9-10, Sections 11 and 13, and Section 12 treat moving averages, fractio-
nal stable motions, and log-fractional stable motions, respectively. These applica-
tions use tools for estimation of entropies that are developed in Section 8.

In Section 14 we specialize our results to the Gaussian case and discuss how they

contribute there. We also give an application to fractional Brownian motion.

1. Stable processes. Let ({2, F,P) be a complete probability space with random
variables 1.0(£2). We write Z € S,(0,8) when Z € L°(£2) is an a-stable random

variable with characteristic function
E{exp[i0Z]} = exp{—|0|*c®[1—iBtan(%Z)sign(9)]} for HeR.

Here a€(1,2], 0>0 and f€[—1,1] are parameters. Note that a=2 is allowed.
Let (S,X,m) be a o-finite measure space, J:S — [—1,1] a measurable map,
and M : Xy — 1.°(£2) a o-additive independently scattered a-stable set-function
with control measure m and skewness 3, where Yo={A€X : m(4)<oo}.
For fel%(S) and p€[l,00) we define ||f|l, = [[s|f[Pdm]'/? and LP(S) =
{feL(S): ||Ifllp<oc}. Letting f( = |f|*sign(f) we further write

fY=[sfdm for feLl'(S) and IJy=(fT)/|f|2 for feL*(S).
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It is well-known [e.g., Samorodnitsky and Taqqu (1994, Chapter 3)] that
X=[gfdM € So(|flla ) is well-defined for  f € LY(S).

We shall study a separable P-continuous a-stable process {X (t)}:cr on a sepa-

rable topological space T'. For such a process there exist S, m, J and a continuous
Fy:T—1*(S) such that [e.g., Samorodnitsky and Taqqu (1994, Section 3.11)]

(1.1)
the finite dimensional distributions of {X(t)};er = those of { [ Fy(r) dM(r)}ser-

In fact (1.1) always holds for (S, m) = (R, Lebesgue measure’), but since natu-
ral representations often use non-Euclidian (S, X, m), we study the general setup.
We study extremes over a compact K CT for X(t) € So(||Ftlla, Bx(t)) given
by (1.1), with scale ||Fi||o >0 for some ¢€ K, and with skewness Bx(t) = Jp, =

—1 for each t€T. Without loss of generality we can therefore suppose that
(1.2) Fy(r)>0 for (r,t) e SxT and 3J(r)=-1 for res.

By continuity of Fi.y, K is compact wrt. the pseudo-metric p(s,t) = ||Fs—Fi|
¢)

on T. Therefore K is also p-sequentially compact, and so
(1.3) there isa t € K satisfying  sup{||Fi|la :t€K} = ||Filla > 0.

2. Canonical distance and entropy I. After a general discussion of entropies
we introduce a distance p on T that is important for our lower bounds.

Givena T'CT, an >0, and a symmetric map d:T2—R*, we call Ba(t,e) =
{TGT s d(r, t)<€} a d-ball centered at t€T, and NCT an e-net for T wrt. d if
TgUteNBd(t, e). Further GCT is an e-grid in T wrt. d if d(s,t)>¢ for distinct

s,t€(G. The d-covering number E; and d-content number M, are given by

E4(T;¢) = inf{#N : N is an e-net for 7" wrt. d}
My(T;e) = sup{#G : G is an e-grid in T' wrt. d}'

A minimal e-net N for T wrt. d satisfies #N = E4(T;¢). Similarly G is a
maximal e-grid in T wrt. d if #G:Md(f’;s). We refer to both E; and M, as

entropies (although one usually reserves this label for Ejy).
Our lower bounds rely on the assumption that P{X(s) > u|X(t) >u} — 0

sufficiently fast as u— oo. To prove this fact we invoke the estimate
(2.1) P{X(s)>u|X(t)>u} < P{X(s)+X(t)>2u}/P{X(t) > u}.

3



Weber [in e.g., Weber (1989)] saw that all precursors to (2.1) in the Gaussian
literature are matched by (2.1). In the Gaussian case (2.1) is not crucial. But two-
dimensional stable probabilities are difficult to handle, and there (2.1) is essential.

Guided by (2.1) we are led to consider the ‘distance’

p(s, t) = QmaX{HFS”aa ”Ft“a} - ||F3+Ft||a between s,t€T.

Clearly p:T?—R?" is continuous, but p need not obey the triangle inequality.
Inspired by the Gaussian treatment of Adler and Samorodnitsky (1987), we use
the refined entropies M,(K,(g);-) to handle scale-inhomogenity, where

Ki(e) = {teK : ||Fi|la € [|Filla— (¢+1)e, || F5lla—£e]} for e>0 and (€N.
The lower bound in Section 3 requires that there is a g:RT™ —R™ such that
(2.2) limy 00 g(u) ' 1n []Mp(KO(u_o‘/(a_l)); u_a/(a_l)g(u))} =0.

Now recall that a locally bounded f:R™ —R" has finite order (f € FO) if

order(f) = limg o In[f(e)]/In(e™ ) < oo.
It is obvious that for an fe€ FO, and given -y, € (order(f),o0) and e; >0,
(2.3) thereisa Cy=Ci(f,71,€1) >0 such that f(e) < Cie™™ for e€(0,e1].
Proposition 1. (i) If fi(e) = M,(Ko(e);e) or fa(e) = M,(K;e) satisfies f;€
FO, then (2.2) holds provided that lim, o g(u)/In(u) = oo.
(ii) If fs(e) = M,(Ko(e);e) or fa(u) = M,(K;e) satisfies In(f;) € FO with
order(In(f;)) <k, then (2.2) holds for g(u) = use/ls+1{e=1]
Proof. If f1€ FO and g(u)/In(u)— o0, then (2.3) implies that
limy 0 g(u) " In[M,(Ko (u—/(@=1), u_a/(a_l)g(u))}
< Timy 00 g(w) " In [My(Ko (u™* Vg (u)); u=*/*"Vg(u))] = 0.
When In(f;)€ FO with order(In(fs3)) <x we similarly obtain
g(u) "M [M, (Ko(u™ /D)0 /(g ()]
< R/l (@D 1y [ g (Ko (u =/ [ (@Dl gy =a/ s+ 1)(«=1])] 5 0, O

3. A general lower bound.
Theorem 1. Let {X(t)}ier satisfy (1.1)-(1.3). If (2.2) holds we then have

lim P{sup,cxc X (t)>u} / [%(Ko(u—aﬂa—ﬂ); u= @D g (1)) P{X(£)>u}] > 0.

uU—r 00



Proof. Put q = q(u) = u=*/(®~Yg(u) and let G=G(g) be a maximal ¢-grid for
Ky (u“"/ (0‘_1)) wrt. p. Also note that there are constants C5, C3>0 such that
U —a/2(a—1) U af(a—1)
< _ ad
< C’2< ) exp{ 03(0_) } for u>0

(3.1) P{Sa(o, -1)>u} a

> 02_1 (g)_a/z(a_l) exp{—Cg(g>a/(a_1)} for u>o

[e.g., Samorodnitsky and Taqqu (1994, p. 17)], and recall the inequalities

(3.2) 1+ -2z < (14+2)*@D) < 142¢/@=D(pv0) for ze[-1,1].
Clearly the fact that ||Fy||o> || Filla—u"®/@=Y for te Ko(u=®/(>=1) implies

w/IFila < u(1 20~ Flla) /1Bl < 20/Fille for /@D < 1|Fyl,

[using the inequality (1—z)~! <142z for z€(0,1]]. Hence (3.1) and (3.2) yield

(3.3) P{X(t)>u}

—a/2(a—1) —a/(a—1) 3 a/(a—1)
Y w(1+2u /1)
> 1 —
> (IIF;Ha) e"p{ O‘”’( 1]l

> CyP{X(t)>u} for te Ky (u_o‘/(a_l)) and wu sufficiently large,

where Cy = Cy227%/2@=Y) expl —C3(2/||F;l| )@~ D/(@=D}. Since X (s)+X(t) €
So(|Fs+Ftlla,—1) with [|[Fs+F|a < 2[|Ffla— p(s,t), (3.1)-(3.3) further give

(3.4) P{X(5)+X(t)>2u}

u —a/2(a—1) u a/(a—1)
RS I
I Fella— p(s,1)/2 NI Fella— p(s,8)/2

—a/2(a—1) 1 1 ¢ jos a/(a—1)
S02< u ) exp{—03<u( +2p(3a )/“ t”a)) }

177l 177l
Czau®/(@=1) p(s,t) }
2(a—1) ||Fy|| G/ e

< C7'CE (infrea P{X (1) >u}) e 299 for Gos#t€G and u large.

< C2P{X(t)>u} exp{—

Here C5 = C:;,ﬁ”FE“;(?a—l)/(a—l).
Since by (2.2) #G<e%9(") for u large, (3.3) and (3.4) combine to show that

(3.5) P{supieq X(t)>u} > ) P{X(t)>u}— > P{X(s)>u, X(t)>u}
teqG Gos#teG

(#G — C; 1 C3e72059() (#G)?) (infreq P{X (t) >u})
1C(#G)P{X(t)>u} for u sufficiently large. O

v
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4. Homogeneous entropies. In Section 5 we study processes with homogeneous
entropies. Here we prove that if M,(K;-) has bounded increase, and if p is equiv-
alent with a translation invariant ‘distance’ p, then M,(K;-) is homogeneous.

A locally bounded f:R* —R* is O-regularly varying (f€ OR) if

0 <lim_,infrepa 1) f(Ae)/f(€) < limeyosupyepa,n f(Xe)/f(e) <oo for A€(0,1].

Further (a locally bounded) f:R* —R™ has bounded increase (f¢€ BI) if

lim, supxepa,1] f(Ae)/f(e) < oo for A€(0,1].

Clearly, to each €2>0 there are Cg[f,e2] >0 and ~3[f],vs3[f] € R such that

m Co'A™2f(e) < f(he) S CA™2f(e) for 0 < Ae <e<ey, if fEOR

4.1 .
fe) <CeA ™ f(e) for 0 < Ae<e<eq, if feBI

Since M,(K;e) is a non-increasing function of ¢, we have M,(K;-)€ OR when
(4.2) lim. o M,(K;e) / My(K; A" 'e) < oo for A€(0,1].

We shall assume that there is a symmetric map p:72— Rt such that
(4.3) R15(s,t) < p(s,t) < Rp(s,t) for s,t€ K, for some Re(1,00),

and which satisfies the weak triangle inequality

(4.4) p(ryt) < A[ﬁ(r, s)+p(s,t)] for r,s,t€K, for some Aell,00).

Proposition 2. Let (T,+) be a separable Abelian topological group such that K
contains a p-ball. If (4.2) holds, and if (4.3)-(4.4) hold for some p satisfying p(r+
s,r+t) = p(s,t) for r,s,t€ K, then there is an £3>0 such that

(4.5) sup{M(K &) M,(KNB,(t,é); ) /| M,(K;e) : tEK, 0<6§é§63} < 0.
Proof. Obviously (4.3) implies that

(4.6) My(T;Re) < My(T;¢) < My(T;¢/R)  for TCK.

Hence we have

sup{ M, (K; R%) M, (KN B,(t, &); ) | My(K;¢/R? : teK, 0<e<é<es

H/—/

Ssup{ 5(K;RE) Ms(KNBy(t, Ré);e/R) / Mp(K;e/R) : tEK, 0<6§é§64}
:sup{Mﬁ(K;é)M (KNBy(t,8);¢) | My(Ke) : teK, 0<§R2egé§5}ts4}
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for ¢4>0. In view of (4.2), the fact that (4.5) holds for M,(-,-) will therefore follow
if we can prove (4.5) for M;(-,-).

Now choose a p-ball B,(t1,71) CK, so that by (4.3), Bs;(t1,r) CK for r<ry=
r1/R. Since maximal r-grids are r-nets, the translation invariance of p then gives
(4.7) Mj(K;e) < My(K;r) My(Bs(ti,r);e)  for r<r,.

Using the easy fact that (4.4) implies

p(s' ) > A72j(s,t) — p(s,s') — p(t,t")  for s,t, st € K,

~

it follows that p(s’,#')>¢é when p(s,t) > 3A% and p(s,s'), p(t,t') < é. Writing

e4=13/(24A) we therefore obtain
(4.8)  Mpy(K;e) > My(Bs(tr,eq);3A%) My(Bs(t1,€);e)  for 0<e<é<ey
Here we also used the fact that, by another application of (4.4),
p(t,7) < 2A[ﬁ(t1, s)+p(s,7)] < ro for TE€B;(s,€) with s€Bs(ty,e4).

But combining (4.6)-(4.8) we conclude that
My(K;€) My(KNBs(t,€);¢) | My(K;€) < My(K; &) | My(Bs(t,€4); 3A%)

< My(K;€) My(Ksea) | My(K;34%)

< My(K;¢/R) My(K;ea) | M, (K; 3BA%R2),
where by (4.2) the right hand side is bounded for é€(0,e4]. Hence (4.5) holds. O

5. A sharper lower bound. Homogenous e-grids cannot have too many elements
too close to any point of K. Assuming homogenity, the arguments (3.4)-(3.5) can
therefore be refined to estimates that do not involve the nuisance function g.

Guided by Theorem 1 we modify the requirement (4.2) to
(5.1) lime o sup,¢ (0, Mp(Ko(e); €) / M, (Ko(e); A™'€) < oo for Ae(0,1].

Instead of (4.5) we further require that, for some e5 >0, to each choice of € (0, e5]

and e€(0,¢€], there is a maximal e-grid G, in Ky(e) wrt. p such that
(5.2) Sup{M(Ko( ); €) #(GeNB,(t,8)) / #G. : t€ Ko(e), O<s§é§€5} < 0.

When the scale is constant, (4.2) and (4.5) imply (5.1) and (5.2). The inter-
pretation of (5.2) [and (4.5)] is that contributions to the cardinality of grids from
different parts of Ky(-) [K| are not too inhomogeneously distributed.
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Theorem 2. Let {X(t)}ier satisfy (1.1)-(1.3). If (5.1)-(5.2) hold we then have

lim P{sup,cx X (¢ >u}/[ Ko(u=®/(@70); y=o/(@=D)y PLX (£) >u}| > 0.

uU—0Q

Proof. Let G(e;e5) be a maximal es-grid in Kg(e) (wrt. p). Since a maximal

e5-grid must be an e5-net, we then have

#Ge < Y ieq(een T (GeNBy(ties)) < #G(e5€5) SUDLeg(eses) #(GNB, (1, €5)).
Consequently there is a t2(e) € G(e;€5) such that
(5.3) M,(Ko(e);e) = #G. < My(Ko(e);e5) #(GeNB,(t2(e),5)).

Now write Ge = GcNB,(t2(e),e5) and n(e) = #Ge, so that [by (5.3)]

(5.4) n(e) > M,(Ko(e);e) / My(Ko(e);es) and n(e) < M,(Ko(e);e).
Then we have n(-) € BI, since (5.4) yields

limeyo supera,1) M(Ae)/n(e)

< limeyo suppea,1 Mp(Ko(Ae); Ae) M, (Ko(e)s es) / M,y(Ko(e)s )
< lime o supyea,1) Mp(Ko(Ae); Ae) My(Ke5) / My (Ko(Xe)s ),

where the right hand side is finite by (5.1). Therefore (4.1) shows that
(5.5) n(e) < Cg[n(),1]e POl (1) for e<1.
Obviously (5.1) implies that

M,(Ko(e);é) < RMy(Ko(e);eé) for 0<e<é<e

for some constants R>0 and &g € (0,¢e5]. Since for each A€ (0,1], thereis a k€N
such that e~k S)\ge_(k_l), it follows that

My(Ko(e)ie) k= My(Ko(e); e’e)

<Rk <R)\_1n(R) for A le<eg.
M,(Ko(e); A71e) = j=o M,(Ko(e);eiTe) =0

(5.6)
But now (5.6) combines with (5.2) to show that there is a C7 >0 such that

(5.7) SUP¢eg, #(gqu,,(t,eq)) < SUPteky(q) #(GqﬂBp(t,Zq))

Cr M,(Ko(q); 9) / M,(Ko(q); £q)

IN

< Cp Re™(EB)  for 0<g</tg<es.



Define ¢ = q(u) = Qu=*/(®=1) where Q>1 is a constant that satisfies

=1

Since (3.4) yields that
P{X(s)>u, X(t)>u} < CZ exp{—2C5 u®/*Vp(s,t)} P{X (f) >u}
for u large, an application of Bonferroni’s inequality [cf. (3.5)] then gives

P{SuPtegq X(t)>u}

> P{X(H)>ul ) Y > P{X(s)>u, X(t)>u}

t€yq t€Gs =15 € Gy N[B,(t,(&+1)a)~ B, (t,£q)]

> n(q) jnf P{X(t)>u} = n(q) P{X (D) >u} 3 G sup (G, By(t, (¢+1)0))
q /=1 teG,
> [by (3.3) and (5.7)]

> n(q) C4 P{X(t)>u} —n(q) P{X(#)>u} Z C2e720QL R (£+1)(B)
£21, (£+1)q<es

—n(q)? P{X (f)>u} Z (26=205Q¢
£>[e6/4d]
> [by (5.5) and (5.8)]

> n(q) P{X (£)>u} <C4 — 3C1—C3Cn(1) g™ exp{—2CsQ[6e/q]}/(1—6_205Q))
for w large. The theorem thus follows from noting that (5.4) and (5.6) imply

n(g) = n(Qu=*/7V) > My(K(u= /(" V);u=/@) /(RQUIDIM,(K;e5)). O
6. Canonical distance and entropy II. Our upper bound rely on the assump-

tion that P{X (¢) >u+A, X(s)<u} — 0 sufficiently fast when distance(s,t)—0.

To prove this fact we use the estimate
(6.1) P{X(t)>u+A, X(s)<u} <P{X(t) + z[X(t)—X(s)] > ut+zA}.

As is (2.1), (6.1) is crucial when <2, but is not needed in the Gaussian case.

Guided by (6.1) we are led to consider the ‘distance’

00 (5, ) = max{[| Fita(F—F,) |la— | Filla, | Fota(Fe—F) lla—[| Filla} between s, teT:

Given TCT and >0 we write £ (T, x;¢€) for the minimal cardinality of an e-net

N for T wrt. g, such that there to each t€T is an s=s(N,t) € N satisfying
(6.2) o0q(s,t)<e and X (t)+z[X(t)—X(s)] € Sa(||Fi+z(F—F;)|la, —1).
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When a=2 (6.2) is void and &(T,z;-)=E,, (T};-). But for a<2 (6.2) requires
(6.3) Fy(r) + z(Fy(r)—Fs(r)) >0 as. (m) for res.

Since g,(s,t)<e implies ||Fy—Fj|lo < 27" (e42||F¢|lo), and more generally that
s and t are ‘close’, it does not seem unreasonable to expect that (6.3) holds when
0s(s,t) <& with  large. Indeed, (6.3) holds trivially [and &(T',z;-)=E,, (T;")]
in the common situation when for each pair s,t €T we either have Fi(r)> Fy(r)
for all re S orelse Fy(r)>Fi(r) for all reS.

7. The upper bound. Our upper bound requires that there are constants
ge, Cg, A >0, v4,75€[0,1) and A€ (0,1] such that

(7.1)

5(Kg(€),£13;6) gCgexp{x7“+£75}S(Ko(e),/l;)\e) for £eN, z>A and e<eg,.

Theorem 3. Let {X(t)}ier satisfy (1.1)-(1.3). If (7.1) hold we then have

lim P{sup,cx X () >u}/ [S(Ko(u_a/(a_l)), A; )\u_a/(a_l)) P{X(t)>u}| < occ.

uU—0o0

Proof. Choose g € (74,1) and put ¢ = ¢q(u) = w=*/(@Y and w = w(u) =
u~ Y@= Further define z, = 2"A4,

vp = (2170 —1)0 27070 and gy, = vpyi—v, = (21770 —1)27 (10 (FD),

and take g-nets N, ¢(q) for K;(q) wrt. gz, such that #Nn,g(q)zg(Kg(q),a:n;q)
and (6.2) holds. Using (3.2) and that (1—z)~! > 1+z for <1, (3.1) then yields

(7.2) P{X(t)>u—(1—yn+1)w, X(s)gu—(l—un)w}
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Me TN T

P{Sa(||F£||a, -1) > u((l—q) +A(2””6‘1+2”k)‘1) (1— Qﬁnpiif) + ||lf‘t~q||a>}

1 {—2
P< S ([|Flla, —1) >u 1+—<A anY¥e—long| 9 4 ) ”
{ (ella; —1) [ (4] J=2+ 1m0 )

Cza(A[2mre—t4onk]—24[(—2]|| F3||31)
2 (a—1) || Fgfla/ >~

VAN

C2 go/2a—1) exp{— }P{X(f)>u}

x>
Il
o

for t € Ky(q) and s = s(Nne(q);t), provided that 1—g—g||F7||3* > 3. When
t€Ky(q) and g<3 another (easier) application of (3.1) and (3.2) further yield
(7.3) P{X(t)>u—w) < P{Sa(||Ft~||a—£q, ~1)> u—w}
Gt Rz - 1)
af/(a—1
(1) [ F5fa/ Y
Given a t€ Ky(q) the fact that p.(s,t) > z||F;t— Fs||a — 2||F¢||a implies

< C2 0/2a=1) exp{ } P{X(D)>u).

IFe=Filla < 3257 q+ 25 [Filla < 27°A7 (30 + [|1Filla)  for s=s(Nae(0); ).

Hence the p-closure clos,(N) of N =N (q) = UjeoUneoNn,e(g) contains K.
Since X (t)—X(s) € Sa(||Fi—Fsllas Bx)—x(s)), X (t) is P-continuous wrt. the

p-topology. Further T-separability of X (¢) implies p-separability of X (¢). Since

closp,(N) DK, a well-known argument now shows that A separates {X(t)}iex.
Combining (7.1)-(7.3) in an argument inspired by Samorodnitsky (1991) we get

P{sup,cx X (¢)>u}

P{fj G{ sup X(t)>u—(1—yn)fw}}

e:o n=0 tENn ot

P{Q)[G{ sup X(t)>u_(1—yn+1)’w}ﬁ{ sup X(S)Su—(l—un)’w}]}

n—0 teNn+1,l SENn,Z

+P{G U {(x®>u-u}}

£=0tENG ¢

<3y P{X(t)>u—(1—un+1)w, X (s(Npit)) gu—(1—yn)w}

IN

IN

+Z Z P{X(t)>u—w}
£=0 tENo,e
< ii 3 C2 9a/2(a—1) exp _CSOZ(A[2WYG_1+2nk]_2+[€_2]”F£H;1)
8 : 2 (a—1) | Fylla" ™"
£=0 n=0 k=0 (o o
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x Cg exp{£"+A"27"} £(Ko(q), A; A\?q) P{X (t) >u}

+ icé 9a/2(a=1) exp{_ Csa(l || Flla'—1) }

Pt (a—1) ||F|a/ eV

x Cs exp{£™} £ (Ko(q), 4; %) P{X(¢{)>u} for u large. O

8. Canonical distances III. Here we derive two-term expansions of p and p,.

The first terms coincide except for multiplicative constants, and define a distance
§(s,t) = max{((F,—F)F2~ ") J|F|| &Y, (Fs—F)FO Y /||Fs||27'} for s,teT.

Now let ks=sup{z>—1%:|z|"*((1+2)*—1—az)} for de[a 2], and define
sot =s and set =1 when J(s,t) = < F,—Fo)F> 1>/||Ft||o‘ !
0,:T2=T by .
sot =t and set=s when d(s,t)> <(Ft—FS EpNY/IF)eT

Proposition 3. We have
(8.1)  6(s,t) — kd21_da_1<|Ft— Fsa,ta>/||Fs.t||°‘ V< p(s,t) < ad(s,t)
for s,t€T. Under the additional requirement that

(8.2) K ((Foat—Fsot)Fop ) > ka2 I(|F,—F,|*F&; %) for (s,t)€T,

set

for some k€ (0,1) and T CT?, we also have
(8.3) (1—k)d(s,t) < p(s,t) < ad(s,t) for (s,t)eT.
If in particular Fset(r)> Fsor(r) for (r,s,t)€SXT, then (8.3) holds with k= é

Proof. Since ko, =1, (8.2) holds with ﬁ:é and d=a when Fye;> F,o;. Further
(8.1) and (8.2) imply (8.3). Hence it is enough to prove (8.1). But noting that

l-az < (1-2)* < 1—az+kslz|* for z€(—0c0,3], and

(84) 1-—azt< (1-z)V/* < 1-1z for ze(—o0,1],

we readily obtain
(8.5) 12F | — [[Fs+Filla
= 12F o — [((2Fy)*[1— (Fy— Fy)/(2F)]*)]
< [2Fila1- (1= §((F~F)FEY/IIFN2) Y]
> 2B a1~ (1= §[((F~F)F?™") — ka2~ (|F~F

{< o((F-F)FEY) /IRl
> ((Fo=F)FEY) IR — ka2 L(|F— RS F2=%) /| Flg

1/a

-] /1Fd) "]

0
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Now define Ksz=sup{z€R:|z|"%(|1+2|*~1—az)} for d€(n, 2], and
sot=t when (|F—F,|*Ff~%)/|F|S" > (|F,—F|*F2~%) /|| Fs||& Y,
sot=s when (|F—F,|"F> %) /||F||27" < (|F—F,|*F2~%) /|| Fs|| 2"
Proposition 4. Writing T = {(s,t) €T? : 0,(5,t) < 5= || Fset|la} we have
(8.6) 0z(s,t) < 2 max{zd(s,t), Kax®(|F,—Fs|*F&, ) /|| Fsot|27} for s,t€T,
(8.7) 04(s,t) > %m(S(s,t) for (s,t)€T.
Under the additional requirement that
(8.8) ki (Foat—Fyot)Foug ") > ((Feat—Fsot) Foug ') for (s,t)€T,
for some choice of k€[1,00) and T CT?, we also have
(8.9)  04(s,t) > o max{z (s, 1), 2| Fy—Fs||3/ || Fsat|S'}  for (s,t)eTNT.
If in particular Fyet(r)> Fyot(r) for (r,s,t)€SXT, then (8.9) holds with k=1.
Proof. In view of the elementary facts that
l+azr < |142/* < 1+oax+ Ka|z|® for z€R, and
(8.10) 14 5= (zA1) < (14z)Y* < 14+ 1z for >0,

we readily deduce
(8.11) |Fe+a(F—F)|, — |1 Fella

= [(F2|14 2(F,—F,)/F|* >}1/"‘ 1E ]l

< |1Fulla| (1+ an((Fi= F) FE ) IFIS + Kan®(|Fi—F, S F2%) /| Ryl )/ ~1]
> | Fla] (1+ az((F~F, )Fa-1>/||Ft||a)”a—1]

{<x< Fi—F)F) /IIFIIC' '+ Kagao® (|- F
> sellFilla [(ex{(F—F) )/ IFNG) A

Butitisa stralghtforward matter to conclude (8.6) and (8.7) from these inequalities.

Fa a>/||Ft||a 1

To proceed we assume that (8.8) holds and observe the easy fact that

1+z* > 1+a(l-L)zt —a(l+L)z” + (4r)*?|z|*  for z€R

Via an inspection of the equality in (8.11) we therefore obtain
HFsot‘{‘CU(Fsot_Fsot)Hz

> ”Fsot”g + O‘(l_ﬁ)x«Fsot_Fsot) F;:t1> - O‘(1+ﬁ)x<(F30t_F30t) F;:tl
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+ (46)" 22| Fyot— Footla
_ [o% @ a—1 a—2 a [o%
= |Faatlla + 55 @ ((Foat—Foot) Fiy ) + (45) 1F: = Fllg
+ ﬁ z ((4K—2)<(Fsot_Fsot)F;:t 1 — 2<(Fsot_Fsot) Fsagt ! )
Here the last term is non-negative for (s,t)€7T by (8.8), and so (8.10) yields
1/
0(5,8) > | Fustlla [ (1+ 20805, 1)/ Fuutllec + (48)* 22| [Fs= F |3/ Fsatll3) 1]
> b 1 Fatllec | (520(5, )/ Fowtlla + (45)° 20" | Fu= o[/ | Fout ) A 1).
Taking (s,t)e TNT, (8.9) thus follows from the trivial fact that (4x)*~2>-2. O
Proposition 5. If Fye(-)> Fyot(?) for (s,t) €T, for some T CT?, then we have

(1_é) (S(S‘,t) S ”Fsot”a_ ||Fsot||a < 016(3,15) fOT’ (S,t)ET.

Proof. Using the first set of inequalities in (8.5), with F; and Fy replaced by %F St

and F,o;—F; respectively, and with &=, we readily deduce that
( <(Fsot sot Fsa.t1> < ”Fsot”a ||Fsot||a < O{< set Fsot)Fa ! .

set

Here k,=1 as before. The proposition thus follows from noting that (8.4) implies
«a @ a\l/a
(812)  [[Fsatlla=l1Fsotlla = I Fsetlla [1— (1= [1Fsetlla = 1 Footll 2]/ 1 Foatll2) }

{ < [1Fsetlla =11 Foot 5]/ | Foorll ™"
> (I1Fsatlle = [1Fsoelld) / (e 1 Fsaella™)

9. Non-anticipative moving averages of stable motion. Let

(9.1) X(t) = [y Fi(r)dM(r) for teR,

where M has skewness 3(r)=—1 and Lebesgue control measure, and where
(9.2) Fy(r) = f(t—r) Iz+(t—r) for some f:R—R' satisfying ||f]o=1.
Further assume that f satisfies the left Lipschitz condition

(9.3) My = sup{[f(s)—f ()] /[(t—s) ]:0<s<t<oo} < oo,

and that f is absolutely continuous with derivative f’ such that

(9.4 W+ =F()) e £1() as Ao,

Application 1. Consider the a-stable moving average {X(t)}ier given by (9.1)
where {F;(-)}ter satisfies (9.2)-(9.4) with f(0)>0. For each T >0 we then have
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0 < lim P{supte[O’T]X(t)>u} = P{supte[O’T]X(t)>u} -
imoo U@ DP{X(0)>u} ~ u—moo y/ (-1 P{X(0)>u}

Proof. Using (9.2) and (9.4), elementary considerations reveal that

(9:5) ((Fs—F)Fy )~ —(t—S)/_s F'(s=r)f(s=r)* " dr = a7 f(0)*(t—s)

t t

(9.6) <(Ft—F3)Fta_1>~ (t—s)/ f’(t—r)f(t—r)o‘_ldr —i—/ f(s—r)f(t—r)a_ldr
~ (1—a™") f(0)*(t—s)

uniformly as t—s]0. It follows that set=sAt and sot=sVt, and that

(9.7) §(s,t) ~ a f(0)*|t—s| uniformly for [t—s| small.

Also observe the fact that [by (9.4)]

08 IA-Flg= [

—0o0

S

. t
|f(t—r)—f(s—r)‘ dr-}—/ ft—r)*dr
~ (=) f I+ ]S + £(0)*(t—s) uniformly as t—s]0.

Take &=« and k€ (217%,1). Since ko =1, (9.5)-(9.8) then imply that (8.2)
holds uniformly for [t—s| small. By Proposition 3, (8.3) thus holds uniformly for
|t—s| small. But (8.3) and (9.7) combine to prove that

(9.9) Cy?|t—s| < Cyla(s,t) < p(s,t) < Cyd(s,t) < Cf [t—s]|
uniformly for [t—s| small, for some Cy>1. Consequently we have
(9.10) Cy?(b—a)/e < M,([a,b];e) < 1+ Cg(b—a)/e for [a,b]C[0,T].

In view of (8.6) and (8.7), (9.7) and (9.8) show that
(9.11) Croz|t—s| < 0g(s,t) < Cro(zVz®)[t—s|
uniformly for [t—s| small when p.(s,t) < i Further (9.3) and (9.11) give

Fy(r) + z(Fy(r)—Fs(r))

= f(t=r)+z(f@t—r)—f(s—r)) > f(t—r)[1-Miz(t—s)] > f(t—r)[1-M1Cioe] > 0

for 0<s—r<t—r and p.(s,t)<e with ¢ small. Hence (6.3) holds and
(9.12)
3010 (b—a)y/e < E([a,b],y5€) = By, ([a,b];6) < 1+ 5Cio(b—a)y®/e for y>1.

Clearly, (9.10) shows that M,([0,T];-) satisfies (4.2) and (5.1). Taking p(s,t)=
lt—s|, (9.9) further combines with Proposition 2 to prove (4.5) and (5.2). Hence
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Theorem 2 gives the lower bound. Using (9.12) we further deduce that (7.1) holds
with A=A=1, and so Theorem 3 yields the upper bound. I

10. C?-moving averages of stable motion. Suppose that
(10.1) Fy(r) = f(t—r) for some f:R—RT satisfying ||f]o = 1.

Here f is assumed to be absolutely continuous with derivative f’. We also assume

that f’ is absolutely continuous with derivative f”, and that
(10.2) (f2f2e LY (R) and f'f*!ecL}(R).
Further we require that f satisfies the Lipschitz condition

(10.3) My = sup{|f(s)—f(t)| /[|t—s| f(¥)]: s,tER, s#t} < .

Finally we have to require that f ‘obeys it’s Taylor expansion’ in the sense that
(104) AT FRSC) = F(Rt )P F()*77) =0

(10.5)  RTHFO) +R S )+ () = (Rt ) F()*7H) = 0

Application 2. Consider the a-stable moving average {X (t)}ier given by (9.1)

as h—0.

where M has skewness —1 and Lebesgue control measure, and where F; satisfies

(10.1)-(10.5). For each T >0 we then have

0 < lim P{sup;cjo ) X (t) >u} < = P {sup;co,m X (t) >u}
oo UY a/[2(a=1)] P{X( )>u} ~ u—oo yo/[2(a=1)] P{X(O)>u}

< 0.
Proof. Putting F{(-) = f'(t—-) and F/'(-) = f"(t— -), Holder’s inequality and
(10.2) show that F/F>~'cL!(R). Thus we have (F/F®™') =0, and (10.5) yields
(10.6)  ((FB-F)F)
= ([F+(s—t)F/+L(s—t)°F) —F,|F}™ ") — (s—t)(F/Ff™ ") — L(s—t)>(F/'F )
~ =3 (F/FY) (s—1)°
= L(a—1) ((F))?F %) (s—t)* uniformly as [t—s[J0.
Using (10.4) and the fact that (z+y)? < 2t1z? + 2Fly? we further obtain
(10.7)  ((Fi—Fs)*F?)

< i<[Ft+ s—t)Fy — FPF?7%) + o5 (s—t)((F)*F2 ™)

ol ((F))?F %) (s—t)>  uniformly as [t—s| 0.

16



Observing that kg <a—1 when &=2, (10.6) and (10.7) imply that (8.2) holds for
k€ ((a+1)/(2),1) uniformly for |t—s| small. Hence also (8.3) holds uniformly
for |t—s| small. But (8.3) combines with (10.6) to show that

(10.8) C2(t—s)? < C{M(s,t) < p(s,t) < C116(s,t) < CF(t—s)?
uniformly for [¢t—s| small, for some Ci;>1. Consequently
(10.9) Cp'(b—a)/ve < My([a,bl;e) < 1+ Cyy(b—a)/\e for [a,b]C[0,T].

Clearly (10.9) shows that M,([0,T];-) satisfies (4.2) [and (5.1)]. Further, by
(10.8), p(s,t)=(t—s)? satisfies (4.3). Since also (4.4) holds with A=2, Proposition
2 proves (4.5) [and (5.2)]. Thus the lower bound follows from Theorem 2.

Combining (10.6) and (10.7) with (8.6) and (8.7) we obtain

(10.10) Cr'(t—s)’z < 04(s,t) < Cra(t—s)*(zva?)  uniformly for |t—s| small.
Taking z>1 and [t—s| < 2714/e/C12, (10.3) further shows that
Fy(r)+z(Fy(r)=Fy(r)) = f@t—=r)+z(f@t—r)—f(s=r)) > f(t—r)[1-Msz|t—s|] > 0
for e <My 2C13, so that (6.3) holds. Using (10.10) we therefore readily conclude
L(b-)V/y/Crae < E((ablyie) = By, ((a,bi) < 1+L(b-a)y/Crafe for y>1.

Thus (7.1) hold with A=A=1 and Theorem 3 yields the upper bound. [

11. Fractional stable motions with index of self-similarity > 1/a. The

most commonly used a-stable analogue of fractional Brownian motion is

(11.1) X;{,,(t)E/R(a([(tw)ﬂff—[ﬁ]ff) = b([(t4+r) 1 =) ) dM (),

where M has Lebesgue control measure and constant skewness, and where H €
(—1/c,0)U(0,1-1/c) and a,b>0. This process is self-similar with index H+1/«
and has stationary increments [e.g., Samorodnitsky and Taqqu (1994, Proposition

7.4.2)]. After stable Lévy motion, X[, (t) is the most important stable process.

Application 3. For the totally skewed fractional a-stable motion
X(t) = X7, = / ((t+r) T [T dM(r)  for teRT,
R
where He (0,1—1/a) and M has skewness —1, we have
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0 < lim P{SUPte[o,u X (t) >u} < T P{SUPte[o,1] X(t) >u}
wsoo  P{X(1)>u} Tumee P{X(1)>u}
Proof. Only the upper bound requires a proof. That bound will follow if we prove
(11.2) L¢ = li)—m P{sup;c(z ) X (t)>u} /P{X(1)>u} < oo.
U—00 27

This is a consequence of the easy observation that by self-similarity (for u large)

o0
(11.3) P{supte[O’l]X(t)>u} < ZP{SUptE[2—(k+1)72—k] X(t)>u}
k=0

= ’;::OP{supte[%J] X(t)> Zk(HH/"‘)u}

< 2Lg fP{X(1)>2’“<H+1/a>u} [by (11.2)]
k=0
~2LeP{X(1)>u} as u—oo [by (3.1)].

To prove (11.2) we first note that a two-fold application of the inequality
(11.4) e —y? > H(z—y)2z"'  for z,y>0,

yields

(11.5) <(Ft—Fs)Ft°‘_1>2/000[(t+a:)H—(s+m)H] [(t+2)F —2™]* do

> H (t—s) H"“lt“—l/ (t+z) T (t4z)H D) gy
0

= %tm’ (t—s) for 0<s<t.

Invoking the inequality (8.4), with 1/« replaced by H, we further obtain

(11.6) | Fy— Fs||S = /_s(t—{-:c)Ha dz + /OO [(t+2)" —(s+2)7]% dz

—t —8

= o (t—s)Het! +/Oo(t+q;)Ha [1 - <1 - t_—3>Hrda:

—$8
(o]

L (t—s) et 4 (1—g)° / (b ) B (1 42) "~ da

—8

IN

t—S)Ha+1 )Ha—l—l

Ho}—i—l ( + (l—I-Il)a—l (t—s

for 0<s<t. On the other hand an inspection of (11.6) shows that

(11.7) |Fy—Fol|g > gaeg (t—s)7*th for 0<s<t.
Finally we observe that, by three applications of (8.4), with 1/« replaced by H,

(11.8) ((F,—F,)Fh)
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0

(s+z)H [(1+ b=s >H— 1] (t+z)HOD dy

H 1
= Tagi(t=5)"" +/ s+

—S8

+ /Ooo(s+x)Ha K1+ :;Z)H—q Kl+ z;Z)H— (1— ij)Hr_ld:c

0
e (t=8) 1 4 =)™ [ (sa)T1da

IN

—S

+H(t—s)/Ooo(s—}—x)H"_l(H(t_s) T )a_ldx

s+x s+x

IA

o0 t a—1
Ho}—‘f—l (t—s)Hott 4 (1—s)tHe-DH 4 H(t—s)/o (s4x)Ho1 (—S+$> dx

= ﬁ(t—s)+(t—s)+ﬁsl_(l_h’)a(t—s) for O<S<t§1
Obviously we have set = sVt and sot = sAt. Combining (11.5)-(11.8), it

therefore follows that there is a Ci3>1 such that

(11.9) Crs (t—s) < 8(s,t) < Ci3(t—s) for 2<s<t<l.

Since Fyet(-) > Fsot(+), and sot = sAt for d=q, (8.6) and (8.9) further combine
with (11.9) and (11.6)-(11.7) to show that there is a o€ (0,1) such that

0z(s,t) < Cyyq max{a:(th)H_Hl/a\t—s\, xa(sAt)_H(a_l)_1+1/°‘|t—s|H°‘+1}
< O}y max{z |t—s|, z¥|t—s[HoT1}
0s(s,t) > O/ max{m(th)H_1+1/a|t—s|, xa(svt)_H(a_l)_Hl/a|t—s|H°‘+1}

> Cif max{z|t—s|, z*|t—s|Fo]

for s,t€ K=[3,1] with p,(s,t)<go. Since (6.3) holds for s<t it follows that

(11.10)
Ciy (b—a)

2(b—a
5 ( ) < S([a,b],y;é‘) <1+ min{e/y, (6/ya)1/(Ha+1)}

Ctymin{e/y, (e/y*)/(Hat1)} =

for [a,b]C[3,1], y>1 and e€(0, o).

In view of (11.9) an application of Proposition 5 reveals that
C (1-1)(1=s) < |Flla—|Fslla < C13(1—s) for 0<s<1.
Hence the set Ko(o) = {s€[3,1]: ||Fslla > ||Filla—0} satisfies
(11.11) [Iv(1-Cilo), 1] € Ko(o) C [2Vv(1-Cis50), 1].
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Invoking (11.10) we therefore deduce that
E(KO(&':)a Y; 5) <1+ Cis min{%, Es} /min{g/:% (E/ya)l/(Ha—H)}
E(Ko(e),y;¢) >  Crmin{l, e} /min{e/y, (6/ya)1/(Ha+1)}’

and thus (7.1) holds with A=XA=1. Since (11.12) gives Cig < £(Ko(e), L;¢) <
1+ C16, (11.2) now follows from Theorem 3. [

(11.12)

12. Log-fractional stable motion. Here we study
(12.1) X(t) = / (In(t+r)—In(r)) dM(r) for teRT,
0

where M has Lebesgue control measure and skewness —1. Log-fractional motions
arise as normalized limits of fractional motions when H — 0.
The process X (t) is self-similar with index 1/, but [by e.g., Samorodnitsky

and Taqqu (1994, Proposition 7.3.6)] does not have stationary increments.

Application 4. For the log-fractional a-stable motion given by (12.1) we have

) P{supte[(,’l] X(t)> u} _ P{SuPte[0,1] X(t)> u}
0 < lim < lim
wooo  P{X(1)>u} u—oo  P{X(1)>u}

< 0.

Proof. 1t is enough to prove (11.2). To that end we first observe that
(12.2)  |[F=Fillg

© at—s)z t—s\127! o .
= | Groars |™\! d by partial integrat
/0 (s+z)(t+x) [n< + s—{-x)} z [by partial integration]
oo PR
S/O %dl‘ [Since In(142z) <z for 1720}

= wmeayt *(t—s)* for 0<s<t [by Erdélyi et al. (1954, p. 308, Eq. 3)].

Moreover the inequality
(12.3) In(1+z) > z[1— (1A(32))] for >0
ensures that [compare with (12.2)]

(12.4) [ Fe—Fs|g

- S )] e
[ wtmeen Ges) - (0 (aa))] @
2/000 % [1 — (1/\ (%))] dx [by (8.4) with 1/« replaced by a—l}
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oo _ e\ o0 _ oo+l
Z/ a(t—s) xdm—/ a(t—s) Iz
o (t+z)ot? o 2(t+z)att

= ti=%(t—s Li—ap—g)att by Erdélyi et al. (1954, p. 310, Eq. 19
2

a— 1

v

2(a =) ' (t—s)* for 0<s<t.
Combining (12.2) with Hélder’s inequality we easily get the upper estimate
12 5) < Fa 1> < ||Ft F ||a||Ft||a ! < m(t S) for O§S<t
On the other hand

(12.6) ((F,—F3)F& )

() ()]

> Ooo 111(1 + 5) ln(l + H_%)]a_ldm

> [by (12.3), and by (8.4) with 1/« replaced by a—1]

- [CEl (GEDE) B ()]
[ [ e [ e

> ﬁ(t—s) for 0<s<t.

Clearly set=sVt, sot=sAt and Fset(-) > Fyot(-), while sot=sAt when a¢=aqa.

Using (12.2) and (12.4)-(12.6) we get upper and lower bounds for §(s,t) and
| E;—Fs||2/||Fel|2~Y, s,t€ K=[%,1], which only differ by multiplicative constants.
Invoking Proposition 4, these bounds show that there is a g1 €(0,1) such that

Cr7 max{z |t—s|, (z[t—s|)*} < 04(s,t) < Cirmax{z[t—s|, (z|t—s|)*}
when g, (s,t)<p1. Since (6.3) holds when s<t, it follows that
1CH (b—a)y/e < E([a,b],y;6) < 1+ Crz(b—a)y/e for [a,b]CK and y>1.
Noting that Proposition 5 and the bounds on d(s,t) imply (11.11), we conclude
(12.7) 01_81(%/\0) ye 1 < E(KO(J), Y; 6) <1+ Clg(%/\O') ye L.

Since Ky(e) C Ko(Le) it follows that (7.1) holds, and so Theorem 3 gives (11.2). O
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13. Fractional stable motions with index of self-similarity < 1/a. When
H <0 the process chb(t) in (11.1) is not totally skewed for any a,b>0, but there
are several totally skewed modifications of X (fb(t). To not unnecessarily extend an
already long journey of estimates we consider the simplest possible modification

(13.1) X(t)= /([r+]H—[(r—t)+]H)+dM(r) = /trH dM(r) for teRT.

Again M has Lebesgue control measure and skewness —1, but now H € (—1/a,0).

Further X (t) is self-similar with index H+1/a and non-stationary increments.

Application 5. For the fractional a-stable motion given by (13.1) we have

0< lim P{supte[O’l]X(t)>u} < T P{supte[O’l]X(t)>u}
w0 P{X(1)>u} Tuooeo P{X(1)>u}

Proof. Again it is enough to prove (11.2). To that end we observe the trivial facts
that set=sVt and sot = sot = sAt, with Fyet(r)> Fsot(r) for r€S and

IFlG™ (s, t) = [|Fe—Fllg =/t$Ha dr = g (017 —s1THe)
for %§s<t§ 1. By application of Propositions 4 and 5 we thus conclude that
Cro (xVz®) |t—5| < 04(s,t) < Cro(zVa®) |t—s|,
and that (11.11) holds. Since (6.3) holds for s<¢, it follows that
02_1(%/\(7) y*e ! < E(Ko(o),y;€) < 1+Can(3A0)y*e ! for y>1
[cf. (12.7)]. Hence (7.1) holds, so that Theorem 3 implies (11.2). O

14. Gaussian processes. Here we derive simplified versions of Theorem 1-3 when
a=2. We also discuss to what extent these results are new.

Let {X(t)}+er be zero-mean Gaussian, so that «=2 and ||Fi||o=+/2 E{X(¢)?}.
Take a compact K CT and let t€ K satisfy E{X ()2} = sup,ex E{X(¢)?} > 0.
Further define the distance c(s,t) = E{[X(s)—X (¢)]°} between s,tcT.

Corollary 1. If there is a map h:RT —R*" such that
(14.1) limy— 00 A(u) " In M (Ko(u™?); u?h(u)) =0,
then we have

lim P{sup,cx X (£)>u} / [MC(KO(U_2); u—2h(u))P{X(£)>u}] > 0.

uU— o0
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Proof. Since set=t for ||F||2>||Fs|l2 and set=s for ||Fi||2 <||Fs|l2, we have

O st ||2 — || Faot + Faot||2\ /2
(142)  plont) = 2P 1 (1= 2Pl Pt Pl ) T
12Fset|l3
12Fsetl13— [ Fsot+ Fsotll3
- 2||2Fset|2
_5c(s,t) 4 (| Foetll3 — [ Fsotll3
2| Fset|l2

> c(s,t) / (4] Fl2)-
[Here we used the argument (8.12).] It follows that
(14.3) M,(T;€) > M. (T;4||Fyllse) for TCT and e>0.

Since ||Fsotll2+0 > ||Fsatll2 > || F3ll2—(#+1)o for s,t€ Ky(o), we readily obtain

l J—
p(s,t) S QC(S,t) + (||Fsot||2+||Fsot||2) (”Fs.t”z ||Fsot||2) S C(S,t)
| Foetll 2[[[Fylla=(¢+1)o]

for s,t€ Ky(o) [where we used (8.12) again]. Consequently

+20

(14.4) M, (T;¢) < ZM (TNK(e);8)

<EM o(TNK.(Ge) s [IF;lla—(£+1) gelé)

<AM(T; L||Ffl]2€) for TCKoy(e) and 0<e<&<i||Fia
By Theorem 1 it is sufficient to find a g:Rt —R*" such that (2.2) holds and
(14.5) M (Ko(u™?); u2h(u)) < M,(Ko(u™?); u?g(u)).

But taking g(u) = %[|Fj||;'h(u), (14.3) implies that (14.5) holds. Further (2.2)
follows from (14.1) and the fact that (14.4) yields

M, (Ko(u2); u23 | Fyll3 *h(w)) < Me(Ko(u™?); Ju2h(w))  for u large. O

Of course, (14.1) can often be verified by application of Proposition 1.

The best general lower bounds in the Gaussian literature are those for polynomi-
ally and exponentially increasing entropies by Samorodnitsky (1991, Theorems 4.1.ii
and 5.1.iii). For such entropies the bound of Corollary 1 coincide with Samorod-
nitsky’s. But Corollary 1 has the advantage of providing a unified formulation
applicable also to other entropies, and Corollary 1 only requires an upper bound

on the entropy [through (14.1)], while Samorodnitsky also needs a lower bound.
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Corollary 2. Assume that

Ko(2||F3||5
(14.6) lim sup ( o2 ”2 ©): BA
&l0 c(0,6] Me (Ko(2||Fyl|3 Me); A—18)
and that there is an €7 >0 such that
(14.7)

< oo for Ae(0,1],

sup M. (Ko(2||Ffll; "€); €) Mc (Ko (2| Fll5 'e)NBe(t,€); €)
0<e<é<er, teKo (2| Fill; te) M. (Ko(2||Fll5 "e)s€)

Then we have

lim P{sup,cx X (¢ >u}/[ Ko(u™?); u™?) P{X(t~)>u}} > 0.

uU— 00

< Q.

Proof. By Theorem 2 it is sufficient to prove (5.1) and (5.2). But here (5.1) follows
from observing that (14.3) and (14.4) imply

lim sup Mp(Ko(g);ng
€10 c¢(o, s]Mp(KO(g);)\_ 5)

A M. (Ko(e); 51Fill26) _ —— 4 M (Ko (2| Fill e); €)
< lim sup 1A — Um sup 1 1A
€10 ce(0,6 Mc (Ko(e); 4[| Fyll2A71€) - 10 ce(0,g Mo (Ko (2]| Fll3 'e); 8AT1€)
Further (14.2) shows that B,(t,€) C B.(t, 4| F||2¢), so that (14.3) and (14.4) yield
M,(Ko(e); €) M, (Ko(e)NB,(t,€);€)
sup
0<e<é, teKo(e) M,(Ko(e);¢)
< swp M (Ko(e); 5|Fll2€) Me (Ko(e)NBe(t, 4| Fill26); 5| Fll¢)
0<e<é, teKo(e) M. (KO( ); 4||F£||2€)
cwp M(EOCUFIE ) Mo(Ko(2 Fills )0 Bt 82): )
0<e<é, teKo(2]| Fsll; te) M. (Ko(2||Fl|; 'e); 8¢)
Here the right hande side is finite by (14.6) and (14.7), and so (5.2) holds. O

Lower bounds for polynomial entropies in the literature either assume stationar-
ity (e.g., Albin, 1994, Corollary 2) or involve a nuisance function making the bound
unsharp (e.g., Theorem 1 and Samorodnitsky, 1991, Theorem 4.1.ii). Corollary 2

contributes by applying to non-homogeneous processes without a nuisance function.
Corollary 3. If there are constants ~v7,v8€[0,1) and A€ (0,1] such that

(14.8) Ec(Kq(e); || Fillaz~%¢) < Capexp{z™ + £} E.(Ko(e); 3| Fill2A €)

for LeN and xz>1, and if {X(t)}tex is a.s. bounded, then we have

hm P{supteKX >u}/[ (Ko(u™?); §l|Fill2Au™?) P{X (¢ )>u}} < 00.
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Proof. Writing K = {te K : E{X(¢)*} > 1E{X({)?}} it is well-known that
P{sup,cx X(t)>u} ~ P{sup,cx X(t)>u} as u—oo
when {X (¢)}:ex is a.s. bounded. Hence it is sufficient to prove

(14.9) Tim P{sup, g X >u}/[ (Ko(u=2); L[| Fyllo2A u=2) P{X () >u}] < oc.

uU—0o0

Since K4=1 when @&=a=2, (8.11) shows that

0z(5,t) < wd(s,t) + (s, t) /min{||Fy|la, [| ]2}
= 3z [c(s,t) + d(s,1)] /| Fsatll2 + z%c(s,t) / | Fsotl|2

< 3[zd(s,t) +2%c(s,t)] /||Fll2 for z>1 and s,te K,

where d(s,t) = |||F;[|3—||Fs]|3|. Consequently

A

(14.10) E(T,z;¢) < Ezayare (T, $||Fill2¢) for z>1 and TCK.

o 1K€mo+m<5/m0)

Ky(e) and zd(s,t)<i||FjllaAe for s,t€ Kpmgim(e/mp). Then we have

Now let my €N satisfy mo—1<12A"tz <myg, so that Unme

mo—1

(14.11) Ea:d-i-a:QC(Kﬁ(‘s);%”FEH2)‘6) < > Ezats2c (Kﬁmo+m(5/m0)a3”F”2)‘€)

m=0

mol

22 Ee(Kemo+m(e/mo); | Fill2Az %)

m=0

< (12237 'z+1) Ec (K (e); 1| Fill2Az~%€).

IN

If on the other hand g, (s,t)=¢||Fset||2 where e<1 and z>1, then we get

HFsot+x(Fsot sot ||2 1+€) ||Fsot||2
&S [c(s,t)—i—d(s,t)]—i—a: c(s,t) < (2€+6 )||Fs.t||§ = xzc(s,t)/HFsz < 304(s,t).

It follows that
(14.12) E(T,xz; Xe) > EC(T;3||F5||233_2)\5) for x>1 and e<1.

Combining (14.10)-(14.12) we obtain

E(Ko(e), m;¢) - (1222 +1) Eo (Ko(e); 2| Frll2a2e)
£(Ko(e), 13 xe) — Ec(Ko(e); 3| Fyll2Ae)
and thus (14.8) shows that {X(¢)},.x satisfies (7.1) with A=1. In view of Theo-
rem 3, (14.9) therefore follows from another application of (14.10)-(14.11). O

for £ small,
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Using that c(r, t) < 2[c(r, s)+c(s, t)] it is easy to prove Mc(T;8¢) < E(T;¢) <
M,(T;¢). Hence the difference between the bounds of Corollary 2 and 3 is small.

Compared with the upper bounds by Samorodnitsky (1991, Theorems 4.1.i and
5.1.i-ii), Corollary 3 has the advantage of providing a unified treatment applicable
not only to polynomially or exponentially ‘behaved’ entropies.

Samorodnitsky’s results only assume upper bounds on the entropy while Corol-
lary 3 also require lower bounds [through (14.8)]. The reason is that Samorodnitsky
assumes an entropy bounded from above by a polynomially or exponentially be-
haved function F(-) which satisfies versions of (14.8). He then derives an upper
bound for the tail-behaviour expressed in terms of E. But this bound is only sharp

if the entropy also is bounded from below by F.

Application 6. (Fractional Browninan motion) For a zero-mean Gaussian process

{X () }e>0 with E{X(s)X(t)} = 3(s7+t"—|t—s|7) for some v€(0,2], we have

0< lim P{sup;ejp17 X (t) >u} < = P{sup;cjp17 X (t) >u} -
im0 WEA/T=DIFPIX (1) >u} ~ u—noo w2 (/=D PIX (1) >u}

This result can be derived from e.g., Konstant and Pitebarg (1993, Section 2).
But their reults only apply in Euclidian settings under very special conditions on
the covariance structure. Previously general bounds like Corollary 2 and 3 have
not been sharp enough to yield the true tail-behaviour, and so it is interesting to

see how our bounds work here.

Proof. Take an [a,b]C K =[0,1]. Since c(s,t)=|t—s|” and ||F}|l2=1t"/2, we have

_ b—a b—a b—a
iy Mo i) <1+ 0 and o < Be(fa,bie) <14

Moreover Ky(e) C Ko(le) = [(1—4e)?/7,1]. Using the elementary inequalities
1—(1—€)?/7" >~y ¢ for e small, and 1—(1—£e)?/7 < 2y~ e, it follows that

max{1, %7_1553_1/7} < Eo(Ko(e);é) < Eo(Ko(fe):é) < 14y Hee
for € small, so that (14.8) holds. Similarly we obtain
(14.13) max{1, vt} < Mo(Ko(e);é) < 1+2y7*é™/7 for esmall,
while the fact that Ko(e)NBe(t, &) = [(1—e)¥/7, 1]N[t—£&Y7,t4+EY7] yields
(14.14) M (Ko(2||F5ll5'e)NBe(t,€); €) < 1+ min{2y~12||F;|5 e, 28/} /7.
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But (14.13)-(14.14) readily show that (14.6)-(14.7) hold, and that
M (Ko(u™?);u™?) > max{1, 7_1u2(1/7_1)} > min{l,’y_l}u2(1/7_1)+.
Hence the desired result follows from application of Corollaries 2 and 3. [
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