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Abstract

A 7ps-sample is a sample, s, chosen from the population {1,..., N} under
the condition that each individual, i, has a predetermined probability, m; of
being included in s. The case where the sample size, |s|, is fixed is considered.
An alternative proof is given of Hajek’s result that if s is chosen by ordinary
Poisson sampling with inclusion probabilities p;, then the conditional distri-
bution of s given |s| = n has maximum entropy under the resulting inclusion
probabilities, P(i € s||s| = n). It is also shown that the p;’s can be cho-
sen in such a way that for each i = 1,...,N, P(i € s||s| = n) = m; and
Zfil p; = n. Asymptotic normality of Horvitz-Thompson estimators of the
population total for such conditional Poisson sampling procedures is shown
under quite general conditions using stochastic monotonicity arguments. The
question of how the p;’s and the 7;’s relate for large samples is treated and it is
shown that in most, but not all, senses these are asymptotically exchangeable.
Some consideration is also given to the computational problem of choosing a
conditional Poisson sample in practice.

Keywords: mps-sampling, Poisson sampling, central limit theory, entropy.

1 Introduction

In sampling theory the situation is often the following. In a population consisting of
N individuals (or companies, cities, schools, etc) labelled 1, ..., N, each individual,
i, has a weight x; (such as income, profit, number of inhabitants, number of stu-
dents, etc.). We are interested in the population total, t, = N | z; (alternatively,
the population mean, t,/N). Since it is usually practically impossible to measure the
weight of every individual, one chooses at random a sample, s, from the population
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2 JONASSON AND NERMAN

and uses this sample to estimate ¢,. In the simplest situation, where all the individ-
uals have the same probabilities of being included in s, it is intuitively obvious that
the best estimator of %, is

N

A

|S| 1Es
where |s| is the size of the sample. This situation has been thoroughly analyzed and
it can be found in any good book on sampling theory.

In many situations however, one has access to some auxiliary information about
the individuals in the following way. For each individual a quantity y; is known
and it is believed that y; is approximately proportional to the weight z;. (This is
for instance the case if the ¢’s are schools, the z;’s are the number of students and
the y;’s are the number of teachers). In order to use this information to get better
estimations of ¢, it is natural to make the choice of the sample in such a way that
the inclusion probabilities for different individuals are different. To be exact, one
tries to make the choice so that the inclusion probability, m;, of ¢ is proportional to

y;- To estimate t, one uses the Horvitz-Thompson esimator introduced by Horvitz
and Thompson (1952):

where I; is the indicator Ij;cs. The Horvitz-Thompson estimator is clearly unbiased
and if the correlation between the z;’s and the y;’s is strong, it has very low variance.
To get a feeling for this, consider the extreme case when y; is exactly proportional
to ;. Then t, = c|s| for some constant ¢ so that Var(,) = c*Var(|s|) and if the
sample has fixed size, n, the variance of %, is zero.

Sampling with different probabilities for different individuals as described above
is called mps-sampling (or sometimes pps-sampling, though this term is usually re-
served for sampling with replacement), where 7ps stands for “inclusion probabilities
proportional to size”. As we just have seen, wps-sampling gives low variance for the
Horvitz-Thompson estimator if the 7;’s can be chosen to be approximately propor-
tional to the weights x;, a fact which of course makes it very attractive. However,
one problem with mps-sampling is that it is not at all obvious what is the best way
to choose the sample. In the case where all the inclusion probabilities are equal,
it is intuitively clear that if you want a fixed sample size, n, you should choose s
uniformly in the set of all possible samples of size n and if you allow random sample
size you should choose the typical individual with probability equal to the inclu-
sion probability independently of the others. One sense in which these methods are
characterized is that they maximize the entropy of s in these situations, i.e. they
maximize the function

— Y P(s=s)log P(s = sg)
S0
where the sum is over all samples of size n in the first case and over all subsets of
the population in the second. In a general sampling situation we want to find a
sampling scheme which gives a distribution of s satisfying a set of conditions (such
as fixed sample size, inclusion probabilities, pairwise inclusion probabilities, etc).
Since the distribution with maximal entropy in a class of distributions is the “most
random” distribution, or if you like, the “most informative” distribution in that
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class, it seems like a reasonable criterion for a best sampling scheme that it should
maximize the entropy of s in the class of distributions satisfying these conditions.

In Section 2 we establish such a sampling scheme; conditional Poisson sampling.
Once this has been done, the next natural step to take is to see if it is useful in
practice. One obvious first step in this direction is to try to answer questions about
the asymptotic behavior of the Horvitz-Thompson estimator for large samples from
large populations. There are earlier central limit theorems for Horvitz-Thompson
estimators in related sampling procedures, e.g. in Roseén (1995) and Olsson (1995)
where so called sequential sampling procedures are treated. Is there a central limit
theorem in the conditional Poisson sampling situation? The answer is yes and this
question is treated in Sections 3-7.

In Section 8, we consider the question of how the p;’s and the 7;’s relate for large
samples, in particular if they are asymptotically exchangeable.

In the last section the computational problem of generating a Poisson sample in
practice is treated. We show that by using a more sophisticated device than the
straightforward method of repeatedly choosing unconditional Poisson samples and
rejecting them until exactly n indivuiduals are chosen, the number of operations can
be cut down considerably.

2 The Maximum Entropy Method

Let us go back to the mps-sampling situation. If you allow random sample size
the sampling scheme in question is fairly easy to find; pick the individuals with
probability 7; independently of the others. This method was introduced by Hajek
(1964). It is known as Poisson sampling and it has maximum entropy in the class
of all distributions on s satisfying P(i € s) = 7; for every i. In the case of a fixed
sample size, n, however, the problem is harder. A great number of different 7ps-
sampling procedures with fixed sample size yielding the right inclusion probabilities
have been developed through the years. Brewer and Hanif (1983) give no less than
50 mps-sampling procedures, most of them with fixed sample size, but none of these
give maximum entropy for the distribution of s.

Hajek (1981) shows that conditioning on the sample size in Poisson sampling
yields the maximum entropy distribution of s under the condition of fixed sample
size and under the resulting conditional inclusion probabilities. Theorem 2.1, which
has a very short and simple proof, implies Hajek’s result. The problem is that if
we choose a Poisson sample with inclusion probabilities p;, then it is almost never
true that P(i € s||s| = n) = p;. Since we would like to have P(i € s||s| =n) = m;
it is natural to ask if the p;’s can be chosen in such a way that this holds true.
In Theorem 2.2 it is shown that such a choice can be made, yielding the existence
of a procedure for maximum entropy nps-sampling with fixed sample size and the
desired inclusion probabilities.

THEOREM 2.1 Let X be an Q-valued random object where ) is a finite set and let Y
be a discrete o(X)-mesurable random variable. Assume that Ay, ..., Ay are subsets
of Q and that the entropy, H(Px) = H(X), of the distribution of X is mazimal in
the class of distributions, P, on  satisfying P(A;) = a;, i = 1,..., k. Then it is
true for every y in the support of Y that the conditional entropy, H(X|Y = vy), is
mazimal in the class of distributions, Q, on {Y =y} satisfying Q(A; N{Y =y}) =
PX(AZ|Y:y), ’l:l,,l{,‘
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Proof. Use the standard formula

H(X,Y) = H(Y) + Y P(Y = y) H(X|Y =)

and note that since Y is o(X)-measurable, H(X,Y) = H(X). If H(X|Y = y) is
not maximal for some g, in the support of Y, then we can change the distribution
of X on {Y = yo} to increase H(X|Y = yo). Since none of the other expressions in
the above formula changes this means that H(X) also increases, a contradiction. O

Letting Q be the family of subsets of {1,...,N}, X = 5, Y = Ij,-p and

A; = {i € s} in the above theorem yields Hajek’s result. This, however, only says

that conditional Poisson sampling yields the maximum entropy distribution for the

inclusion probabilities given by P(i € s||s| = n); it is not a priori clear that the

pi’s can be chosen so that P(i € s||s| = n) = m; for any given set of 7;’s satisfying
N 7 = n. For that we would like to solve the following system of equations:

Y acan ) (jea pj kga(l — pr)) —_
Y aca, [jea s Mrga(l — pr)) v

where A, is the class of all possible samples of size n and .A,,(7) is the set of samples of
A,, containing i. The following theorem states that this system of equations always
has a unique solution such that ¥ | p; = n which is desirable from a practical point
of view.

=1,...,k (1)

THEOREM 2.2 For any set of values of m,...,mny such that 0 < m; < 1 and
SN 7 = n, the system of equations (1) has a unique solution such that ¥~ | p; = n.

Proof. For simplicity of notation, rewrite (1) as

lefl(pla"'apN) (e]')

™~ = fn(p1, ..., pN) (eN)
where

filprye . pw) = Ynednti) Hiea i Miga(l = k) _ Xaean@ Hieari/(1 = pj)
i\P1, ’ Y AcA, HjeApj HkgA(l — Dk) > aca, HjeApj/(l — pj) .

Note that all the f;’s are continuous and that f; is (strictly) increasing as a function
of p; and decreasing as a function of p; for any specific j # 7. The first of these
monotonicities is obvious whereas the others are more subtle. To see the latter, first
note that f;(pi1,...,pn) can, if seen as a function h; of p;, be written as

_apy/(1-p)) +
/(1= p;) + d

for nonnegative constants a, b, c and d. Therefore h;(p;) is either decreasing, increas-
ing or constant. Thus limy,, o h;(p;) and limy, ,; h;(p;) exist. The first of these limits
is the inclusion probability for i in a Poisson sample from {1,2,...,j—1,j+1,..., N}
given that the sample size is n whereas the second is the corresponding probability

hi(p;)
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given that the sample size is n — 1. Therefore Proposition 6.2 below yields that
hi(p;) is in fact decreasing.

We are going to solve the system of equations by calibrating the p;’s one by
one keeping the remaining ones fixed. In doing so we assume without loss of gen-
erality that m; < my < ... < mwy. Note that it is always automatically true that
SN fi(p1,---,pn) = n for any set of values of the p;’s and that fi,..., fy are
ordered in the same order as py,...,py are.

We start the procedure by fixing ps,...,pn at arbitrary values in (0, 1). Since
fi(p1,...,pn) is increasing in p; and tends to 0 as p; — 0 and to 1 as p; — 1 there
is by continuity a unique p; satisfying (el). This p; can be written as a function
g1(pa, ..., pn) Where gi is of course continuous. Inserting this into (e2) yields the
equation

g = fQ(gll(an e 7pN)7p27 s apN)7

which we next, for arbitrary ps, ..., py, will show has a solution

D2 = g%(p?n cee apN)-

Since f; is increasing in p; and decreasing in p, it follows that g¢i is increasing
in py. Moreover, fi(gi(pa,...,pn),P2,--.,0on) = m for all po and for 5 > 3
[i(9i(p2,---,DN)s D2, - -.,DN) s, since g{ is increasing in po, decreasing in p,. Thus
it follows that (here and below all f; are evaluted in (g1 (pa, ..., PN),D2;---,PN))

fo=n—m—fs—...— fn

is increasing in p, and by the continuity of g} it is also continuous in py. To see
that 7o is in the range of this function, we recall the assumption that m < mp <
... < my. Letting po — 1 (which eventually means that p, > max(ps,...,py)) We
then eventually have that f, = max(fs,..., fn) > (n — m)/N > me. On the other
hand, letting p, — 0 will either imply that p, < g{(ps, ..., pn) for some p, so that
fo < fi = m < my for this py or that g] will also tend to zero. If n < N — 2 the
latter would mean that f; — 0, a contradiction, and if n = N — 1 it would imply
that f; — 1, 7 > 3, so that f; + fo = 7 + fo — 1. But since n = N — 1 we have
that m; + m > 1, so that fo < my for small enough p, as desired.
Thus, there is a unique pair p, = ¢3(ps, . ..,py) and

p1 = g%(p?n s 7pN) = g%(gg(pi’n s 7pN)7p37 s 7pN)7

so that (el) and (e2) are both satisfied. Finally observe that g and g3 are continu-
ous.

Now, suppose that the procedure indicated above has been carried out for [ =
2,3,...,k, k< N—1, so that at each step we have found unique values of py,...,p
as continuous functions g}, ..., g} of piy1,...,pn so that (el),..., (el) are satisfied.
It is then straightforward to carry out step [ = k + 1 except for one new difficulty,
namely that in order to use the same arguments as for the case | = 2, it must be
verified that g¥, ..., g are increasing as functions of py ;. However, if we assume
that increasing pi41 to a larger value pj_ , causes g¥, i € B, for a nonempty subset,
B, of {1,...,k} to decrease (and the others to increase or stay fixed), we have that
the sum ) ;. f; would decrease, a contradiction. To see that this sum must decrease
we proceed in two steps. First we increase pxy1 and p; for ¢ € B, i < k, to their
larger new values and keep all the other pis at their original values. Then all f;’s
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for 7 € B decrease. Second we change the p;’s for ¢ € B to their smaller new values.
This causes all f;’s for i € {1,..., N} \ B to increase and thus Y ;cp fi to decrease
even further as Zf\il fi; always remains equal to n. It should also be pointed out
that in this step of the induction the special treatment of the case n = N — 1 above
must be extended to the cases n > N — k; let py41 tend to zero and assume that
g;.“ also tends to zero for j = 1,...,k, then, for such an n, f;,j =k +2,..., fy all
tend to one, which implies that fx,; < 741 for small enough pg,; in the same way
as for [ = 2.

Thus we can proceed inductively to eventually get, for each fixed py, uniquely
determined values of pi,...,py_1 satisfying (el),...,(eN-1). Since SN, f; = n,
(eN) will be automatically satisfied. The last step is now to calibrate py so that
>N p; = n. However, since all the p;’s, i = 1,..., N — 1 are increasing functions
of py, it is clear that N, p; is increasing in py. Letting py — 0 implies that this
sum also tends to 0 as m; < ... < wy. On the other hand we can at this stage
equally well regard po,...,py as functions of p; and letting p; — 1 implies that
Zfil p; — N by the same reason. Therefore py can be uniquely determined so that
this sum equals n. Alternatively this can be seen by observing that changing the

p;’s in such a way the % is kept fixed for every i and j, the f;’s do not change.
O

3 A Central Limit Theorem for Conditional Pois-
son Samples

Let us again consider a Poisson sample
sC{1,2,...,N}

with unconditional inclusion probabilities
pi = P(i € s), i=1,...,N.

Let z; be the value for individual 7, 7 = 1,..., N, of a certain study variable and
let

i

be the corresponding population total. In this unconditional case the Horvitz-
Thompson estimator of this total is

~ Z;
R iy §
T ;pz 1

and since all [;,7 = 1,..., N are independent, we may use classical central limit
theory for sums of (triangular arrays of) independent random variables to deduce
approximate normality of #,, under mild conditions. What happens if we condition
on the event that |s| = ¥, I; = n? Can we still argue a normal approximation of ,
given that |s| = n?

Note that, to get a Horvitz-Thompson estimator, we should use the conditional
inclusion probabilities

mi = P(i € s||s| = n)
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instead of p; and replace ¢, by

Z;
)
1€S T

which is an unbiased estimator of ¢, under the conditional distribution of s. Thus to
be as general as possible we let 4y, ..., yny be real numbers and study the conditional
distribution of 3; y;I; given |s| = n.

From Cramér-Wold’s device (see Billingsley (1968)) it is not hard to deduce that

(Z yili, ZL)

approximatly has a two-dimensional normal distribution (under suitable conditions).
This is naturally formulated as a limit theorem for a sequence of Poisson samples
drawn from a sequence of populations with a sequence of y;-values. We shall try to
show a corresponding limit theorem for the conditional distribution of >, I;y; given

In principle we shall think of a v-indexed sequence of conditional Poisson samples

with conditional inclusion probabilities 7T§"), e ,7r§v"(),) with sizes n®) =¥, 7r§") from
a sequence of populations of sizes N with a sequence of yg/), . .,yj(g(),)—values.

However, we shall not use any explicit v-indeces in the formulas in order not to
burden the notation. As is shown in Theorem 2.2 it is no restriction to assume that
this distribution is realised as the conditional one of a Poisson sample procedure
with unconditional inclusion probabilities p1,...,py which sums to n so that the
expected sample size in this sample is E[|s|] = n. Thus we assume so in the sequel
and to start with, we shall formulate our conditions in terms of these unconditional
inclusion probabilities and come back to the conditional ones later.

First we reformulate the problem a second time and study instead the asymp-
totical distribution of the two-dimensional vector

(Z(yz — Yw)(Li — pi), Z(Iz — i)

i %
where 7, is the weighted mean

PpY. yipi(1 — pi)
Y Sip(l—p)
This is convenient because the two components are uncorrelated and the conditional
distribution of the first component, given that the second equals 0, coincides with the
conditional distribution of a centralised version of the sum we are really interested
in.

The question now becomes: When can we deduce that the conditional distribu-
tion of Y=, (y; — Uw)(L; — p;) looks like the conditional one in a normal distribution
with independent components ie. as the unconditional normal approximation of the
same expression with mean 0 and variance

> (yi — Gw)’pi(1 — pi)?

7

It turns out that this is always the case if, in a triangular formulation,

>_pi(l—pi) = o0, 2)
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and
max; (yi — Jw)’pi(1 — pi)
Yi(Yi — Juw)?pi(1 — pi)
The main ideas of the proof is to first split

S Wi —Gw) L —pi) = D Wi — ) (L — i) — DY — Juw)” (L — ps)

— 0. (3)

where «t = 2,501 and 7 = —xl{;<0}, and study the conditional distribution of
the vector

O Wi — 9u) (L = 2i), D_ (Wi — Yw)~ (Li — pi))-

3 3
Both the components of this vector are increasing functions of the inclusion indica-
tors Iy, ..., Iy and this can be used in combination with Proposition 6.2 to see that
the conditional distributions of the vector given the sample size |s| are stochastically
increasing with |s|, which in its turn can be utilised to prove a conditional central
limit theorem, using Proposition 5.1 below, for appropriately chosen normalised
subsequences of the triangular scheme.

However, this also, by the continuous mapping theorem, forces the conditional
distribution of the original sum to converge weakly to the right subsequence-independent
limit so that Helly’s theorem (see Ash (1972), Theorem 8.2.1) can be used to deduce
the weak convergence of the sum. We leave the details to Section 7 and give the
resulting theorem here:

THEOREM 3.1 Suppose that to a sequence of conditional Poisson samples corre-
spond sequences of unconditional inclusion probabilities {p;} and y-values such that
Yipi=n and (2) and (3) are true. Then the conditional distribution of

_ _1
Q- (i = Gu)’pi(1 = )2 (O wili — Y vims)
given that |s| = n converges weakly to a normal distribution with mean 0 and vari-

ance 1. Furthermore the expectation and variance of this conditional distribution
converges to 0 and 1.

4 Classical Central Limit Theorems for Poisson
Sampling
Here we shall give a multivariate central limit theorem for Poisson samples based on

classical theory for sums of i.i.d. random variables. Hajek (1981) used Lindeberg’s
central limit theorem to show the following:

PROPOSITION 4.1 If, in a triangular scheme of Poisson samples,
> pi(l—pi) = o0
i

and
max; z2p;(1— p;)

— 0
> wipi(1 — pi)
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then
(Z z2pi(1 — pi))_% Z z;(1; — ps)
i i
converges weakly to a standard normal distribution.
This proposition has the following multivariate extension:

PROPOSITION 4.2 Consider a triangular scheme of Poisson samples. Suppose that
each of the components in a vector version

S @iy Tri) (L — p;)

i

15 already scaled so that either its variance has limit 0 or a finite positive limit and
that for the components with positive limits the conditions of Proposition 4.1 above
are satisfied. Suppose furthermore that the covariances

quzL«zpz(l - pz) yq, T = 1a ey k
i
converge and denote the limiting covariance matriz by C. Then
Z(Cﬁi, ) $ki)(Iz’ - pz‘)
i

converges to a multivariate normal distribution with expectation 0 and covariance
matriz C.

Remark. Observe that some (or even all) linear combinations of the components
of the limit may be degenerate and have variances 0.

Proof. We shall use Cramér-Wold’s device. Let z; be any linear combination
of zy;,..., 2. The assumed convergence of the covariance matrices shows that the
variance of Y, z;(I; — p;) ie.

Z 22pi(1 — pi)

converges. If the limit is 0 the sum Y, z;(; — p;) converges weakly to a degenerate
distribution with all mass in 0. If, on the other hand the limit is strictly positive,
we may utilise that

and, using e.g. Cauchy-Schwarz’ inequality, bound max; z?p;(1 — p;) , so that it

can be seen to converge to 0. But this means that the required one dimensional
asymptotic normality of 3=, z;(I; — p;) follows from Proposition 4.1. O
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5 A Conditional Central Limit Theorem

We are going to use the results in Nerman (1997) which reformulated for our purposes
implies the following

PROPOSITION 5.1 Consider a sequence of random vectors (X,,Y,) € R*" which
converges weakly to a multivariate normally distributed (X,Y)-vector, such that'Y
has an r-dimensional Lebesque density. Assume also that Y, are discrete with pos-
itive P(Y, = y) ezactly for y € D,, and that the conditional distributions of X,
gwen Y, =y are stochastically monotone in y € D,, for each n. Then, if y, € D,
converges to 1y, the conditional distribution of X,, given Y, =y, converges weakly
to the conditional normal distribution of X given'Y = yy. (It is understood that the
versions of the conditional distributions of X given Y = y are chosen as the natural
ones so that weak continuity at y, is ensured.)

If, in addition, the variances of the components of X, converge to those of X,
then the conditional expectations, variances and covariances of X, given Y, = y,
converge to the those of X given Y = yq.

6 The Conditional Distributions Are Stochasti-
cally Increasing

We need to prove the fact that the conditional distributions of the vector (Iy,. .., Ix)
of inclusion indicators given |s| = n are stochastically increasing in n. (Here, and
for the rest of this section we refrain from the condition that Zf\il pip; = n. On the
contrary, the p;’s are assumed to be fixed throughout the section.) This is intuitively
obvious but appears to be algebraically messy to prove. Therefore we are going to
use a Markov chain idea, which will also suggest a practical method of actually
choosing a conditional Poisson sample. The latter implication will be treated in
Section 9.

Consider a discrete time Markov chain, {u;}°,, on the state space, A,, the set
of all samples of size n. Let the chain start in any state, ug, and let the transitions
be given by the following procedure:

At each time, ¢, do the following.

(i) Choose one of the individuals in v, at random.

(ii) Choose one individual, from the whole population, according to the distribu-
tion {6;/c}Y,, where 0; = p;/(1—p;) and ¢ = ¥ | 6;. Note that this individual
might be the same as the one chosen at (i).

(iii) If the individual chosen at (ii) is not already in u;, then exchange the two
individuals.

PROPOSITION 6.1 The conditional distribution of a Poisson sample, s, given |s| =
n, i.e. the distribution, u, given by

(s0) = % e 0 -2

1€s0  j&so

s the unique stationary distribution of the Markov chain specified above.
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Proof. Let p(so, 1), So, 51 € Ap, denote the transition probabilities for {u,}. If
so and s differ by exactly one individual, say i € so \ s1 and j € s1 \ o, then

10;
p(é’o, 81) ~nc
and
16;
p(é‘l, 50) = E;
so that

©(s0)p(s0, 51) = ncPA) II pe I (1=p) = u(s1)p(s1, o).

kE€sgUsy lZspUs1

But since p(sg, s1) = 0 if s¢ and s; differ by more than one individual, the relation

1(s0)p(s0, 51) = p(s1)p(s1, S0)

holds for every sy and s;. Hence p is a stationary distribution for {u;}. Uniqueness
follows from the obvious irreducibility of the process. O

Using Proposition 6.1 and a simple coupling argument, the desired stochastic
monotonicity will follow.

PROPOSITION 6.2 The conditional distributions of (I1,...,In) given |s| = >; I; =
n are stochastically (strictly) increasing in n.

Proof. We are going to construct two Markov chains, {u*} and {u/*"'} both
having transitions described by (i),(ii) and (iii) for n = m and n = m+1 respectively.
These are going to be coupled in such a way that uf* C uj"*" for every ¢ and so that
the pair (u, uf"™) is also a Markov chain. Since, with obvious notation, this will
mean that

L) < I (), IR () < T (t)

for every t, it will also imply that the stationary distribution of {u}"} is stochastically
smaller than the stationary distribution of {uf*"'} as desired. Also, since in the
stationary distribution of (u*,u*™') any pair, (s,s’), of samples of sizes m and
m + 1 such that s C s’ has positive probabilty, the inequality is strict.

Now let us do the construction of the two processes. Let u® C ug'™'. Let the
transitions of {u"*'} be as described by (i), (i) and (iii) for n = m + 1. Couple
the transitions of {u} to the ones of {u{"*'} in the following way. At time t = 1,
choose the same individual at (i) for the two processes if this individual is in ug".
If not, choose an individual in uj* at random. At (ii), choose the same individual
for the {u™}-process as for the {u/""'}-process. Now do (iii) as usual. It is clear
that 7 C v/"™" and by continuing in the same way for t = 2,3, ..., we have that
u* C uj™*! for every t. It is easily checked that {u["} has the behavior described by

(i), (ii) and (iii) for n = m. The proof is complete. O

Note. The technique used in this section is used in Liggett (1985), Section VIIL.2
on the exclusion process, with the difference that this reference uses a continuous
time setting.
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7 Proof of Theorem 3.1

It is no restriction to assume the y-values to be scaled so that the

Z(yz yw) pz 1 _pz sz 1 _pz

i
so that we may multiply by
_1
= p(l—p))2
i

in order to to standardise both components in

(i = Gw)(Li — i), (L — pi))-

i i

Think of our underlying triangular scheme as indexed by v. Consider any subse-
quence of {r} and use compactness to substract from this a further subsequence
{V'} so that the variances of the components of

YO (Wi = Tw) (L = i), D (Wi — Tw) ™ (I — 2i), D (L — p3))
converge to 0%, 1—02 and 1 and so that the covariance between the first and the third
component of the vector converges to x. Then the covariance beetween the second
and the third must also converge to k. The first two components are automatically
uncorrelated. Denote the corresponding limiting subsequence dependent covariance
matrix by C.

Now, Proposition 4.2 implies that
YOO Wi = Gu) (T = i) 2 (Y — Gu) ™ (i = 1), D_(Li — i)
i % %

converges weakly, as v/ — oo, to a normal distribution with mean 0 and covariance
matrix C.

Using the well known fact that if X is stochastically smaller than ¥ and f is an
increasing function, then f(X) is stochastically smaller than f(Y') it follows from
Proposition 6.2 that the conditional distributions of the first two components given
|s| = k are stochastically increasing in k. Thus Proposition 5.1 shows that the
conditional distribution of

YO (i — Gw) (L = 1), D (45 — Ju) (L — pi))

given that Y;(I; — p;) = 0 converges weakly, as v/ — o0, to the normal distribu-
tion recieved from conditioning this three-dimensional normal distribution with its
third component being 0. Observe also that since the unconditional variances con-
verge to those of the normal limit, the last part of Proposition 5.1 applies and the
conditional expectations, variances and covariance converge as well. Thus, from the
continuous mapping theorem of weak convergence it follows that also the conditional
distribution of the difference of the first two components
YQ Wi = 90) (T = i) = (Wi = )~ (L = pi) = v Y_willi
7 3 2

converges weakly, as v/ — oo, to the corresponding conditional difference distribu-
tion in the three-dimensional normal distribution above. It also follows that the
conditional expectation and variance converge to the ones of the limit. However,
this limiting distribution is always a normal distribution with mean 0 and vari-
ance 1. Since this limit does not depend on which original subsequence of {v} we
substracted, we can apply Helly’s Theorem to finish the proof of Theorem 3.1.
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8 The Conditions in Terms of {r;}

The centering constant in Theorem 3.1 is a function of the unconditional inclusion
probabilities p;. The weights p;(1—p;) in the weighted average ,, and in the normal-
ising sum in Theorem 3.1 are derived from the unconditional inclusion probabilities.
Moreover, p;(1 — p;) are also used in conditions (2) and (3). It is natural to ask
whether in all these expressions the unconditional inclusion probabilities may be
substituted by the conditional ones, ;7 The answer is yes, as we shall demonstrate
below; we can substitute all p; by 7; in (2), in (3), in the definition of g,, in the
centering or in the normalising constant of Theorem 3.1 and still get a valid theorem.

First we observe that since Theorem 3.1 implies that the conditional mean of
the converging expression tends to 0, we get that

(Z(y yw) pz 1 _pz _% Zyzﬁz Zyipi) —0

i

This of course means that we can substitute the centering constant in Theorem 3.1
by the conditional mean Y, y;m; of >, v; L.

Next, let us turn to the relation between {p;} and {m;}. It is natural to believe
that if

2_pi(l = pi) = o0

then m;/p; and (1 — m;)/(1 — p;) both should converge to 1 for all 7. Below we shall
show that this is indeed true and that these convergences are uniform, beginning
with the former.

Define m;(k) to be the conditional inclusion probability of individual ¢ in the
Poisson sample given that the sample size |s| = k, i,k = 0,..., N. We know from
Proposition 6.2 that m;(k) increases in k for any i. Observe also that

P(X2li=k-1)

"= e, =

i (4)

These two facts imply the inequalities

P(Ejszidi < (n—1)) < Ti P(Xjzl, > (n—1))
P(¥;I; <n) Iz P(¥;1; > n)

(5)

The left inequality follows from (4) and the inequality of the weighted average

Li<n Ti(K)P(X; 1 = k)
EkgnP(Zj I; = k)

< mi(n) =m

which in its turn is a consequence of the monotonicity of {m;(k)}. The right follows
from a similar weighted average of ;(k) for k > n.
Observe that, for all 4,

E[(I; — p:)®] < E[(L; — pi)?]

so that we can use Berry’s inequality for sums of independent, but not necessar-
ily equi-distributed random variables, Feller (1966), page 521 to approximate the
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nominators and denominators in (5). Recall that v denotes (X pi(1 — p;)) 2. It is
straightforward to see that the absolute differences

P L <n)

P(Y L<n-1)-3

Jig#i

are all bounded by C'v, where C’ is a universal constant. It follows from this that,
for some other constant C” (and >, p;(1 — p;) large enough),

1T q) < oy,
D;

By a symmetric argument, we also get that
| (1 — 7T1')
(1—pi)
Thus there is a third universal constant C such that
|7Tz(1 — ﬂ'i)
pi(1 — p;)
This in its turn implies that
|Ei mi(l — )
i pi(1 —pi)
so that if 3, p;(1 — p;) or 3°; m;(1 — m;) converges to infinity so does the other, and
Yimi(1—m)
Yipi(l —pi)
Thus (2) is equivalent to
Zﬂ'i(l — 7Tz') — OQ.
Similarly it follows from (6) that, for any a (= o),
Yi(yi — a)’pi(1 — pi)
iy — a)’mi(1 — m;)
provided that either of the sums Y, p;(1 — p;) or 3, m;(1 — m;) converges to infinity.
Now, suppose that the average ¥, is defined from the weights 7;(1 — 7;) instead
of the original weights {p;(1 — p;)} used in the definition of 7,. Then the facts that
Jx minimizes the expression

> (i — a)’mi(1 — m;)

i

—1] < C".

-1 < Cy. (6)

-1 <Cy

— 1.

— 1, (7)
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as a function of a, and that y,, minimizes
> (v — a)’pi(1 — pa),
i
show the two inequalities
> (Wi — Gu)’pi(1 — i) <D (i — 72)°pi(1 — pi),
i i
and
> (yi — Gn)’mi(1 — ™) <D (yi — o) *mi(l — ).
i i
But (2), in the light of (7), implies that the left side of the first inequality is
asymptotically equivalent to the right of the second and vice versa the right side
of the first inequality is asymptotically equivalent to the left of the second. Thus
(2) clearly forces all four expressions to be asymptotically equivalent, so that the
square root of anyone of them can be used to normalise in Theorem 3.1. Let us also
remark that a fifth alternative standardisation of 3, y;I; follows from the second
moment convergence of the same theorem. We can use the standard deviation of

the conditional distribution of Y, y;I;. Written in Yates-Grundy’s form (see Sérndal
et al.) using bivariate conditional inclusion probabilities 7;;, this equals

(D_(mij — mim;) (yi — y5)*)? (8)
]
Next, we shall argue that, given (2), (3) is equivalent to
max; (y; — J«)’pi(1 — pi)
Yi(Yi — Ux)?pi(1 — i)
To see this, observe that

S (i — )P = i) = (i — u)’pi(1 = i) + (Yo — Yr)? sz‘(l — i),

% i

— 0. 9)

so that we get, from the asymptotic equivalence of the left side and the first sum of
the right, that

max; (Y — ¥x)’ri(1 — i)
Yi(Yi — Uw)?pi(1 — pi)
which in its turn (using the inequality (z +y)? < 2(x? +y?)) yields that (2) and (3)
imply (9). A symmetric argument shows that (2) and (9) imply (3) so that (3) and
(9) are exchangeble in Theorem 3.1. Of course, using (7), we may also substitute
all p;(1 — p;) in (3) as well as in (9) by m;(1 — m).

Finally, we return to the Horvitz-Thompson estimation. Are we allowed to use
> “I instead of >, ZZI or vice versa? That is, assume that the assumptions
of Theorem 3.1 are satisfied so that the conditional distribution of one of them
is asymptotically normal. Are the variances of the two estimators asymptotically
equivalent and can normality be deduced for the other estimator too? These are
quite tricky questions, but by letting x; = p;, for all ¢, or x; = m;, for all ¢, and using
only two different values for the p;’s, we may end up in a situation where one of
the estimators has an approximate normal distribution whereas the other one has a
degenerate distribution. Thus such deductions are not generally possible.

— 0,
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9 Implementation of the Sampling Procedure

When using the conditional Poisson sampling procedure described in this text in
practice, two computational problems occur.

(a) Calculating the p;’s.

(b) Choosing the sample.

As we saw in the previous section we can, for large samples, let p; equal the desired
conditional inclusion probability. This does not give the exact solution to (1) but
it gives a good approximation. For small sample sizes it should be possible to
make the exact calculation of the p;’s, but already for moderate sample sizes and
different inclusion probabilities this seems to be a tough task. To come up with an
approximation procedure for this case seems like a good problem for an interested
student. Using a good computer and a suitable recursion it should be a bit more
straightforward to find numerical values for the m;’s given the p;’s.

Now consider (b). Using central limit heuristics (i.e. a not proven local central
limit theorem) it follows that doing this step by the immediate method of choosing
Poisson samples and rejecting them until exactly n individuals are chosen, would

on average require the order of N/3; pi(1 — p;) operations for a computer. In
reasonable situations the p;’s are bounded away from 1 so that Y-, p;(1 — p;) is at
most of the order n. Thus it should take on average the order of N,/n operations
to choose the sample. If we e.g. consider sampling from a population of the order of
10* individuals, then N./n is at most of the order 10° and modern computers will
have no problem to fulfil the task fairly quickly. Similarly, in larger populations with
smaller sample sizes there will be no problem. However, for large samples from very
large populations it is worth to consider other procedures. One natural attempt
in this way is to use the method suggested to us in Section 6, i.e. actually use the
Markov chain introduced there. Then the question of how long time it takes to come
close to stationarity arises. To answer this question we will again use a coupling
technique. Let {u;} be the process we are actually interested in, i.e. a Markov chain
starting in some fixed state, ug, and with transitions governed by (i), (ii) and (iii) of
Section 6. Let {u;} be another Markov chain starting in stationarity, i.e. such that
up has the distribution p of Proposition 6.1. The transitions of {u}} will also satisfy
(i), (ii) and (iii) but are to be coupled with those of {u;} in the following way at
time ¢t = 1,2,.... If the individual chosen in u; at (i) is also in u}, then choose the
same individual in u}. If not, choose one of the individuals in u} \ u; at random.
At (ii), choose the same individual for the {u}}-process as for the {u;}-process and
then do (iii). Let 7" be the coupling time, i.e. the first time the two processes meet.
Formally we have

T = inf{t : uy = u;}.

It is natural to measure the distance between the distribution, ), of u;, and u by
the total variation norm:

1
| — )| = 5 2 11D (s0) — p(s0)]-
SoeAn

Using the well known coupling inequality (cf. for instance Lindvall (1992), (2.8),
page 12) gives the following bound on the total variation norm.

|1 — p|| < Pr(T > t).
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Assuming that the two processes start in the “worst possible” way with no individ-
uals in common, we may rewrite 71" as

k=1

where T} is defined as 7, — 741, where 7, = inf{t : |u; N u}| = k}, the first time
u; and uj have k individuals in common. Observe that |u; N u}| never decreases
and that if u; and wu} have k individuals in common at a certain time, ¢, then the
probability that u;y; and uy,, will have £ + 1 individuals in common is at least

n—k

-1
Kn
n

where

K,=(1- E sup > 6;)7"
C so€An j¢c 50
(remember that 6; = p;/(1 — p;) and ¢ = X%, 6;) for this will be the case if the
individuals chosen at (i) are not identical and the individual chosen at (ii) is not in
u; Nuj. Thus, using the Markov property of (u, u}), it follows that T is stochasti-
cally not larger than the sum of n independent geometric random variables whose
expectations are at most

n

Ky,
n—k
for k=1,2,...,n so that we have
[T < K, 3 —"

which is of the order K,nlogn if n is large. By calculating the second moments of
the Ty’s and using Chebyshev’s inequality one can prove that

Pr(T > (1+¢)K,nlogn) — 0

as n — oo for any € > 0. The details of the last argument are carried out in Carlsson
(1996), Theorem 3.2 and are therefore omitted here. The coupling inequality now
implies that

((14€)Knnlogn

I ) — || =0

as n — o0o. One says that K,nlogn is an upper bound for the convergence rate of
the distribution of u;.

In reasonable situations the K,’s are bounded (and usually not much larger
than 1) so that the upper bound is of the order nlogn. Now, since a computer
would need log, N operations to classify the choice at (ii), it would take the order
of nlog N logn operations to carry out nlogn transitions of the Markov chain. If n
is large and N is much larger than n, this is a considerable gain compared to the
“naive” method. One drawback is of course that the resulting sample will not have
exactly the distribution p, but if we do for instance 2E[T] transitions and n is large,
it will be extremely close. Note also that we can of course do much better than
starting the process in a fixed state. Letting uy have a distribution which is at least
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fairly close to p will improve the result considerably. For instance we could use a
sample drawn with the technique used in Rosén (1995) or Olsson (1995) for u.
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