A BRANCHING PROCESS VERSION OF
THE BELL-ANDERSON CELL POPULATION
MODEL

Ziad Taib

Department of Mathematics
Chalmers University of Technology
and the Unwversity of Gdteborg
S-412 96 Gdteborg, Sweden
e-mail: ziad@math.chalmers.se

Abstract. We describe a branching process version of the Bell-Anderson model
and discuss the existence of a stable cell size distribution. Moreover, some quan-
tities of interest for the biologists such as the a-curve and the -curve are shown
to have natural interpretations within the context of the model. We also show
that some empirical facts about the a- and the (- curves as well as about the
correlations between sizes of near relatives (siblings, mother-daughter, etc.) are
direct consequences of the model.
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1 Introduction

In this article, we consider the asymptotic behaviour of a multitype branching
process version of the Bell-Anderson cell population model. The type of questions
we investigate are similar to those in (Lasota & MacKey, 1984) and (Sennerstam
& Stromberg, 1995) just to mention two references, one where mathematical
results are obtained and one where answers are arrived at using simulations.
Since many of these questions concern the genealogy of a randomly sampled
cell, it turns out that the branching process approach is a natural alternative to
deterministic modeling as well as to simulation studies.



2 The model

We assume that every cell inherits, at birth, a size r € S, where S = [, L) is
equipped with its Borel algebra £. The basic outcome space at the individual
level is denoted by Q (equipped with some o-algebra A) and a cell of (birth-)
size r chooses an outcome w € €2 using P,, the life law of cells of type r. After
having completed its cell cycle type, A, a cell divides into two equal daughter
cells. A: S x€Q — R, is but one example of some important aspect of the life of
a cell. Any other aspect can be handled similarly.

If a cell population is issue from one single founder cell o, we can label the set
of all possible cells by I = {0} UlJ,+,{1,2}", where {0} is the zeroth generation
consisting of the founder cell. The whole population is defined on (S x Qf & x
AD). As explained in (Jagers, 1989), this together with the assumption that
the fates of different cells are independent defines a unique probability measure
P, on the entire population process. The development of the individual cells
is assumed to follow the following rules. At birth a cell has an initial size, r
which increases with time according to some growth function g. Growth is thus
completely deterministic. The size at age ¢ is denoted by m(r,t). m and G are
related by the initial value problem %% = g(m), where m(r,0) = r. We also
introduce T(z) = [; ﬁdy. Then m(r,t) = T7Y(T(r) +t) and T(xz) — T(r) can
be interpreted as the time it takes to grow from size r to size . Eventually a
cell will split into two equal daughters. Notice that this means we disregard cell
death. The age A, at division is usually referred to as the cell cycle time, or
the generation time. Its distribution is given through its hazard rate function
b(s),s € S.

The basic parameter of the process is the so-called reproduction kernel p(r, dsxdt)
which gives the expected number of children with size in ds born to a mother of
(birth-) size r in the age interval dt. Using this notation, it is not difficult to see
that the reproduction kernel takes the form

wu(r,ds x dt) = 2E, [1()\ € dt)l (M € ds)
_ /6/2 1(u € dt)l (w c ds)b(m(r, )

e Jo b(m(r,v))d’udu

and making a change of * variable m(r,u) = z, we see that

b(28) 6_ ffs %d’u.
9(2s)

wu(r,ds x dt) = 21(T(2s) — T(r) € dt)

With Q(z) = b(z)/g(x), this can be written as
wu(r,ds x dt) = 21(T(2s) = T(r) € dt)Q(2s)e_ J7° Qv)dv
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3 The assumptions

Let fio(r,ds) = [;° € u(r,ds x dt). We will call the real number p(fi,) defined
by

p(fia) ™" = sup{\ > 0; Z)\”z?gf is o-finite

n>0

the Penon root of the kernel fi,. Here [i is defined by the recursion

fin (T, ds) Z/ﬂn_l(r, dv) jie (v, ds).
s

By the kernel ji, being o-finite it is meant that there exists a strictly positive
&€ x E-measurable function f such that

/f(ra S)ﬂa(r, dS) <oo Vres.
S

a will be chosen as to give the kernel ji, the Penon root one, and for that choice
the subscript a will be omitted. Notice that the Penon root may be infinity or
zZero.

When £ is countably generated, we can use the following definition of a conserva-
tive kernel. A kernel /i is said to be conservative iff there exists a o-finite non-zero
measure m on (S, &) such that m(A) > 0= > ., i"(r,A) = oo, VA € £ and
res. N

When /i is conservative, it is possible to show by abstract Perron-Frobenius theory
that there exists a o-finite eigen measure 7 on (S, &) and a strictly positive a.e.
finite measurable eigen-function h satisfying

h(r) :/Sh,(r)/l(r, ds) and
m(ds) :/qu(r, ds)m(dr)

Both h and 7 are unique up to a multiplicative constant. When inf h > 0, we
can norm 7 into a probability measure.

Four our model, we have

h(r) = 22T /r Q(v)dv/ e~ oT(29) /25 Q(v)dv
e0 ’l"/2 e 0
Q(2s)h(s)ds



and
2s 96
n(ds) = 2/ e~ TEO-T0NQ(25)e™ Jr” QWM gy
0

Notice that
fi(r, ds) = 2Q(2s)e”*T(2)=TM) = fr2sQ(”)d”ds,

fors>%and7’€5’.

Once a has been fixed by the Perron root requirement, the existence of 7 will
follow once we can show that the kernel (fi(r,ds)) is conservative.

We will make the following assumptions

(i) g is continuous and strictly positive on [, 2L).

(ii) g(2z) # 2¢(x) which excludes exponential growth for individual cells.
(iii) b(z0 >0 e<z>2L
)

(iv ffL b(z)dzr = 0o
We will also assume that L > oc.

Lemma 1. A sufficient condition for the conservativity of the kernel ji(r, ds)

is the existence of a o-finite non-zero measure m on (S, &) such that j(r, A) >
m(A) VreSand Aef.

Proof.

i, A) = / s, A (r, ds)

> m(A) / Y, ds)
=m(A)

This means that g"(r, A) > m(A) Vn > 1. If m(A4) > 0, we get

Zﬂ"(r, A)=00c Vres.

n>0



It is therefore enough to exhibit a candidate which can play the role of the measure
m above. It turns out that it is possible to take

2s

m(A) :/ QQ(QS)e—aT(Qs)e_ 2 Qu)dv g g
An[L,L)
Since

L 2s
m(S) Z/ 2Q(2s)e Jo Qv g

L

= e fOL Q(v)dv > 0’

m is a non-zero measure, and it is not difficult to verify that

fi(r, A) = / 2Q(2s)e~ T2 =T) = 2 Qv g
AN[3,L]

The discussion above settles the problem of the existence of the eigen measure 7
which has the interpretation (when properly normed) of being the stable (birth-)
size distribution.

To proceed further, we can either use convergence theorems for the composition
of a branching population or the so-called stable pedigree measure (cf. Jagers
& Nerman, 1997), which describes functionals of the family tree of a randomly
sampled cell from a very old population.

The results we will be interested in concern
(1) The a-curve, i.e., the proportion of undivided cells older than some preas-
signed age.

(2) The f(-curve, i.e., the tail of the distribution of the absolute value of the
difference between the cell cycle times of two sibling cells.

(3) The correlation between the cell cycle times of a mother and daughter.

We will also show that o and 3 have the same asymptotic logarithmic slope and
that the correlation referred to in (3) is necessarily negative.

4 The asymptotic composition

The easiest way of describing different aspects of the asymptotic composition of
the population is to use the stable population measure P. Since this is a quite
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complicated object (cf. Definition 1 in Jagers & Nerman, 1996), it will not be
reproduced here. Fortunately, we only need a few of its many coordinates. The
stable population measure describes the lives of the near relatives of a randomly
samples cell, ego chosen from a very old population. Under P ego’s type is
distributed according to 7.

First, we derive an expression for the a-curve. Since a(t) = the fraction of cells
still undivided at age ¢, it can be interpreted as the probability that ego is still
undivided at age t. With T, denoting ego’s cell cycle time, we have

awzﬁm>n:/<mn>mmw
0
— / e fg b(m(r,u))duﬂ.(dr)

0

Next, we derive an expression for the -curve. (3(t) can be interpreted as the
probability that ego’s cell cycle time T} differ from her sister’s T by at least ¢
times units, i.e.,

B(t) = P(|ITo — Ty| > t)
/ (I Ty — T!| > t)m(dr)

/ /L it flr,y) f(r, z)dzdyn(dr)

where f(r,z) = b(m(r,z))e Jo dmrv)dv Tt is straightforward to see that

1) :2/00/00/ F(r, @) f(r, y)dzdyr (dr)
_2/ / o ¥ bm(r )

y+t b(m(r,v) d”dyﬂ(dr)

We now show that o and ( have the same asymptotic logarithmic slopes. To see
this, we consider 4 1n 3(¢) and 4 Ina(t), as t — oo.

d A (t)

g n A = ﬂ(t)

o fooo fooo —fg’ b(m(r,v))dvb( (7" Y+ t)) —fg’+t b(m(r’v))d”dyﬂ'(dr)
fo fo f m(r,v)) dve fy+t b(m(r, U))d”dy’n'(dr)

and this converges to lim;_,o b(m(r,y +t)) = —b(M).



Compare this to

= J5 b(m(r, 1)) Jo Mmraddom ()
fooo e fot b( m(r,v))dvﬂ.(dr)

As t — oo this will have —b(m(r,00)) = —b(M) as limit, i.e., & and 3 have the
same asymptotic logarithmic slope.

Finally, we consider the mother-daughter cell cycle correlation. First, we derive
the bivariate distribution for 7y and 77, the cell cycle times of ego and one of her
daughters, under the stable population law.

P(TI S AI;TO € AO)
= /P,,.(T() € A(),T1 c Al)T((dT)

where
PT(TO € AO)TI € Al) = PT(TI € A1|T0 € AO)PT(TO - AO)
Since
P,-(TO c AO) = / b(m(r’ u))ei fou b(m(Tav))dvdu
Ao
and
P(Th € Ai|Ty = ty) = Prro)(T1 € A1)
- / b<m(m(”t°)’ ix))e I3 bm(2 2)av g,
A 2
we get

P(Ty € Ay, Ty € A))

/AO/AI/ m(r, o)) S8 mrany (1 (r,t ) 0)

*fotlb m( 0),v)dv (dT)dtldto

:/ / g(to, t1)dt dty
Ao J A

where g¢(to, 1) can be interpreted as the bivariate density of (7y,7}). Using this
and the marginal distributions which can be derived from it, we can now calculate
the covariance

E[T,,T\] = E[Ty]E[T}]

and retain its sign, which turns out to be negative.
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