TRACES IN ARITHMETIC FUCHSIAN GROUPS

STEFAN JOHANSSON

INTRODUCTION

Let T be a Fuchsian group of the first kind in SL9(R). The purpose of
this paper is to investigate the set of traces

T' = {t: t = trace(y), y € T}

This set is very important for several reasons. It is well known that the orb-
ifold I'\'H, where H is the upper half-plane model of the hyperbolic plane,
has a natural structure of a Riemann surface. The geometry of this sur-
face is closely related to the arithmetical properties of the trace set 77 .
For example, there is a natural one-to-one correspondence between traces
of conjugacy classes of hyperbolic elements in I', and the geodesic length
spectrum L£(I') on the corresponding Riemann surface: To each conjugacy
class [y] of hyperbolic elements in I" corresponds a unique closed geodesic
on the Riemann surface, whose length [, satisfies

l
|T'r(7y)| = 2 cosh %

Furthermore, the spectrum of the Laplacian on I'\H is totally determined
by L£(T') through the Selberg trace formula, see [5].

When T' = SLy(Z), it is trivial that 71 = Z. It is also easy to determine
T* for many groups I' commensurable with SLy(Z), but in general it is not
a trivial task to describe the trace set 7.

There is a significant difference between 7' for arithmetic and non-
arithmetic Fuchsian groups. Indeed it is possible to characterise arithmetic
Fuchsian groups in terms of 77 [11]. In geometrical terms, this translates
to a significant difference in the statistics of the length spectrum of closed
geodesics on I'\'H when I is arithmetic, compared to what is expected and
has been found numerically for non-arithmetic groups. This special be-
haviour of the spectral statistics when I' is arithmetic is an example of what
has recently been named arithmetic chaos [9].

In [1], Bolte gave a conjectural explicit formula for the asymptotic be-
haviour of 71, when T is arithmetic. However, this formula relied on a
hypothesis, which proved to be false.

The main purpose of this paper is to determine the asymptotic behaviour
of 7T when T' is arithmetic, and thereby prove a corrected version of the
formula in [1]. It will be shown that the only correction needed in [1] is the
coefficient of the leading term.
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Sections 1 and 2 contain some notational conventions and a number of
auxiliary results.

In section 3, we reformulate the problem in terms of representations by
quadratic forms on lattices. Using the theory of quadratic forms, we show
that it is possible to localise the problem. With this, we are able to explic-
itly determine the asymptotic behaviour of 71, when I' are unit groups in
quaternion orders. This is done in section 4 for a large family of orders,
including maximal orders and Eichler orders. For many of these orders, we
are also able to exactly determine 7.

1. BACKGROUND AND NOTATIONS

Let F' be a totally real algebraic number field with [F': Q] = n < oo, and
let R denote the algebraic integers in F'. Let €2 be the set of normalised
valuations on F', {2; the non-archimedean and (2, the archimedean ones. If
p € 0y, then F, will denote the completion of F' with respect to p, and R,
the integers in Fj,. The discriminant of F' will be denoted by Dp, and the
different embeddings of F' in R by o1, ... ,0,. We will consider F' embedded
in R* by

z+— o(z) = (o1(x),... ,on(x)).

If 3 is an ideal in R, then N7J is the cardinality of R/J.
Let 2 be a quaternion algebra over F. This will always be assumed to
satisfy

(1.1) ARq R = My(R) x H* !,

where H are the Hamiltonian quaternions. The algebra 2 will be considered
embedded in M5(R), through a map corresponding to o;.
It is always possible to find an F-basis 1,1, 7,75 of 2, such that

=4, j2=0b,ij = —ji, where a,b € R and ab # 0.

1
This algebra will be denoted (a,b)r. There is a natural anti-involution in
A = (a,b)F given by

q=1xo+ T1i+ x9j + T31j —> § = T — T10 — ToJ — T3i].

The (reduced) norm N : 2 — F and (reduced) trace Tr : A — F are
defined by

N(q) = q§ = 2% — ax? — bzl + abx3
Tr(q) = q+ q = 2xy.

From the embeddings o; we get oy N : A — R and o;7r : > — R. The
condition (1.1) is equivalent to o; N being indefinite when 7 = 1, and positive
definite otherwise. In terms of @ and b, this corresponds to o;(a) and o;(b)
both negative iff 2 < i < n.

An order O in 2 is a subring of 2, such that 1 € O, O is a finitely
generated R-module and O contains an F-basis of A. If v € Q, then
A, =ARr F, and O, := O Qg R,.
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If O is an order in a quaternion algebra, then the (reduced) discriminant
of O, d(0O), is defined to be the R-ideal which is the square root of the ideal
generated by det[Tr(z;z;)], where z; € O.

The set O' = {qg € O : N(q) = 1} is embedded in SLs(R), and is always
a Fuchsian group of the first kind. A Fuchsian group is called arithmetic iff
it is commensurable with any such O*.

When S is a finite set, then |S| will denote the cardinality of S. Observe
that in order to determine 7, we may restrict to elements v with T'r(y) > 0,
since if v € O! then —y € O'. When we determine the asymptotics of the
trace set, it does not matter if we include non-hyperbolic traces (|Tr(y)| < 2)
or not. Hence if

TO(T) = {Tr(q) :2<Tr(q) <2r,q€ (91},

then our main goal is to determine the asymptotic behaviour of |7 (r)|,
when r — oo.
By P(r), we will denote the parallelotope

Pir)y={z€eR":2 <21 <2r, |1;] <2,2<i<n},

where n = [F': Q]. More generally, P,(r) will denote the translation of P(r)
given by Py(r) ={z e R* : 2 —y € P(r)}.

2. AUXILIARY RESULTS

We will need some simple results in section 4, which we record for conve-
nience. First the trivial observation, that if ¢ and b are elements in a field,
then

(2.1) atal=b+b'=a=bora=0b"".

(2.2) Lemma. Let R be a complete discrete valuation ring and let p be
the mazimal ideal in R. Suppose that x € R is such that there exists a € R
with t = a+a~* mod p and a # +1 mod p. Then there is b € R such that
z=b+bl

Proof. The conclusion of the lemma is equivalent to the following: For
every n > 1, there exist bn,b'n € R such that a = b, + b;l mod p" and
bub, = 1 mod p", with b, — by € p" and by, — b, | € p".

We give an inductive proof on n. It is true for n = 1 by assumption. Let
7 be a generator of p, b = b, and b = b’n. Suppose that

bb =14+ 7" and b+ b = T+ 7'ro, 1 € R.
Then we have
(b+ kx™)(b +17™) =1+ (ry + bk + bl)x™ mod ™ +!
(b+ kx™) 4+ (b +1n™) =z + (rg + k + )™

Hence it suffices to show that k + [ assumes all values modulo 7 under the
restriction 71 + bk + bl =0 mod 7. But

rAbE+bl =0 k+1=—bry — (b - 1),
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and the result follows, since b> — 1 € R*. O

The following lemma is a special case of a well known result about repre-
sentations by quadratic forms over finite fields [10, Ch.4, Prop.4.4].

(2.3) Lemma. Let F, denote a finite field with q elements. If q is odd,
then

-1
{zeFy 2’ —1€F\(F)?}] = T~

(2.4) Lemma. Let R be the integers in a totally real algebraic number
field F. If 3 is an ideal in R and o, 3 € R, then
22n—1
N3./|Dr|
In particular, this implies that the different classes modulo J are equally
distributed in P(r) in the sense that
lim lo(a+3) N P(r)]
35 (B +3) N P(r)
Proof. If y = 0, then the first statement is a special case of |7, Ch.V, Th.1].
But it is easy to adopt the proof of this theorem to a translated parallelotope,
since one only makes use of the structure of the boundary and the volume

of the parallelotope, which of course are independent of y.
The second statement follows since |o(a+J)NP(r)| = |o(I)NP_q(r)]. O

1

lo(3) N Py(r)| = 4+ O(rl™w), when r — oo.

(2.5) Lemma. Let R be the integers in an algebraic number field, let
a € R be given, and X, =0 ({w ER:FUHER, 2> —at’ = 1}) Then

| Xo N P(r)|
f(r) = ———=—~ — 0, when r — oo.
lo(R) N P(r)|
Proof. Let p be a prime ideal in R, with Np odd. According to (2.3),

22 —at’ =1mod p

has at most m32+_1 solutions z inequivalent modulo p. Hence, if
Xap=0({z €R:3t€R, 2° —at’ =1 mod p}),
then there exists r, such that
| Xa,p N P(r)| < Np+2
lo(R)NP(r)] ~ 2Np
This is true since the classes modulo p are equally distributed according to

(2.4). Tt is clear that X C [, Xq,p- So by the Chinese Remainder Theorem,
we get

, when 7 > 7.

<‘ﬂan, ﬂP(’f‘)' HNP+2

fr) < lo(R) N P(r)| oNp  orT> s

where the product is over all p with 7, < s. When s — o0, then the number
of factors in the product also approaches infinity, so f(r) — 0. O
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3. REFORMULATION AND LOCALISATION

The promised reformulation of the problem is the following obvious one.
Let O be an order in 2 = (a,b)r. The question whether 2z € Tr(0O!) is
equivalent to, whether there exists ¢ = xg + x1% + z2j + z3i5 € O, such that
N(z1i + z2f + z3ij) = 1 — zd.

(3.1) Proposition. Let Lo = L ={X € %y :Ic € F, c+ X € O}, where
Ao ={q e UA:Tr(q) =0}. Then L is a lattice on Yy and

Tr(0Y) ={2z:3IN€ L, N\) =1—-2’} = S.

Proof. The inclusion Tr(O!) C S is obvious, and so is the other inclusion
when O = R® L. In general, let A € L be such that N(\) = 1 — z2. Then
there is a ¢ € F, such that ¢+ A € O. It is enough to show that z+ A € O,
since N(z + A) = 1 then implies 2z € Tr(O').

Since ¢+ A and =+ A commute, we have £+ X € F(c+ ). Both ¢+ A and
z+ X are integral over R, since c+ X € O and N(z+\) =1, Tr(z+ ) = 2z.
(2z € R since N(c+ ) =1—22+¢? € R and 2c € R.) Hence z —c is
integral over R, so x —c € R. But then

z+A=(z—c)+(c+A) €.
U

The problem is thus formulated in terms of representations by ternary qua-
dratic forms on lattices, since Lo is a ternary lattice with quadratic structure
given by N.

The question of representations in the global case is not directly manage-
able. Since we are mainly considering asymptotics, it will be shown that
local considerations will suffice. Therefore we introduce the following sets.
Let v € Q.

TP(r)={2z€R: 1<0i(z)<r,1-2>€ N(Lo,)},
T9(r) = Nyea T° (1),
T2 (r) = Nyeay, T (r).

If v =p € Qy, then we also define
Tooo(r) = T, (r) N T (7).

When the argument r is excluded, we will mean the corresponding infinite
set, which we get when the restriction on oy(x) is replaced by oy(z) > 1.
Here L, is defined similarly as Ly in (3.1). Also observe that Lo, =(Lo),.
Since ;N is positive definite iff 2 < i < n, To(g only depends on F' and we
get that

T79(r) = RN P(r).
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Hence by (2.4), we get

2n—1 1
(3.2) TE(r)| = 2 .7+ O(r'==), when r — oo.

V/1Dr|

The hypothesis in [1] was that [79(r)| and a natural modification of
|79 (r)| depending on O, have the same asymptotics when 7 — co. But
this is too much to hope for, since we only have taken into account the
archimedean completions. However, it is true that [79(r)| and |79 (r)]
have the same asymptotics, when r — oo. If O is a maximal order, or more
generally an Eichler order, in a quaternion division algebra, then 7° = 79
[12, Ch.IIIL, Prop.5.10]. To show that |[79(r)| and |79 (r)| have the same
asymptotics in general, we first need a known result from the theory of
quadratic forms. An argument is included, since it does not seem to exist a
complete argument in the literature in the general case. Though everything
of importance is included in [6].

Before the statement of the proposition, we need some background. Let
Q@ be a quadratic form on an R-lattice L. An element o € F' is represented
by @ on Ly Vp € Q iff o is represented by a lattice in genL, the genus of
L. Suppose that a € F is represented by a lattice in genL, but not by all
classes (resp. spinor genera) in genL. Then « is called an exception (resp.
spinor exception) of genL. It is well known, that if dimFL > 3 and @ is not
totally definite, then « is an exception of genL iff « is a spinor exception of
genL [4].

The notation and terminology in the proof of (3.3) will follow [8]. The
spinor norm will be denoted by 6. The idéle group of F' will be denoted by
Jr, and the subgroups J {5 and Pp of Jr are defined by

JE = {i=(iy) € Jr :ip, €0(0F (L)) Vp € Q}
Pp = {i=(ip) €Jr:iy=a,a€d(0O7(V))},
where V = FL.

(3.3) Proposition. Let F' be an arbitrary algebraic number field with inte-
gers R, and let Q be a quadratic form on an R-lattice L, with tkL = 3. Then
all spinor exceptions of genL in F are included in a finite set of classes in

Proof. Suppose that a € F is represented by genL. Let E = F(v/d), where
d € —a-disc(V). Here disc(V)€ F*/(F*)? is the discriminant of the qua-
dratic space (V,Q), where V = FL. According to Theorem 2 in [6], o can
be a spinor exception only if

[JF : PpNg/p(Jg)JE] = 2.
Let T = {p € Qu : (V}, Q) is anisotropic}, and let
Ir(p) ={ie€Jr:ig=1,Vqe€ Q\ {p}}.
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If Ir = [[,er Ir(p), then according to the proof of Theorem 2 in [6]
If
JE ={icJk:i,=1vpeT},
then J& = JL' Ir and JE' N Ip = 1. Hence
2 =[Jp : PoNgp(Jg)JF] = [JF : PDNE/F(JE)J}%IIF]
iff
JE C PpNg,r(JE)-

By exactly the same argument as in the lemma preceding Theorem 2 in [6],
one gets that

JE C PpNgp(Jg) <= JE C Ng/r(Jp).

Since Ly is unimodular for almost all p € Qy, 6(0O*(Ly)) 2 Ry for almost

all p € Q. Hence Ji C Npp(Jp) implies that the ramified primes of
E/F are included in a fixed finite set. Therefore only a finite number of

extensions E/F is possible for a being a spinor exception, and the result
follows. [

Since Lo, is unimodular with respect to N for all p { d(O), we get
N(Lo,) = Ry for almost all p € 2y [8, 92:1b] and

T8 () = [ Toolr)-
$ld(0)

Since 7;0 contains a whole class modulo p” for some n, it follows that 7'90
contains a whole class modulo some ideal. Hence
TE(r
RO 6o
TL(r)
for some constant C' if r is big enough.

Now we are able to formulate and prove the first of the main results:

(3.5) Theorem. The sets TO(r) and TS (r) satisfy

O
lim |To(r)| =1
r=o0 [T (r)]

Proof. If [a] denotes a class in F*/(F*)?, then let
Ei(r)={2z € TS (r) : 1 — 2% € [o]}.

(3.4)

Then by (3.3)

m

TO(r) 278 (1) \ | Blag) (r);

=1
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where m is a positive integer. Hence it suffices to show that
i |Eag(r)|
m  —— =
r=oe [T (r)]
Let X, be as in (2.5). Then Ej, C RN X,, and the result follows from (2.5)
and (3.4) since
Bia)()] _ RN Xal [T2()] _ [RN Xa| 1
|7}§9(7“)| T2 175 ()] ~ 1T C

O

We will conclude this section with an explanation of how to use (3.5) and
local computations to determine at least the asymptotics of 77 (r).
If z € R, then let [z]y» be the elements in R, which are congruent to z

modulo p™. We define the sequences m,(,n)(O) and Mén)(O) in n as

(3.6) my(0) = e - [{lal « [al € T}
and
67 MP©0)= (N;)n ey : Ty € Ly, y € 7Y

Then m,(,") (O) is an increasing sequence with an upper bound and Mén)(O)
is a decreasing sequence with a lower bound. Hence the limits

(3.8) myp(0) = nlglglo m,(,n)(O) and M, (0) = n]ggo Mé”)(@)

exist.

To prove that my,(0O) = M,(O), we introduce the unique additive Haar
measure /4 on F, normalised so that u(Ry) = 1. Let S, be the set of elements
in Ry, which are included in a class modulo p™, so that this class is partly
included in '7;@. Then by definition

u(Sn) = M (0) — ‘"><o>.

The sets Sy, are open, decreasing and ().~ ; S, = 0. In fact suppose that
z €2, Sp. Then

N(Ap) =1— 22 mod p
has a solution A\, € Lo, for all n. But then there is a A € Lo,, such that
N(\) = 1 — z2. If an element z is represented by a quadratic form, then
there is an open set containing x which is represented by this form, and
hence there is n such that z & S,.
Hence
o
m = lim u(Sy),

n—00
n=1

and we get my(0) = My(0).
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For any € > 0, we get by (2.4) that

m(n)(O) —e< w < M(n)(O) +e ifr>r
’° TS <M e e
for some 7, depending on n. Hence from the argument above, we get that
R /5 G0 |
Am o) ~ Ak (0) =mp(0).

By the Chinese Remainder Theorem and the same argument as above
with p replaced by, for example, J = Hp‘ d4(o) b, we get the following result:
(3.9) Proposition. Let my(O) be defined by (3.6) and (3.8). Then

o
lim 2 O] [T ms(0).

T—00 Y
S TS0 T AL

From (3.2), (3.5) and (3.9), we derive the following result on the asymp-
totics for the trace set of O.

(3.10) Theorem. Let O be an arbitrary order in a quaternion algebra
satisfying (1.1). Then

O r 2n—1
tim Ol 22 T my0).

r—00 r ,/|DF| pld(0)

4. LOCAL COMPUTATIONS

The goal of this section is to determine the numbers my,(O) for some
important classes of orders. We will achieve a complete answer in the case
of Bass orders O with Eichler invariant e(O) = +1. These include maximal
orders and so called Eichler orders, since Eichler orders are Bass orders with
Eichler invariant e(Q) = 1. The Eichler invariant depends on the structure
of O/J(0O), where J(O) is the Jacobson radical and was introduced in [3].
All necessary information about (Bass) orders in quaternion algebras can be
found in [2].

In this section F' will denote a p-adic field with integers R and prime ideal
p. Furthermore, we define Fj(x) to be the quadratic extension of F', with x
satisfying 22 —tz +1 = 0.

Sums with the lower bound greater than the upper bound will be con-
sidered empty, and [z] will denote the greatest integer less than or equal to
x.

(4.1) Remark. To determine how many of the elements ¢ = +a mod p™
that are traces, we may always restrict to ¢ = a mod p™ and multiply the
result by 2, since t € Tr(O!) iff —t € Tr(O!). O

The following observations will reduce the amount and difficulty of the
computations needed.

(4.2) Proposition. Let E, be an Eichler order in My(F) with discrimi-
nant d(E,) = p™. Then t € Tr(E}) for alln > 1 iff Fi(z) is not a field.
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Proof. We have that F, is isomorphic to the order, which consists of all

elements
a b
< e d ) € MQ(R)a

where a,b,c,d € R and 7 is a generator of p. Hence
teTr(E}),¥n>1<+= 3a € R, a(t —a) =1 mod p", Vn > 1.

But by Hensel’s lemma [8, 13:8], this is equivalent to Fy(z) not being a
field. U

(4.3) Proposition. Let E,, be an Eichler order in Ma(F') with d(E,,) = p™,
and let O be the mazimal order in the unique quaternion division algebra
over F. Thent € R (t # +2) is either in Tr(O) or in Tr(E}) for all
n > 1, but not in both. In particular

mp(O) + nli)nolo mP(En) =L

Proof. According to [12, Ch.II, Cor.1.9], t € Tr(O%) iff Fy(z) is a field (if
we exclude £1 from O!). Hence an element (# +2) in R is either a trace in
O! or in E} for all n > 1 but not in both, and the result follows. O

In the dyadic case, which is the problematic one, it seems easier to deal
with Eichler orders in general than with the maximal order in the division
algebra. Therefore we start with calculating my(E,,) for Eichler orders E,.

(4.4) Proposition. Let E, be an Eichler order in My(F') with d(E,) = p™
(n>1), and let ¢ = Np.
If p is non-dyadic, then

where

() = T3 = 4 gy,
where
g—1 1 .
2:2¢ﬁ1'7§§a ifn < de,
SOP (n) = ez 11 n— g4e+3)]

g—1  ¢g-2 g-—1 2 .
2¢3it+1 T o3t 2¢g3e+1 + Z g3(e+1)+2i + qn—e’ if n>4e+ 1.

i=1
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Proof. From the proof of (4.2), it follows that my(E,) = m,(,") (Ep).
First suppose that p is non-dyadic. Then there are % pairs (a,a”!) in
F;, such that a # a~'. From (2.1) and (2.2), it follows that

where ¢" - py(n) is the number of classes ¢ modulo p”, such that
t=a+d mod p"

has solutions, which satisfy a = d = +1 mod p and ad = 1 mod p™. These
correspond to the classes for which F(z) is ramified.

According to (4.1), we may restrict to a = 1 and multiply by 2. We claim
that

(4.5) teTr(El),t=2modp <= t=2modp" or t =2+ o*7°™,

where 2 < 2m <n —1, a € R*. The result follows from (4.5) by adding the
number of different classes and multiplying by 2.

To prove (4.5), we first remark that clearly ¢ = 2 mod p” is a trace, since
(1+0(7™))? =14 O(n™). Suppose that t Z 2 mod p". Let

o o
a=1 +Zai7ri andd=1+ Zdﬂri,

i=1 i=1
where a; and d; belong to a set of representatives modulo p including 0.
We have to investigate, which values a; + d; assumes under the restriction
1 = ad. Let m be the least integer i such that a; # 0. If we multiply a and
d and identify coeflicients, we see that m is also the least integer ¢ such that
d; # 0. Furthermore, we get a system:

am + dm = ami1 tdpy1 =...=azn 1+tdopm 1 =0
aom + d2m = _amdm = 0,7271
(4.6) @m+1 +domt1 = —Omt1dm — mdmi1 = 20mami1 + fi(am)
omik T domik = 20m0mik + fe(am, ... amyp—1),

where f; are polynomials. Now (4.5) follows immediately from (4.6), since
we may vary a; freely and 2 is a unit.
Now suppose that p is dyadic with (2) = p°. Then there are ‘1;—2 pairs
(a,a” ') in F, such that a # o~ !. From (2.1) and (2.2), it follows that
q—2

my(Ep) = 2 + pp(n),

where ¢, (n) is defined as above. Though in this case of course 1 = —1 mod p

s0 p(l) = %.

To determine ¢y (n) in the dyadic case, we use the same method. However,
it will get more complicated, since 2 is no longer a unit. We will give a
thorough proof in the special case e = 2 and indicate how to generalise. This
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is probably the most illuminating, since e = 2 involves all complications and
a proof with general e might be hard to follow. So assume that 2 = 728,
where § € R*, and let a and d be as above. By multiplying a and d and
identifying coefficients, we get

(

a1+ dp =0
as + do = a%
a3+ ds = 2a1as —a} = a3
(4.7) ¢ a4+ dy = 2aia3+ a% — aga% = a% + aza%
as + ds = a3a? + a1a26 + a1a3
| ao4k +doyk = apal + frlar,... a5 1)

From this, we immediately get ¢p(2) = ¢p(3) = q% and @p(4) = q%. If
a1 = 0, then a4 + d4 assumes all possible values, but a5 + ds only one. On
the other hand, if a; # 0, then a4 + d4 assumes half of the possible values

and ay + di assumes all possible values for £ > 5. Hence

qg—1 1 _qg-—1 /

1 qg—1
2% + X ©p(6) = T + P and @, (k) = 2 + @y (K),

pp(5) =

where k£ > 7 and ¢* - go;(k) is the number of classes modulo p* with a; = 0.
Now assume that a; = 0. Then we get the following system:

( ag + do = a3+d3=0
as +dy = a%
as + ds = 2a9a3 =0
as + dg = 2a2a4 +aj —a} =a3+a3

(4.8) ! ar+dy asasf + asa’

ag + dg = ai + a4(a2ﬁ + a%) + f4(a2, a3)
ag + do = a%(a2ﬁ+a%)+f5(ag,... ,a4)
\ 4k +dayr = ajazf+a3) + filag, .- ,ap1)

From this, we get ¢p(7) = ¢p(6) = % q% and ¢p(8) = % (11—6. Ifas =0
or as = (3, then ag + dg assumes all possible values, but ag + dg only one.
On the other hand, if as # 0 and a9 # B, then ag + dg assumes half of the

possible values and a; + dj assumes all possible values for £ > 9. Hence

g—1 qg—2 2 g—1 qg—2 2
oo =121 2 2 =402 2 g
i 2¢ ' 297 g7 "? 2" ' 297 g8

q—]. q—2 "
pp(k) = o +2—q7+<pp(k)a

where k£ > 11 and ¢* - cp;,’ (k) is the number of classes modulo p* with a; = 0
and as = 0 or as = (.
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Since 1 = — (1 + #72?) mod p3, we may restrict to az = 0 and multiply the
result by 2, when determining <p; (k). If we assume a; = ag = 0, then we
get the following system:

( a3+ ds = a+ds=a5+ds=0
ag + dg = a%
a7 + dr = 2aza4 =0
ag + dg = 2asas + a?l = az
(4_9) ¢ ag + dg = aza4f + ag
a0 +dio = a2+ asasB+ f5(as,as)
ann +din = apazfB+ felas,... ,as)
\ a5k +dspr = agasf+ fr(as, ..., ap_1)

If a3 = 0, then a19 + d1g assumes all possible values, but a11 + d11 only one.
On the other hand, if a3 # 0, then a19 + d1¢ assumes half of the possible
values and ay + dj assumes all possible values for £ > 11. Hence

g—1 qg—2 g—1 1
11) = 2 —
#p(11) 2t o (2q9 te)
o q—1 qg—=2 g¢g-—1 2
QOP(12) - + 2q7 + qg +qﬁa

2q*
g—1 qg—2 g¢g-—1

3
(pp(kf) = 24* + 2q7 + % +2‘P;(J)(k)a

where £ > 13 and ¢* - @&3)(%;) is the number of classes modulo p* with
a1 — a2 — az = 0.

To conclude the proof in the case e = 2, we write the corresponding
system when one assumes a1 = ... = a;,—1 = 0 for m > 3. One sees that
this shows the same pattern as (4.9) and the formula follows by induction
on m.

For a general e the pattern in (4.7) will occur e — 1 times before we get
a system with the pattern (4.8). This gives the first sum in the formula.
As soon as the case e = 2 is fully understood, it is not too difficult to work
through the general case.

Observe that the formula in the dyadic case with e = 0 is the same as the
one in the non-dyadic case, except for the leading term. U

The following result, we get directly from (4.3) and (4.4).

(4.10) Proposition. Let O be the mazimal order in the unique quaternion
division algebra A over F', and let ¢ = Np.
If p is non-dyadic, then

2
_q"+49+1
m(0) = 2q(q+1)
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If p is dyadic with (2) = p®, then

2 3(e—1
q¢-+3q+2 1 2/.2 (¥ V) —1)
0) = - Ep) I
mp( ) 2q(q+1) 2q38(q+1) <q (q ) q3_1 +q

We observe that the formula in the non-dyadic case agrees with the one in
the dyadic case with e = 0.

(4.11) Remark. Let O be an Eichler order in a quaternion division
algebra over an algebraic number field, such that d(O) is square free. This
is equivalent to that every localisation O, is either maximal or isomorphic
to Ey,. Then according to [12, Ch.III, Prop.5.16], we have t € Tr(0O) iff
t € Tr(Op) Vp € Q. Hence in this case, we can determine T(0) exactly
with the help of the proofs of (4.3) and (4.4).

For example, assume O C 2 with 2 the algebra over Q which is ramified
only at 3 and 5. Furthermore, assume that d(OQ) = 3-5-7 and that O; & Er.
Then t ¢ Tr(O) (t # £2) iff one of the following congruences is satisfied:

t = 0,3 mod7
t = +(2+3%") mod 3!
t = +(2+5%") mod 5*"*!
t = 0OmodS5.
([
Next we will investigate Bass orders O with e(O) = —1. The proof of

(4.12) will show an interesting ‘anti-relation’ between the traces for these
orders and the traces for Eichler orders. We remark, that the discriminant
of a Bass order with e(Q) = —1 is always a square if O € Ms(F) and always
a non-square if O is in the division algebra. Furthermore, there is only one
isomorphism class for a given discriminant [2].

(4.12) Proposition. Let G, be an arbitrary Bass order in My(F'), with
e(Gn) = —1 (n > 1) and d(Gy) = p*™. Purthermore let ¢ = Np and let ¢,
be as in (4.4).

If p is non-dyadic, then
g—1

my(Gn) = W + ¢pp(2n).

If p is dyadic with (2) = p®, then

1
2

Proof. With a slight change of notations compared to the result in [2, (5.4)],
we get that G, is isomorphic to the order consisting of all elements

— n
(_e(a+b b+(da o) >6M2(R), a,b,c,d € R,

b—cn™)

my(Gn) + ¢p(2n).

where X? — X + € is irreducible over R and r is a generator of p.
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First we observe that if Fi(x) is an unramified field, then ¢ € Tr(Gy)
for all n > 1. This can be proved in the same manner as (2.2) or (4.2).
Furthermore, if F;(z) is not a field and unramified, then ¢ ¢ Tr(G),) for any
n. This gives the first term in the formulas.

It remains to investigate the cases when Fi(x) is ramified. The calcula-
tions are similar to the ones for Eichler orders. The number of classes are
the same as in the case of Eichler orders, and the trace sets are in some
sense complimentary. For example, if ¢t € T'r(G,,) for all n > 1 then Fy(z) is
a field (or t = £2), and in the non-dyadic case

t€Tr(GL), t =2 mod p <=t =2 mod p?" or t = 2 + Br*™,
where 2 < 2m < 2n, 8 € R*\ (R*)% O
(4.13) Proposition. Let I';, be an arbitrary Bass order in the unique qua-
ternion division algebra over F, with e(T'y,) = —1 (n > 1) and d(T',,) = p>"+1.
Furthermore, let O be the mazimal order in the quaternion division algebra

over F, ¢ = Np and let @y be as in (4.4).
If p is non-dyadic, then

2
g-+1 2
my (L) = + .
P0) = 2+ 1) T @t )
If p is dyadic with (2) = p®, then
() mp(0)+2<pp(2n+1)—%—@ if n < 2e,
m = q
P mp(0)+2<pp(2n+1)—%—qgn+%, if n > 2e.

Proof. From the explicit description in [2], we get that the norm and trace
for elements in T';, is given by

N(vy) = a® + ab + eb® — 7" + cd + ed?) and Tr(y) = 2a + b,

where X? — X + € is irreducible over R, 7 is a generator of p and a,b,c
and d are arbitrary elements in R. Observe that this is very similar to the
case of GG,. An important remark is that O = I'g. It is trivial to check
that ¢t € Tr(T)) iff t € Tr(O') and t = 2a + b for some a,b € R satisfying
a’? + ab + eb? = 1 mod p?tl.

We give a complete argument in the non-dyadic case. It is exactly the
same in the dyadic case, except for some details which will be clear from the
remark below and the formula in the proposition.

It is easy to check that t € Tr(T}) if Fi(z) is an unramified field or
t = +2 mod p?**1. It remains to check the case when ¢ = +2 mod p, but
t # £2 mod p?**L. The elements t € Tr(O') which satisfy this, correspond
to the summand

2 2 2 2

(This is where the dyadic case is slightly different.) Exactly the same cal-
culation as in (4.13) reveals the same one-to-one correspondence between
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traces in E}, ,; and I'},. Hence we get the summand ¢, (2n + 1) — q%% for
t € Tr(TL) with ¢ = +£2 mod p but ¢ Z +2 mod p?**!. Summing up, we get

mp(Ln) = mp(0) — (% — @p(2n + 1)) + g%(% +1) - qzn%) =
If we evaluate this, we get the desired formula. O

For the remaining Bass orders, those with Eichler invariant equal to 0,
the situation is more complex. Then there are in general several different
isomorphism classes for a given discriminant. Calculations similar to those
of the proof of (4.4) have revealed, that there are Bass orders 01, Oy, such
that d(O01) = d(O2), e(O1) = e(O2) = 0 but my(O1) # my(O2) even in
the non-dyadic case. It seems very hard to find general formulas for m,(O)
for Bass orders with Eichler invariant equal to 0. Although, given such an
order, it is of course possible to use the methods of this section to compute

my(O0).
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