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ABSTRACT. On the affine group of the line, which is a solvable Lie group of
exponential growth, we consider a right-invariant Laplacian A. For a certain
right-invariant vector field X, we prove that the first-order Riesz operator
XA~1/2 is of weak type (1, 1) with respect to the left Haar measure of the
group. This operator is therefore also bounded on LP, 1 < p < 2. Locally, the
operator is a standard singular integral. The main part of the proof therefore
concerns the behaviour of the kernel of the operator at infinity and involves
cancellation.

1. INTRODUCTION AND RESULTS

Let G be the Lie group of positively oriented affine maps R — R. Such a map
can be written £ — e*¢ + s. Thus G consists of the points z = (s,t) € R2, with
group multiplication (s,t)(s’,t') = (s + e's’,t + t'). This solvable Lie group is not
unimodular; indeed dm(z) = e tdsdt is the left Haar measure, whereas the right
Haar measure dm,(z) = dsdt is Lebesgue measure. The modular function is thus
d(s,t) = e~t. In this paper we shall use m. Notice that the lack of unimodularity
implies that G is of exponential growth.

The Lie algebra g of G is spanned by the right-invariant fields

X =09/0s and Y =09/0t+ s0/0s.

The operator —X?2 — Y2 on C§°(G) has a self-adjoint closure A on L? = L*(G,m).
As seen in Gaudry, Qian and Sjogren [8], A is positive definite and one-to-one.
Thus its powers A%, a € R, have dense domains and are self-adjoint. This makes
it possible to form Riesz operators like X A~1/2 which is the operator studied in
this paper.

Before stating our results, we sketch some background and context. Many au-
thors have studied Riesz operators and their L? boundedness properties on various
Lie groups, symmetric spaces and Riemannian manifolds. For nilpotent Lie groups
and first-order Riesz operators, the boundedness on LP, 1 < p < oo, and the weak
type (1, 1) was proved by Lohoué and Varopoulos [15]. This was extended to all
groups of polynomial growth by Saloff-Coste [17] and Alexopoulos [1]. In [1] it is
also proved that a second-order Riesz operator of the form Z; Zo A~ or A~'Z,Z,
with Z1, Z, € g\ {0} is not bounded on any LP space.

Work by Lohoué [14] and Burns, ter Elst and Robinson [5] gives analogous results
for all nonamenable groups. The latter paper also contains quite general results
when A is replaced by A +¢I, ¢ > 0.
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In the setting of symmetric spaces of noncompact type, Anker [2] considered
Riesz operators associated with the Laplace—Beltrami operator. He obtained the
weak type (1, 1) estimate for first-order operators and the L? estimates for operators
of arbitrary order. Lohoué [13] and Bakry [3] dealt with Riesz operators on certain
Riemannian manifolds. The setting of Coulhon and Duong [6] is a Riemannian
manifold for which the balls satisfy the doubling condition with respect to volume.
It is interesting that they prove the LP boundedness for 1 < p < 2 but disprove it
for 2 < p < 0.

The papers mentioned above do not apply to our setting, the affine group G.
Second-order Riesz operators on G were studied in Gaudry, Qian and Sjégren [8]. It
was proved that for any Z;, Z, € g the operator Z; A~!Z, is bounded on LP,1 < p <
00, and of weak type (1,1). Further, Z; ZoA~! and A~1Z,Z, with Z;, Z> # 0 were
seen to have none of these boundedness properties. These results were extended
to any solvable NA group coming from the Iwasawa decomposition of a rank 1
semisimple group in Gaudry and Sjdgren [9]. In the complex affine group, treated
in Gaudry and Sjogren [10], the second-order Riesz operators turn out to have
slightly different boundedness properties.

As for first-order Riesz operators, it is a general, simple fact that ZA~/2 and
A~'2Z Z € g, are bounded on L?. A proof can be found for instance in [8,
Lemma 4].

The aim of this paper is to prove that the operator X A~1/2 is of weak type (1,1),
and hence bounded on LP for 1 < p < 2. Except for the L? case, this seems to be
the first result obtained for a first-order Riesz operator in a group of exponential
growth. The operator XA~1/2 is in fact also bounded on L? for 2 < p < oco; this
is proved in a recent paper [11] by Gaudry and Sjogren. The main result of [11]
is actually the weak type (1, 1) of the adjoint A~'/2X. We point out that the
corresponding questions with the field X replaced by Y are still open.

The kernels of the Riesz operators usually behave at the origin like a standard
singular integral kernel, and then the local parts of the operators always have the
boundedness properties studied. The main issue is the global part of the operator.
In [8] and [9] the kernel of Z;A~'Z, was found to be integrable at infinity, which
immediately implies the boundedness properties of the global part. This does, how-
ever, not hold for X A~/2. Qur proof of the weak type (1,1) relies on cancellation
between positive and negative parts at infinity. We therefore start by computing
the kernel rather explicitly. This computation is done via a known expression for
the resolvent. Another possibility is to use the heat kernel as in [9]. Notice that
this requires very precise knowledge about the asymptotic behaviour of the heat
kernel.

We need some notation to state the theorems. The group G has a Riemannian
symmetric space structure, that of the hyperbolic disc or half-space. The Riemann-
ian distance is invariant under left translation and given by

1
coshd(z,e) =z, where z =z(z) = i(et +et4sZet). (1.1)

Given a kernel in G, we define its principal value by deleting as usual a small ball
{z : |z| < p} centred at e = (0,0) and letting p — 0. Here we let |z| = (s +¢2)/2,
although one could also use the distance d. By Q¥ we denote the Legendre function
of the second kind.

The following is our main result.
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Theorem 1.1. Let
2 _ > _
K(z) = 25 /0 (1-22)71/2Q% ,(2)dA.

The operator defined by convolution from the left with the distribution pv K is
bounded on LP(m) for 1 < p < 2 and of weak type (1,1) with respect to m. For
f € D(A='/?) one has XA~'/2f = pv K % f, where the derivative X is taken in
the sense of distributions. Thus X A~/? extends to an operator which is bounded
on LP, 1 < p <2, and of weak type (1,1).

The kernel K behaves locally like a singular integral kernel of Calderén-Zygmund
type; cf. Lemma 2.2. The essential difficulty in proving Theorem 1.1 occurs at
infinity. To prove the weak type inequality for pv K, we therefore first compute, in
Section 2, the asymptotic behaviour of K at infinity. Except for integrable terms,
K is at infinity a multiple of the kernel S defined in the following theorem, with
r(s) = s/(1+ s%)3/2.

Theorem 1.2. Let r € C*(R) satisfy r(s) = O(|s|717¢) and r'(s) = O(|s|727¢) as
s — +oo for some € > 0, and assume that [r(s)ds = 0. Then left convolution with
the kernel

S(s,t) = r(s)e't X1}
defines an operator of weak type (1,1) for m.

As can be seen from Section 3, Theorem 1.2 is the main ingredient in the proof
of Theorem 1.1. The kernel S is rather similar to those treated by Strémberg [20]
and [21]. He proves that convolution from the right with the kernel Si(s,t) =
r(s)e'X{1<—1} defines an operator of weak type (1,1), for an arbitrary integrable
function r. This is implicit in [21] and explicit in [20, Theorem 1]. But to obtain
a left convolution kernel of weak type (1,1), we need both the small factor ¢! in
S and the cancellation coming from the vanishing moment of r. Indeed, it follows
from [8, Lemmas 11, 13 and 14] that our Theorem 1.2 would be false without the
factor t~!. An example at the end of Section 4 shows that r(s) cannot be replaced
by |r(s)| in Theorem 1.2. Tt is worth observing that S; is in weak L' and that S is
in the smaller space weak Llog L, but neither kernel is integrable.

To prove Theorem 1.2, we shall reduce the convolution in G to a convolution in
R. A similar reduction argument was used in [8, Lemma 11] to disprove the weak
type (1,1) estimate when ¢~! is omitted in S.

The next step in [8] after this reduction consists in disproving the implication

feLYR) = ryx f(z) € LM®(u), (1.2)

where p is the measure y~'dzdy in {(z,y) : z € R, y > 0}. Here r is as in our
Theorem 1.2, and ry(z) = y 'r(z/y). The proof of Theorem 1.2 by contrast goes
via a weaker, true version of (1.2), which we state as Theorem 1.3 and in which y is
restricted to a compact subinterval of R, . Section 4 contains the argument needed
to reduce Theorem 1.2 to Theorem 1.3.

Theorem 1.3. Let r be as in Theorem 1.2, and take N € N and a > 0. For each
f € L*'(R), the function (z,y) — 7y * f(z) is in weak L' with respect to p in the set
R x [a,eNa], with quasinorm bounded by C/N || f ||,. Here C depends only on r.

In this result, the factor v/N is best possible, as shown by the counterexample
to (1.2) given in [8, Lemma 14]. The author’s first proof of Theorem 1.3 went
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via a discretised version of it, equivalent to the following inequality for (dyadic)
martingales. Let P denote a probability measure and (X,,) the conditional expec-
tations of the integrable random variable X, with respect to an increasing family
of o-algebras. Then

N

N
> P(Xn = Xoal > 0 < x>0 (13)
1

The author’s proof of the discretised version of Theorem 1.3 was mainly analytical.
S. Janson then gave a short proof of (1.3) based on the martingale square function.
This inspired the author to an analogous, short proof of Theorem 1.3 by means of
a g-function and without discretisation. This argument is presented in Section 5.

The author is grateful to Garth Gaudry and Tao Qian for stimulating discussions
and valuable advice.

2. PRELIMINARIES

In this section we explain some notation, give a simple lemma about integrability
with respect to m, and estimate the kernel K.

By || - ||, we denote the norm both in LP(R) and in LP(G, m). The quasinorm
of weak L' is written || - ||1,00. For functions defined in G, the measure used will
be m unless otherwise explicitly stated. In particular, {-,-) is the scalar product
in L?(G,m). With f defined in G, we write f(z) = f(z '), so that in particular
Il f |zt (@m.) =l f lli- By ¢ > 0 and C < oo we denote many different constants,
and f ~ g means ¢ < f/g < C. Notice that for z € G close to e, we have

d(z,e) ~ \/z(z) — 1 ~ |z| = (s* + t2)/2.

For A € C\ (—o0,0], the resolvent (A + A)~! is bounded on L? and given by
convolution from the left with an integrable kernel k. This kernel is

k"k (.’L') = et/zﬂ(\)/x_l/g (Z)
with ®v/X > 0, as proved by Hulanicki [12].

Lemma 2.1. Let j > 0,a € R and b > 0. Then the function G(s,t) = sie®*z~?
belongs to L'(x € G : z > 2), provided that a +b > 1 and j + a < b. Similarly,
G(s,t)(log2) " and G(s,t) (log(2 + |t|))”" belong to the same space for v > 1,
whena+b>1and j+a<b and also whena+b>1 and j+a <b.

Proof. This is straightforward. For ¢ > 0 and |s| < e’ one has z ~ €, and otherwise

z ~ (1 + 5?)e~t. One observes that the inequality 2b > j + 1 is a consequence of

the hypotheses, even in the cases with a logarithmic factor. The rest can be left to

the reader. O
Next we consider some kernels on G. As we shall see in Section 3,

2 oo
U(z) = ;etﬁ/o Qg_l/z(z)d/\

is the kernel of the operator A~1/2. Differentiating under the integral sign and
using the formula for derivatives of Legendre functions, see Magnus and Oberhet-
tinger [16, IV.5¢], we obtain K = QU/Js. We shall derive some estimates for U
and its derivatives near e and near co.
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From [16, IV.5e, first formula on page 68] we have for A > 0 and z > 1

1

QY 1/a(2) = 27A=1/2 / 1(1 — )M 2 (2 — )M 2qu. (2.1)
Write M = 2(z—u)/(1—u?) and observe that M > 2/(1+u) > 1for z > 1, |u| < 1.
Thus

) 1 [es)
Ul(zx) %etﬂ (1—u?)"2(z - u)_1/2du/ M=Ad\
—1 0
1
= @etﬂ/ (1 —u?)"Y2(z = u)" /2 (log M) du.
™ -1

Now insert the expression for z from (1.1). One verifies that it is possible to
differentiate under the integral sign, so that

oU
K=%s

V2

= L2y /11(1 C )2 ()2 (%(bg M)~ + (log M)2> du. (2.2)

For the second derivatives, we observe that for small s,¢ we have the estimates
0*U 0*U
a5 | T |550:@

<cC / (=) 2 )/ ((log M) + (g M) )

+C(s* +17) /1 (1 —u?)™?(z — u)™**((log M) ™" + (log M)~*)du.

-1

Lemma 2.2. Asx — e, x € G, one has

U() = O ),
2 @)| = 0llal)
and 5 5
T @)+ |55 = 0lal ).

Proof. To obtain these three estimates, it will be enough to prove that for j = 1,2,3
and 1< j' <j

1 (=) e o) Y du = 0( = 1)) (23)

as z \( 1. We split [—1,1] into subintervals and estimate the corresponding parts
of this integral. For —1 < v < 0 both z — u and log M are bounded away from 0,

so that o
/ <c.
1

Let E=2—1. For1—¢<u<1onehas M >4(1—u)/(1—u?) > 2, and so

1 1
/ < 051/2*1'/ (1—wu?) Y 2du < CE7.
1-¢ 1-¢
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In the remaining interval 0 < u < 1 — £, we write

2¢ 1—u
1—u? + 1+u

It follows that M stays bounded for these u and &, and so it is enough to take j' = j
n (2.3). Clearly log M > ¢ max(§/(1 — u),1 — u), which implies

/1—\/53/1‘*/5(1_u)—%+%—j—jdu:0(£%"')
0 0

M=1+

and
1-¢ . 1-¢ 1,102 1
<€ [ (- EEIta = o).
/1\/5 1-4/€
This proves (2.3) and the lemma. O

We next estimate U and K at infinity.

Lemma 2.3. Letr(s) = s/(1452)3/? in the expression for S given in Theorem 1.2.
Then K —2S € L'{z € G : 2 > 2}.

Proof. We shall prove this by subtracting integrable terms from K until the re-
mainder is 25. In the expression (2.2) for K, the term (log M)~? gives rise to a
part of K which is O(se~*/2273/2(log 2)~2) as & — oo and thus integrable in view
of Lemma 2.1.

For the term £ (log M) !, we use the simple fact that 1/(z+y) = 1/z+ O(y/z?)
for z > 0 and —z/2 < y < oo, getting

1 1
log(z — u) +log(2/(1 — u?)) - logz + O(z~1) 4+ log(2/(1 — u?))
1 271 +1og(2/(1 — u?))
log z +0 ( (log 2)2

uniformly in |u| < 1. To deal with the last term here, notice that

1 1 +log(2/(1 — u?
|s|eft/2/ a —u2)71/2(z—u)73/2z +1log(2/(1—u ))du
1 (log 2)?
< Clsle™2275/2 4 C|s|le 2273/ (log 2) 2,
which is in L'{z > 2}. The expression in (2.2) is thus

1
—Lse’tm/ (1—u?)"Y2(z —u)"%?(logz) 'du + integrable terms
71'\/5 1

(log M)~ =

), 2z —r 00,

—3/2 —3/2

in {z > 2}. Here we can replace (z —u)
result is that K differs from

by 2 , with an integrable error. The

Lo —t/2 32 -1 /1 2\—1/2 Lo 2 -3/ -1
———=se 4z log 2z 1—u du = ——=se™"“z log 2
e Gog)™ [ (1-u?) 7 (log 2)
by a function in L'{z > 2}.
Arguing as in Lemma, 2.1, we see that se~/?273/2(log z)~! is integrable in {z €
G :z>2,t>—1}. Thus it is enough to consider the kernel

1
K =——
V2

se 22732 (log 2) " Xp<—1}-
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If we replace z=%/2 in K by 23/2(1 + s2)=3/2¢3!/2 we see from (1.1) that the error
is at most C|s|(1 + s2)~/2e3*X(;<_1}, hence integrable.

Since log z = —t + log(1 + s?) — log2 + O(e?) as t — —oo, we get logz > —t/C
for t < —1, and so

1 1
+3<c

log(2 + s2)
logz t '

12

Thus if we finally replace 1/log z by —1/t in K, the error is at most
Clsle™2(1 + s2)73/2e3/2t =2 log(2 + 8”)X 1< —1}-

This expression is in L'. Since the kernel we have now arrived at equals 25, this
ends the proof of Lemma 2.3. |

3. PROOF THAT THEOREM 1.2 IMPLIES THEOREM 1.1

We start by deriving the kernels of A=1/2 and XA~1/2, Let V = {Au : u €
Cs°} € C§°. In [9, Theorem 5] it is verified that V' is a dense subspace of L2. Notice
that V C D(A~') C D(A~Y/?).

The operator A has a spectral resolution (E;)§°. We get for f € V and g € CJ°

(A7Y2f gy = /0 T B, f, g). (3.1)

This integral is absolutely convergent, since

%) 2 o0 >
([[rmaEsal) < [T otams s [ dbg <o
0 0 0

see Birman and Solomjak [4, 1.5.20 and 5.1.2]. We can therefore insert ¢~
(2/m) fooo d\/(A? +t) in (3.1) and apply Fubini’s theorem, which yields

@trpg =2 [Tan [TEELD 2 [P pghay

Since ky2 > 0 and (2/7) [ ky2dX = U is locally integrable, we can change the order
of integration in the last expression, getting

(ATY2f,9) = (U £, 9). (3.2)

Thus U is the kernel of A~'/2 in the sense that A~"/2f =Ux f for f € V.
When f € V, the convolution U * f is C°°, and

1/2 _

XU+ )y /U )X, f (@ y)dm(z).
But

X, f@) = o f e T Xmo = ~Xef (),

so that
XUy =-lim [ U)X, fa'y)dm(a).

P20 J1z|>p
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In this last integral, we integrate by parts in s, where © = (s,t) as before. Write
z4(t) = (£v/p? — 12,t) € G for |t| < p. The result is

XU * f)(y)
=t [ [ WG 01079 - U @) (0 w)eat
—+ " XU(a:)f(;vily)dm(x)].
T|>p

The estimate for U in Lemma 2.2 implies that the first integral here tends to 0 as
p — 0, because U(z) is even in s and f(z+(t)"'y) = f(y) + O(p). The last integral
tends to pv XU * f(x). Since XU = K, we have proved that XA~1/2f = pv K « f
for fe V.

Let ¢ € C§°(G) with ¢ =1 in a neighbourhood of e. Writing pv K = pv (¢K) +
(1-¢)K, we split pv K into a local part and a global part. Lemma 2.3 means that
the global part differs from 2S5 by an integrable function. To see that Theorem 1.1
follows from Theorem 1.2, we need thus only prove that the local part defines
an operator of weak type (1,1). This follows from the next lemma, by standard
Calderén-Zygmund arguments, in view of the estimates for the derivatives of K in
Lemma 2.2.

Lemma 3.1. Left convolution by the kernel pv(¢K) is a bounded operator on L?,
provided that ¢ is of the form ¢ = ¢1 * ¢a with ¢1, ¢2 € C§°.

It is clear that one can choose ¢ of this form. We remark that the lemma actually
holds without the assumption ¢ = ¢; * ¢2. It is introduced because it allows us to
give a short proof. This proof is based on a representation formula for the product
of two convolutions used in Edwards and Gaudry [7, Proof of Theorem B.2.1, App.
B, pp. 188-189]. The argument extends to L?.

Proof of Lemma 3.1. Take any two test functions f, g € C§° and write

(((¢1 % $2)DVK) * f, g) = ((¢1 * $2)DVK, g * f) = (DVK, (1 * $2)(g * f)).

Letting subscripts denote right translation, we have

(G1x¢2)(g* @)= [d(y)ga2(y 'z)dm(y) [ g f(w L) dm(w)

= [y~ ﬂf)fg ) fw=tytz)dm(w)dm(y)
= [dm(w) [ $1(4)90(y)d2(y™ )( fw)¥ (y~ z)dm(y
= J dm(w)( ¢1gw) * (G2 fu)Y (@).
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As pointed out in the introduction, left convolution by pvK is bounded on L2,
with norm A, say. Therefore,

DV, (¢1 % 62)(g * )]

< | [ dm@)(pvK, (0190) * G2

< / dm(w) |(pvK * (Bfu), B10)|

< 4 [dm(w) |62t e 10 I

< A([ 1525018 am ) (/ I 619u 113 dmw ))1/2

< a( [ 1500w Pamm)ana ) (/ [ 16160 (y)dm<w>)1/2

< Al ll2ll £ llzll 6o llzll g 2 -

This concludes the proof of the lemma.
As remarked above, this proves Theorem 1.1 modulo Theorem 1.2. O

4. THEOREM 1.3 IMPLIES THEOREM 1.2
We must estimate S * f for f € L'(m). One finds

S x f(s,t) = //+v< ) r(s+ etu)et”t_l_%f(u,v)e*”dudv. (4.1)

By simply deleting the factor 1/(¢t + v) and taking absolute values, we first derive
a crude estimate. Write for u € R
- [1F-uas

and ry(z) = y~'r(z/y) for € R, y > 0. Then

|5 f(s,1)] < /etlr(et(e_ts +u))|F(—u)du = |re-:| * F(e™'s),

where the second convolution is taken in R. This is essentially Lemma 11 of [8].
Observe that || F' [|1 <|| f ||l1. Thus

15+ sGsst)ids <l Ll £ 1,
and Chebyshev’s inequality implies that for each t > 0
[{s : IS * f(s,8) > A} < OXte! || f I (4.2)

Clearly this is not good enough to allow integration with respect to e tdt. Our idea
is still to rewrite (4.1) by means of a one-dimensional convolution in the s variable,
but keeping the factor 1/(¢ + v) and without taking absolute values. There are two
obstructions. First, the factor 1/(¢ + v) does not fit into this scheme. We solve
this by chopping up the kernel S into parts corresponding to intervals in ¢. In each
interval, the factor 1/t in the kernel can be replaced by a constant. The second
obstruction is that in (4.1), or rather in the corresponding formulae with the parts
of S just mentioned instead of S, the integration in v is not over all of R but over an
interval which depends on ¢. To deal with this, we chop up f by means of intervals
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in the second variable. These intervals will be much smaller than those used to
chop up S. When we now convolve a part of S with a part of f, the interval of
integration in v can in most cases be taken as either all of R, which will produce a
convolution in R, or as the empty set, which will produce nothing. The remaining
cases will be seen to be so rare that we can afford using (4.2).

Let us now carry out this program. Define intervals I; = (—(j + 1)*, —j*) for
j =1,2,.... The lengths |I;| increase like j for large j. Let X; be the characteristic
function of I;. For ¢ € I; one has [t=' + =4 < C33/(|t|j*) = O(|t|~3/%) as j — oo.
This means that if we replace S by Y.;° S; with S; = —j~*r(s)etx;(t), the error
will be controlled by |r(s)|et[t|~%/*X{;<_1}, which is integrable.

Take an f € L'(G). Fixing j, we shall estimate S; x f. Divide the line into
intervals J; = (ij2, (i +1)j2), i € Z, and set fi(s,t) = f(s,t)Xx s, (—t). Fixing also i,
we have

Sj* fi(s,t) = —j~* // r(s + etu)ett f(u, v)e " dudv.
t+vel;, veld;

In this integral, v runs over the interval J; N (I; —t). For each t, exactly one of the
following three cases occurs:

1. Jiﬂ(Ij—t):Ji

2. Jiﬂ(Ij—t):®

3. JiN(I; —t) is a nonempty proper subset of J;.

Let x(") be the characteristic function of the set of ¢t € R for which Case 1 occurs,
and write x(1) (s, t) = x(V)(¢). Define x(® similarly. Then

Sjx fi = (S * fi)X(l) + (S; * fi)X(3)- (4.3)

In analogy with our notation F', we write
Fi(u) = /f,-(—u,v)dv.
Case 1. We have
Sixfils, )X (t) = —J'_4/T(S+€tU)etFi(—U)dux(” (t) = =5 re-exFi(e 7 s)x(8),

the last convolution taken in R. In Case 1, one always has t € I; — J;. To control
the L quasinorm of (S; * f;)x!), we therefore estimate for A > 0 the quantity
m(E)), where

Ey\ = {(S,t) €eG:tel; - J, j_4|1"e—t *Fi(e_ts)| > /\}

Under the change of variables z = e~ !s, y = e~ %, the measure m will correspond
to du = y~ldzdy; thus

m(Bx) = p{(z,y) : —logy € I; — Ji, |ry * F;(z)| > j*A}.
But the length of the interval I; — J; is at most Cj®, and Theorem 1.3 implies that
m(Ex) < C572 || Fi |l /(*N)

Since || F; ||l1 < || fi |1, this means that the L'* quasinorm of (S; * f;)x!) is at
most C5~5/2 || f; |l1. We now sum in 4, keeping j fixed. The sets I; — J;, i € Z,
have C'j-bounded overlap, in the sense that no point belongs to more than C'j of
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these sets. The same is then true for the supports of (S; * fi)xV, i € Z. But for
LY functions whose supports have N-bounded overlap, it is easy to see that

1Y Sk oo < CN Y1l 6k oo -

(Here the factor N can actually be improved to log N.) This implies
1185 % FiIXW oo < G572 N i lh= G2 11 £ Il - (4.4)
i i

To sum in j, we observe that the coefficients j~3/? in (4.4) form a sequence in
£logf. One can thus use the addition theorem of L'>°, see Stein and N. Weiss [19,
Lemma 2.3]. The result is that

I D 185 # filx ™ oo < CHLF - (4.5)
7 i

Case 2 gives nothing.
Case 3. The argument leading to (4.2) also implies that for each ¢

{s:1S; * fils, )] > A < OATH et || fills, A >0

Case 3 occurs precisely when t € dI; — J;, and 0I; — J; is a set of measure 2;2.
Thus

m{(s,t) : |S] * fl(sat)|x(3) > /\}
< oA / el fi et < CA || filn -
L~ J;
This means that

I(Sj * f)X® [l1,0e< C3 2| fill1 -

For each fixed j, the sets 0I; —J;, i € Z, and hence also the supports of (S; *f,-)x(3),
have C-bounded overlap. Summing as before, we get

IS 1S; # filx® lhoo < G211 F Iy

and

I D185 % £ilx® oo < CH f Il -
i
Since S* f =32 32, Sj * fi, we can combine this with (4.5) and obtain
I S*fllee< ClFL-
This is the conclusion of Theorem 1.2. |

Remark 4.1. The following example shows that left convolution with the kernel |S]
does not define a weak type (1,1) operator. We assume for convenience that 0 is in
the support of r considered as a distribution, but it is easy to see that the argument
given below extends to any nonzero integrable r. Define f € L'(G) by

f= X[-R, R] ® X[ log R, log R
where R > 0 will be large. Then

R
|S| * f(s,t) Z[R |r(s+etu)|etdu/ dv

lv|<log R, v+t<—1 |t + U| ‘
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If —log R <t < 0, the inner integral here is taken over the interval —logR < v <

—1 —t, and so its value is at least fllogR dp/p = loglog R. For these t, we thus get
S| % f(s,t) > |re-t| * X[—R, rj(e"s) loglog R,

and |r.—:|*X|_g, g > cin (=R, R). Changing variables as before to z = e~
et we get

t —
S, y=

|S|* f > cloglog R
for |z| < R, 1 <y < R. Since m corresponds to yu in the z, y variables, we see that
the L1'°°(m) quasinorm of |S| x f is at least cRlog Rloglog R. The L!(m) norm
of f equals the L'(m,) norm of f, which is 4Rlog R. Thus the weak type (1,1)
inequality is violated for large R.

5. PROOF OF THEOREM 1.3

Lemma 5.1. The g-function

sh)@ = ([ f(a:)P%y)l/Q

defines an operator of weak type (1,1), in the sense that || g(f) |l1,00 < C || f |1 for
f € L'(R).

Proof. We can easily adapt the standard argument via vector-valued singular inte-
grals, as presented e.g. in Stein [18, IV.1]. Let H be the Hilbert space L?(Ry; dy/y).
Consider the vector-valued operator which maps a function f € C§°(R) to the #-
valued function in R whose value at z € R is the element of H given by y — ry* f(z).
This can be seen as the convolution of f with the H-valued kernel R defined by
(R(2))(y) = ry(x), = € R, y > 0. It must be verified that R is a singular integral
kernel of Calderén-Zygmund type.

We start with a simple estimate for the Fourier transform 7. Since the integral
of r vanishes, one has

7(€) = /(e‘zmg — Dr(z)dz.

We split this integral as f\w\<1/|€| +f|z|>1/‘£| . The fact that r(z) = O(|z|~17¢) at
infinity easily implies that for small £ these integrals are bounded by C|¢|¢. Thus

7€) = O(¢]) as £—0. (5.1)
Clearly R is H-valued and given by

(R(E)(y) = F(y€)-
We get

. . dy . dy
sup || 7€) [B=sup [ 1700 = [ )P < v,
¢E€R €ER Y Y
because of (5.1). Further,
1, =, ,dy _ _
| R@) 3= | <Ir(C)P—==2[7* [ |w|lr(w)]*dw = Clz| 7,
Yy Yy Yy
and similarly
0 _ _
| =R(@) 3= lz|"* [ [w|r' (w)Pdw = Clz|~*.
or

Taking square roots, we get the standard estimates, and the lemma follows. O
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Remark 5.2. The ordinary g-function is defined in terms of the Poisson integral
and its gradient. This is similar in our case, but one must use a primitive function
of r instead of the Poisson kernel 7—!(1 + x?)~! of the upper half-plane. Notice
that in our main case 7(z) = z(1 + 22)~3/2 this means replacing the Poisson kernel
by its square root.

To prove Theorem 1.3, we introduce for f € L'(R) and A > 0

d
Ir(z) = / .
{y€la.eNa: [ryxf(z)|>A} Y

Then
{(z,y) :a <y <eVa, |y f(2)| > A} (5:2)

/JA dz'—/ {z : Ja(z) > a}|da,
0

the second equality because of the obvious bound Jy(z) < N for all A and z. By
the definition of g(f),

9(f)(@)” > N Jx(2),

and Lemma 5.1 implies
N N
/0 {z: Ja(z) > a}|da g/o 1z : 9(f)(@) > \Wa}|da
Noc 1
<[ 5 lida<OVEL IS I

From this and (5.2), Theorem 1.3 follows. O
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